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Abstract: Tick-borne diseases (TBDs), including emerging and re-emerging zoonoses, are of public
health importance worldwide; however, TBDs tend to be overlooked, especially in countries with
fewer resources, such as Zambia and Angola. Here, we investigated Rickettsia, Anaplasmataceae, and
Apicomplexan pathogens in 59 and 96 adult ticks collected from dogs and cattle, respectively, in
Shangombo, a town at the Zambia–Angola border. We detected Richkettsia africae and Rickettsia
aeschilimannii in 15.6% of Amblyomma variegatum and 41.7% of Hyalomma truncatum ticks, respectively.
Ehrlichia minasensis was detected in 18.8% of H. truncatum, and Candidatus Midichloria mitochondrii
was determined in Hyalomma marginatum. We also detected Babesia caballi and Theileria velifera in
A. variegatum ticks with a 4.4% and 6.7% prevalence, respectively. In addition, Hepatozoon canis
was detected in 6.5% of Rhipicephalus lunulatus and 4.3% of Rhipicephalus sanguineus. Coinfection of
R. aeshilimannii and E. minasensis were observed in 4.2% of H. truncatum. This is the first report of Ca.
M. mitochondrii and E. minasensis, and the second report of B. caballi, in the country. Rickettsia africae
and R. aeschlimannii are pathogenic to humans, and E. minasensis, B. caballi, T. velifera, and H. canis are
pathogenic to animals. Therefore, individuals, clinicians, veterinarians, and pet owners should be
aware of the distribution of these pathogens in the area.

Keywords: Babesia caballi; Candidatus Midichloria mitochondrii; Ehrlichia; Hepatozoon canis; Rickettsia;
Theileria velifera; Zambia–Angola border

1. Introduction

Ticks are important blood-sucking arthropods in medical and veterinary science,
second to mosquitos. They not only cause anemia in their hosts, but also carry and transmit
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a broad range of viruses, bacteria, and protozoa. Some of these microorganisms cause tick-
borne diseases (TBDs), which include emerging and re-emerging infectious diseases [1,2].
To date, TBDs have been considered a focal point for human and animal health worldwide.
The identification of novel viral and bacterial TBD-causing agents has increased in recent
times [3]. An example of emerging TBD agents is Borrelia fainii, which was first isolated
from a febrile patient in Zambia in 2019 [4]. Ornithodoros faini ticks and Rousettus aegyptiacus
bats are considered as a vector and natural reservoir of Borrelia fainii, respectively [4];
however, TBDs tend to be overlooked, especially in low-resource countries, because of
limitations in diagnostic infrastructure.

Tick-borne bacterial pathogens include Rickettsia, Anaplasma, Ehrlichia, Coxiella, Orientia,
and Borrelia. Among them, Rickettsia are obligate intracellular Gram-negative bacteria, and
are recognized as the causative agents of important emerging TBDs [5,6]. The symptoms of
human rickettsiosis include chills, high fever, headache, skin rash, and photophobia [7].
Species of the agents of human rickettsiosis differ region-wise. For example, R. japonica
causes Japanese spotted fever prevalent in East Asia, R. parkeri causes American Bou-
tonneuse Fever in the USA, and R. africae causes African tick bite fever in Africa [8–11].
Furthermore, Anaplasma and Ehrlichia are obligate intracellular bacteria belonging to the
family Anaplasmataceae. Some of these bacteria cause TBDs in humans and animals. For ex-
ample, A. phagocytophilum causes human granulocytic anaplasmosis and has been reported
worldwide, including in Africa [12–14]. Anaplasma platys has primarily been isolated from
dogs with cyclic thrombocytopenia; it has also been reported in Africa [15]. Importantly,
human infection with A. platys has also been reported in Venezuela and South Africa [16,17].

The common tick-borne protozoan pathogens are members of the phylum Apicom-
plexa and belong to the genera Babesia, Theileria, and Hepatozoon. Babesia microti, B. divergens,
B. venatorum, and B. duncani are the major etiological agents of human babesiosis. Most
human cases of babesiosis have been reported in the USA, but this disease has also been
reported in Asia, Africa, Australia, Europe, and South America [18]. Babesia gibsoni, B. canis,
B. rossi, and B. vogeli are widely known as causative agents of canine babesiosis [19]. Babesia
bigemina and B. bovis are agents of bovine babesiosis [20,21]. Theileria species, particularly
T. annulata and T. parva, have caused the most significant economic losses in livestock pro-
duction worldwide. Theileria annulata causes tropical theileriosis in several tropical regions
in southern Europe, northern Africa, and Asia [22]. Conversely, T. parva causes East Coast
fever, which is distributed in the eastern, central, and southern parts of Africa [23]. Hepato-
zoon canis and H. americanum have been reported to cause canine and feline hepatozoonoses
worldwide, which are the most common and important tick-borne hepatozoonoses [24].

Studies on tick-borne pathogens in Zambia, such as Rickettsia, Anaplasmataceae, and
Apicomplexa, have primarily been conducted in the southern, central, and eastern parts
of the country [15,25–31]. Angola is a neighboring country and shares borders with the
western region of Zambia. A few studies on tick-borne pathogens have also been reported
in Angola, primarily in the central and western regions [31,32]. Geographically, wildlife can
easily pass through the Zambia–Angola border, and ticks might be attached to the bodies
of animals during transit. Therefore, the investigation of ticks and tick-borne pathogens in
the Zambia–Angola border may provide valuable information for a better understanding
of the distribution of TBDs in western Zambia and eastern Angola. In this study, we
performed the molecular-level screening and characterization of Rickettsia, Anaplasmataceae,
and Apicomplexa detected from ticks in Shangombo at the Zambia–Angola border.

2. Results
2.1. Identification of Tick Species

Overall, we collected 59 and 96 adult ticks infesting dogs and cattle, respectively, in
Shangombo, a town in the Zambia–Angola border region (Figure 1). Morphological identifi-
cation revealed that 2 Amblyomma variegatum (males), 31 Rhipicephalus lunulatus (12 females
and 19 males), 23 R. sanguineus (10 females and 13 males), and 3 Rhipicephalus spp. (males)
ticks were collected from dogs, and 1 A. pomposum (male), 43 A. variegatum (7 females and
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36 males), 1 Hyalomma marginatum (female), 48 H. truncatum (14 females and 34 males), and
3 R. appendiculatus (females) ticks were collected from cattle (Table 1).
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Table 1. Number of samples used in the study.

Host Species Tick Species Female Male

Dogs

Amblyomma variegatum 0 2
Rhipicephalus lunulatus 12 19

R. sanguineus 10 13
Rhipicephalus spp. 0 3

Cattle

A. pomposum 0 1
A. variegatum 7 36

Hyalomma marginatum 1 0
H. truncatum 14 34

R. appendiculatus 3 0

2.2. Detection and Characterization of Rickettsia

Ticks infesting cattle were used for screening Rickettsia spp. using a polymerase chain
reaction (PCR) targeting the gltA gene. As a result, Amblyomma variegatum (n = 7) and
Hyalomma truncatum (n = 20) were positive for Rickettsia spp., representing three sequence
variants. Sequence variants 1 and 2 identified from A. variegatum showed 100% identities
to Rickettsia africae clones AT-11 and C10-F8-303, respectively, while sequence variant
3 identified from H. truncatum showed a 100% identity to Rickettsia aeschlimannii (Figure 2).
Prevalence of R. africae in A. variegatum and R. aeschlimannii in H. truncatum were 15.6% and
41.7%, respectively.
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Figure 2. Phylogenetic trees of detected Rickettsia spp. based on the sequences of five genes: (a) gltA; 
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Figure 2. Phylogenetic trees of detected Rickettsia spp. based on the sequences of five genes: (a) gltA;
(b) ompA; (c) ompB; (d) sca4; and (e) htrA. The accession numbers for the nucleotide sequences are
provided after the species names. The analyses were performed using the maximum likelihood method.
Bootstrap values >70% based on 1000 replications are indicated on the interior branch nodes.
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2.3. Detection and Characterization of Anaplasmataceae

For the screening of Anaplasmatacea, 59 ticks from dogs and 96 ticks from cattle were
used. Hyalomma truncatum (n = 10) and H. marginatum (n = 1) were positive for Anaplas-
mataceae, representing three sequence variants. Sequence variants 1 and 2 identified from
H. truncatum showed 100% identities to Ehrlichia sp. and Ehrlichia minasensis, respectively,
while sequence variant 3 identified from H. marginatum showed a 100% identity to Candida-
tus Midichloria mitochondrii (Figure 3). The prevalence of Ehrlichia sp. and E. minasensis
in H. truncatum were 2% and 18.8%, respectively, while the prevalence of Ca. Midichloria
mitochondrii in H. marginatum was 100%.
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2.4. Detection and Characterization of Apicomplexa

The same ticks collected from dogs and cattle were used to screen Apicomplexa. As a
result, Rhipicephalus lunulatus (n = 2), R. sanguineus (n = 1), and Amblyomma variegatum (n = 5)
were positive for Apicomplexa, representing three sequence variants. Sequence variant
1 identified from R. lunulatus and R. sanguineus showed a 100% identity to Hepatozoon canis.
Sequence variant 2 identified from three A. variegatum showed a 100% identity to Theileria
velifera, while sequence variant 3 identified from two A. variegatum showed a 98.1% identity
to Babesia caballi (Figure 4). The prevalence of H. canis in R. lunulatus and R. sanguineus was
6.5% and 4.3%, respectively, while the prevalence of T. verifera and B. caballi in A. variegatum
was 6.7% and 4.4%, respectively.
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2.5. Coinfection

Coinfections of Rickettsia aeschlimannii and Ehrlichia minasensis were observed from
two Hyalomma truncatum ticks. None of the tick samples were coinfected with Apicomplexa
and Rickettsia or Anaplasmataceae.

3. Discussion

We investigated the presence of Rickettsia, Anaplasmataceae, and Apicomplexa species
in ticks collected from cattle and dogs in Shangombo, a town located at the border of
Zambia and Angola. We identified R. africae, R. aeschlimannii, E. minasensis, Ehrlichia sp.,
Ca. M. mitochondrii, H. canis, T. velifera, and B. caballi. To the best of our knowledge, this
is the first study to report Ca. M. mitochondrii and E. minasensis, and the second study to
report B. caballi, in the country.

Rickettsia africae detected from A. variegatum in this study is widely known as a
causative agent of African tick bite fever, which is one of the zoonotic tick-borne fevers from
the spotted fever group of rickettsiae of emerging global health concern [33]. In addition,
we also detected Rickettsia aeschlimannii from H. truncatum, which is a human pathogenic
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rickettsia [34]. Previous epidemiological studies on rickettsia in Zambia were conducted in
the central, eastern, and southern parts of the country [25,26,35–39]. Thus, this study is the
first evidence of pathogenic rickettsiae in the western part of the country.

Ehrlichia minasensis was first isolated from cattle in midwestern Brazil in 2014, and
it was experimentally confirmed to be an agent of clinical ehrlichiosis in calves [40]. To
date, E. minasensis has been reported worldwide, including in South Africa, Kenya, and
Ethiopia [41–43]. The primary vectors of E. minasensis are Rhipicephalus microplus and other
Rhipicephalus ticks, but it has also been detected in Amblyomma, Hyalomma, and Haema-
physalis ticks [44–47]. In this study, E. minasensis was detected in nine H. truncatum ticks
for the first time in Zambia. Our results expanded the distribution records of E. minasensis,
suggesting the likelihood of bovine ehrlichiosis caused by E. minasensis occurring in Zambia.
Further investigations of E. minasensis are warranted to evaluate the current situation in
the country.

Candidatus Midichloria mitochondrii is an endosymbiont of ixodid ticks, such as
Ixodes ricinus, A. americanum, H. marginatum, R. turanicus, and H. wellingtoni, and has been
reported worldwide [48–52]. Recently, it was also reported in the argasid tick, Ornithodoros
turicata [53]. The role of Ca. M. mitochondrii in the host tick is speculated to enhance the
host fitness and/or for ensuring its presence in the host population [54]. In this study, we
provided the first evidence of Ca. M. mitochondrii in H. marginatum ticks in Zambia.

We detected Theileri velifera and Babesia caballi in A. variegatum. Theileria velifera has
been associated with low pathogenic or asymptomatic animal infections in cattle in Africa.
Previous studies have reported the detection of T. velifera in impalas, buffalos, and cattle in
Zambia, and it has been found to show a high prevalence in cattle [55,56], while, B. caballi
is a pathogenic protozoan found in horses, donkeys, and zebras. Interestingly, B. caballi
was detected in A. variegatum ticks infesting cattle in the Republic of Guinea [57] and was
detected in 5.3% (16/299) of cattle blood samples by a reverse line blot hybridization assay
in Zambia [55], even though B. caballi is known as an equine babesia. Thus, we speculated
that a genotype of B. caballi is able to infect cattle and be carried by A. variegatum; however,
further studies on the B. caballi in cattle in Zambia are required to evaluate this hypothesis.

Hepatozoon canis, an agent of canine hepatozoonosis [24,58], was detected in
two R. lunulatus and one R. sanguineus ticks in the present study. In addition, a previ-
ous study in the same area showed a relatively high prevalence of H. canis in dogs [15].
Therefore, Shangombo might be an endemic area of H. canis. For better vigilance, veterinar-
ians and dog owners residing in an around Shangombo should be aware of the symptoms
of canine hepatozoonosis.

Amblyomma variegatum is a three-host tick that utilizes different hosts during each
life stage. The larva and nymph ticks are generally present in great numbers on small
mammals and birds, such as the mongoose and cattle egret. While adult ticks utilize larger
mammals, such as camels and cattle. Evidence of cattle egret playing a role in transporting
the larvae and nymphs of the tick, and that the dispersal of A. variegatum is associated with
the migration patterns of the bird have been reported [59,60]. Given this, as well as the
detection of R. africae, T. velifera, and B. caballi in A. variegatum, these pathogens might be
crossing the Zambia–Angola border.

In this study, ticks were collected from dogs and cattle. Therefore, we cannot eliminate
the possibility for detecting pathogens in blood meal in ticks, which is the limitation of
this study. Further study in ticks collected from pasture in the study area is required to
determine the vector ticks of the detected pathogens.

In conclusion, we studied tick-borne bacterial and protozoan pathogens in Shang-
ombo, as there is relatively limited information on tick-borne pathogens in this area. This
study provided information on the presence of R. africae, R. aeschlimannii, E. minasensis,
Ca. M. mitochondrii, H. canis, T. velifera, and B. caballi in the study region. The information
may be helpful to researchers and individuals not only from Zambia but also from Angola
for preventing TBDs. Further investigation of tick-borne pathogens in the area is necessary
to evaluate the prevalence of TBDs in the area.
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4. Materials and Methods

Ticks were removed using a tick twister (H3D, Lavancia, France) or forceps from dogs
and cattle in Shangombo (16.32 S, 22.10 E) (Figure 1), Western province, Zambia, in January
2016. The tick species were identified based on morphological taxonomic keys using a
stereomicroscope [61]. The total DNA was extracted from individual ticks using a TRIzol
reagent (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions.

For screening the rickettsial infections, DNA samples from tick-infested cattle were
initially tested using gltA-PCR, as previously described [62]. The gltA-PCR was performed
with the primers gltA_Fc and gltA_Rc, and the 20-µL reaction mixture contained 0.1 µL Ex
Taq Hot Start version (Takara Bio Inc., Shiga, Japan), 2 µL 10 × Ex Taq buffer, 1.6 µL 2.5 mM
dNTP mixture, 200 nM of each primer, and 2 µL template DNA. UltraPure™ distilled water
(Invitrogen) was added as a negative control instead of template DNA. The PCR products
were electrophoresed in a 1.2% agarose gel stained with Gel-Red™ (Biotium, Hayward, CA,
USA), and visualized with a UV trans-illuminator. When the gltA-PCR yielded a positive
result, the selected samples were used for further characterization based on the sequences
of four additional genes: ompA, ompB, sca4, and htrA. The primers used in this study are
listed in Table 2.

For the detection and characterization of Anaplasmataceae, PCR targeting the 16S rDNA
of family Anaplasmataceae was performed using the primers EHR16SD and EHR16SR [63].
The universal primer set BTH-1F and BTH-1R, targeting the 18S rRNA gene of Babesia–
Theileria–Hepatozoon, was used for the detection and characterization of tick-borne
apicomplexans [64].

Table 2. Primers used in this study.

Organisms Gene Primer Name Expected
Size (bp) Sequence (5′-3′) Reference

Rickettsia

gltA gltA_Fc
gltA_Rc 580 CGAACTTACCGCTATTAGAATG

CTTTAAGAGCGATAGCTTCAAG [62]

ompA Rr.190.70p
Rr.190.602n 530 ATGGCGAATATTTCTCCAAAA

AGTGCAGCATTCGCTCCCCCT [65]

ompB 120_3599
120_2788 816 TACTTCCGGTTACAGCAAAGT

AAACAATAATCAAGGTACTGT [66]

sca4 D1f
D928r 928 ATGAGTAAAGACGGTAACCT

AAGCTATTGCGTCATCTCCG [67]

htrA 17K_3
17K_5 552 TGTCTATCAATTCACAACTTGCC

GCTTTACAAAATTCTAAAAACCATATA [68]

Anaplasmataceae 16S rDNA EHR16SD
EHR16SR 345 GGTACCYACAGAAGAAGTCC

TAGCACTCATCGTTTACAGC [63]

Babesia-Theileria-
Hepatozoon 18S rDNA BTH-1F

BTH-1R 690 CCTGMGARACGGCTACCACATCT
TTGCGACCATACTCCCCCCA [64]

The PCR products were purified using ethanol precipitation or were cloned using
the pGEM-T Easy Vector system (Promega, Southampton, Hampshire, UK) and DH5
alpha competent cells (TOYOBO, Osaka, Japan). Cycle sequencing for all amplicons was
conducted using the BigDye Terminator version 3.1 chemistry (Applied Biosystems, Foster
City, CA, USA). Sequencing products were run on a 3130xl Genetic Analyzer (Applied
Biosystems). The DDBJ/EMBL/GenBank accession numbers obtained were LC683090 to
LC683109 (See Supplementary Table S1).

Sanger sequencing data from amplified PCR products were analyzed using GENETYX
version 9.1 (GENETYX Corporation, Tokyo, Japan). Phylogenetic analysis was conducted
using MEGA version X [69]. The sequences were aligned with closely related sequences
deposited in the databases (DDBJ/EMBL/GenBank) using ClustalW, and a maximum
likelihood phylogram was applied to generate the phylogenetic trees.
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