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Introduction
Cancer, one of the leading causes of death worldwide, is con-
ventionally categorized and treated by organ- or tissue-specific 
disease types.1 Accordingly, current cancer drug development is 
often limited to individual cancer types. However, several 
genetic factors have been observed to be shared by multiple 
cancers. For instance, germline BRCA1 and BRCA2 mutations 
are known to be associated with breast cancer and epithelial 
ovarian cancer.2,3 Recent studies have also suggested that spe-
cific genomic loci are associated with breast, ovarian, and pros-
tate cancer.4 These findings support the emerging concept that 
specific genetic abnormalities are critical to the pathogenesis, 
progression, and metastasis of multiple cancers. The discovery 
of multi-cancer genes will facilitate promising translational 
applications, including the development of novel pharmaceuti-
cal treatments that target multiple cancers. Recently, the US 
Food and Drug Administration (FDA) approved the first 
multi-cancer treatment, Keytruda, which targets a specific 
genetic feature, the microsatellite instability high or mismatch 
repair deficient, to treat several cancers.5 Such breakthroughs 
will provide new opportunities to treat patients with different 
cancers who share genetic disposition but respond poorly to 
organ-specific treatment.

High-throughput genomics technology, capable of analyz-
ing tens of thousands of genes simultaneously, has presented a 
unique means to search for multi-cancer molecular targets on 
the genome scale. The vast majority of oncological genomics 

research has aimed to identify genes associated with specific 
cancer types.6,7 Despite the rapidly accumulating data from 
such studies, the lack of a robust analytical methodology has 
become a bottleneck for data integration from individual can-
cers to identify multi-cancer molecular targets. Methods such 
as meta-analysis and gene network analysis have been proposed 
as solutions.8,9 Although these methods are useful tools to 
compare and summarize lists of differentially expressed genes 
derived from individual cancer datasets, they are not designed 
to computationally validate candidate genes. Moreover, they 
often rely solely on expensive and labor-intensive experimental 
tests for large-scale screening or validation.

We hypothesized that cross-cancer predictability indicates 
the potential presence of common molecular mechanisms and, 
more importantly, predictive genes with therapeutic signifi-
cance among sets of cancers. This study presents a novel 
machine learning approach to identify multi-cancer molecular 
targets based on cross-cancer predictability, with built-in inde-
pendent computational validation that reduces false findings 
by ensuring the high relevancy of candidate targets. This 
approach consists of 3 key elements: (1) cross-cancer predic-
tion to identify groups of cancers with high cross-cancer pre-
dictability and to serve as independent computational 
validation; (2) Prediction Analysis for Microarrays and 
Random Forest (PAM-RF) hybrid classification to synthesize 
salient genomic information from predictive models for gene 
inference; and (3) gene pathway enrichment analysis to 
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facilitate a biological understanding of the potential molecular 
mechanisms underlying cross-cancer predictability. This 
framework can be generalized to all types of cancers and differ-
ent experimental genomics platforms. As an application, this 
framework was used to identify common molecular targets for 
stage I endometrial cancer, mammary gland ductal carcinoma, 
and small cell lung cancer.

Methods
Dataset description

This study used 14 publicly available cancer microarray gene 
expression datasets downloaded, in the format of SOFT file, 
from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus database (Table 1). The 
datasets originated from the Affymetrix GeneChip Human 
Genome U133 Plus 2.0 Array platform (GPL570). The sam-
ples were classified by sample status (normal vs cancerous). The 
data in the SOFT file was preprocessed and normalized by the 
submitting laboratory.

Cross-cancer prediction: overall framework

The cross-cancer prediction approach was developed to dis-
cover key molecular targets that are significant for multiple 
cancers based on cross-cancer predictability. Cross-cancer pre-
dictability is defined as the ability of a genomics classifier, 
derived from cancer A, to predict cancer B. We hypothesized 
that cross-cancer predictability is based on the expression of 
common genes shared by multiple cancers. The overall frame-
work is illustrated in Figure 1. Cancer types were paired based 
on genomics-driven cross-cancer predictability. Predictive 
inference of salient molecular targets was conducted using the 
PAM-RF hybrid classification method. The individual compo-
nents of this framework are elaborated on in the following 
sections.

Grouping cancer types based on cross-cancer 
predictability

Based on the hypothesis that cross-cancer predictability indi-
cates the potential existence of common predictive genes 
among cancers, the goal of this step was to group individual 
cancers based on cross-predictability. This was executed by 
applying the cross-cancer prediction method to evaluate the 
predictability of a cancer-specific classifier, built from the 
genomic dataset of 1 cancer, on different cancer datasets, in 
other words applying the cancer A–specific classifier to the 
datasets of cancers B, C, D, etc. The method was twofold. First, 
cancer-specific classifiers were constructed from single-cancer 
gene expression training sets via the Prediction Analysis for 
Microarrays (PAM) method, which employs the nearest 
shrunken centroid method.10 Performance of the cancer-spe-
cific classifier was evaluated with fivefold cross-validation. 
Subsequently, cross-prediction was conducted through the 
application of each cancer-specific classifier to independent 
test datasets of other cancers. The cancer-specific classifiers 
were directed to predict the clinical status of the tumor samples 
(cancerous vs normal). Cross-cancer predictability, measured 
by sensitivity, specificity, and receiver operating characteristic 
(ROC) curves, was used to determine cancer subset grouping 
for further analysis.

Key gene inference: PAM-RF hybrid classif ier

Gene inference, conducted on the cancer subsets identified via 
cross-cancer predictability from the previous step, aimed to 
discover genes common across multiple cancers. PAM tends to 
generate large quantities of genes, which may cause further 
experimental validation to be costly and time-consuming. To 
improve the gene inference method, we developed a 2-layer 
cascading hybrid classifier. In our implementation, PAM was 
deployed on the lower layer, whereas Random Forest (RF)11 
was deployed on the upper layer and concatenated to PAM. 
This hybrid classifier provides 2 functions (Figure 2):

Table 1. Description of datasets.

DATASET DESCRIpTIOn TOTAl nUMBER 
Of SAMplES

GDS4824 Malignant and benign 
prostate tissues

21

GDS4794 Small cell lung cancer 
(SClC)

65

GDS4589 Stage I endometrial 
cancer

103

GDS4382 Colorectal cancer 34

GDS4103 pancreatic ductal 
adenocarcinoma

78

GDS4102 pancreatic tumor 52

GDS3837 non-small cell lung 
carcinoma in female 
non-smokers

120

GDS3341 nasopharyngeal 
carcinoma

41

GDS2635 Invasive ductal and 
lobular breast 
carcinomas

30

GDS2250 Basal-like and non-basal-
like breast cancer tumors

47

GDS1732 papillary thyroid cancer 14

GDS3853 Mammary gland ductal 
carcinoma in situ

19

GDS2609 Early-onset colorectal 
cancer

22

GDS1439 prostate cancer 
progression

19
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1. Gene inference. PAM performs the first round of feature 
selection on the entire set of 54 000+ probesets at the 
first stage. The genes selected from PAM were fed to RF 
to further infer key genes.

2. Cancer prediction. Both PAM and RF serve as base clas-
sifiers. Meta-classification is conducted by integrating 
the predictive probabilities from the base classifiers. The 
median score from PAM and RF is calculated for each 
sample; performance of meta-classification is evaluated 
with the ROC curve.

Gene pathway enrichment analysis

Identification of the common biological pathways can facilitate 
an understanding of the genomic basis of cross-cancer predict-
ability. Through PAM’s automatic gene selection feature, a 
pool of genes was generated from cancer-specific PAM classi-
fiers. Gene pathway enrichment analysis was then performed 
on the selected genes to identify pathways that were expressed 
more frequently than expected by chance, with the cutoff 

P-value < .05.12 The Kyoto Encyclopedia of Genes and 
Genomes (KEGG)13 was used as the molecular pathway data-
base for enrichment analysis. Subsequently, we created a matrix 
representing the absence/presence (coded as 0/1) of the identi-
fied gene pathways across all related cancers (rows represent 
gene pathways and columns represent cancer types). Two-
dimensional hierarchal clustering was conducted to identify 
patterns among clustered pathways and cancer subsets in the 
pathway matrix.

Results
Cross-cancer prediction: connecting cancers based on 
cross-predictability

We first explored whether multiclass PAM, an established 
machine learning technique, was a viable option for cross-can-
cer prediction. Multiclass PAM was applied to the 14 pooled 
cancer datasets to evaluate classification performance and gene 
selection. Cross-validation results showed a high classification 
error rate (>50%). In addition, the multiclass classifier was 
unable to effectively select signature genes from the input set of 
4220 probesets (Figure 3). These results suggest that the direct 
use of multiclass PAM may not be suitable for cross-prediction 
on a large number of classes, partly because different cancer 
datasets may express varying levels of cross-cancer predictabil-
ity. To overcome this challenge, we developed a pairwise cross-
cancer prediction approach to identify groups of cancers with 
high cross-predictability.

We used the binary-class PAM algorithm to build cancer-
specific classifiers based on the 14 individual datasets, with 
fivefold cross-validation for performance assessment. The can-
cer-specific classifiers were then applied to the test datasets of 
other cancers for cross-cancer prediction. The prediction 

Figure 1. Schema of the cross-cancer prediction approach.
pAM: prediction Analysis for Microarrays.

Figure 2. Schema of the 2-layer hybrid classifier with pAM as the lower 

layer and Rf as the upper layer.
pAM: prediction Analysis for Microarrays; Rf: Random forest.
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performance, measured by area under curve (AUC) of ROC, 
was summarized in the heat map for all cancer pairs; clusters of 
cancers with high cross-predictability were highlighted (Figure 
4). It was noted that the pattern of high cross-predictability 
does not appear to be symmetric across the heat map. This is 
likely caused by the imbalanced distribution of salient predic-
tive genes between cancers. Nevertheless, because the datasets 
were mutually independent, cross-cancer prediction was robust 
and unaffected by issues such as model overfitting.

The cross-prediction heat map was used to inform the 
grouping of individual cancers with high cross-prediction per-
formance. For example, the classifier C3837, built from the 
training set of non-small cell lung carcinoma in female non-
smokers, demonstrated high cross-cancer predictability on test 
sets P2635 (invasive ductal and lobular breast carcinomas), 
P3853 (mammary gland ductal carcinoma in situ), P4589 
(stage I endometrial cancer), and P4794 (small cell lung can-
cer) (Figure 4). ROC analysis indicated that the classifier built 
from the dataset of non-small cell lung carcinoma was capable 
of predicting other types of cancer with high sensitivity and 
specificity (Figure 5).

In another cluster, the classifier C4589, built from the 
training set of stage I endometrial cancer, showed high cross-
cancer predictability on the test sets P4794 (small cell lung 
cancer) and P3853 (mammary gland ductal carcinoma in situ). 
Further analysis of this tri-cancer cluster was conducted in 
section “PAM-RF hybrid classifier” to infer shared key genes. 
The results demonstrate that cross-cancer predictability can 
be used to effectively identify multiple subsets of cancers with 
the underlying genomic relationships, as indicated by 
cross-predictability.

Gene pathways shared by multiple cancers

To understand the potential biological mechanisms of cross-
cancer predictability, we conducted pathway enrichment analy-
sis on the genes identified from the cancer-specific PAM 
classifier gene selection. The resulting heat map revealed sev-
eral clusters of cancers that shared gene pathways (Figure 6). 
Among them, a cluster of 3 cancer datasets with high cross-
predictability (including mammary gland ductal carcinoma in 
situ, non-small cell lung carcinoma in female non-smokers, and 
invasive ductal and lobular breast carcinomas) appears to share 
2 common pathways. One is the focal adhesion pathway, which 
is a key determinant for the regulation of cancer cell migration. 
Previous research suggests that this pathway is related to breast 
cancer,14 lung cancer,15 and pancreatic cancer.16 The second 
pathway is based on extracellular matrix (ECM) receptor inter-
action, which is known to push the progression of cancer cells 
along the metastatic cascade.17 Overall, these results suggest 
that common biological pathways exist in cancer datasets with 
high cross-predictability.

PAM-RF hybrid classif ier: key gene inference for 
developing treatments targeting multiple cancers

Referencing the cancer clusters generated from cross-cancer 
prediction, we identified shared gene expression signatures that 
hold high predictive power for multiple cancers. Because PAM 
often selects large numbers of genes, we developed a 2-layer 
PAM-RF hybrid classifier focused on gene selection and infer-
ence. PAM-selected genes were inputted into the RF layer for 
further selection. The final list of genes was inferred from RF, 
which was then used to reconstruct the RF classifier. The 

Figure 3. Classification and gene selection performance of multiclass pAM on the 14 cancer datasets. The direct application of multiclass pAM was 

unable to select signature genes at an acceptable classification error rate across all thresholds. note that the input combined dataset for pAM was 

composed of 4220 probesets that were filtered from approximately 54 000 probesets through non-specific gene filtering.
pAM: prediction Analysis for Microarrays.
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hybrid classifier prediction method was based on meta-classifi-
cation, which combined the predictive information of PAM 
and RF to improve cross-cancer predictive performance.

As depicted in the pairwise prediction heat map (Figure 4), 
the classifier C4589, built from the training set of stage I 
endometrial cancer, demonstrated high cross-cancer predicta-
bility on the test sets P4794 (small cell lung cancer) and P3853 
(mammary gland ductal carcinoma in situ). Furthermore, to 
test the hybrid classifier’s gene inference capabilities, we 
trained the PAM-RF hybrid classifier with the C4589 (stage I 
endometrial cancer) training dataset. The lower layer PAM 
classifier selected 66 genes, which were subsequently used as 
the input data for the upper layer RF classifier. The RF classi-
fier further selected 6 candidate genes, which included dual 
specificity phosphatase 1 (DUSP1), transient receptor poten-
tial cation channel subfamily C member 1 (TRPC1), isoci-
trate dehydrogenase 2, mitochondrial (IDH2), alcohol 
dehydrogenase iron containing 1 (ADHFE1), histamine 
N-methyltransferase (HNMT), and mitochondrial calcium 
uptake family member 3 (MICU3). The RF classifier was then 
reconstructed using the 6 genes. The 6-gene PAM-RF hybrid 
classifier outperformed the PAM classifier informed by the 
same 6 genes (Figure 7).

Figure 4. Cross-cancer prediction performance measured by AUC ROC, revealing cross-predictability among different cancers. Rows represent 

cancer-specific classifiers built from individual training datasets; columns represent test datasets from different types of cancers. The color scale indicates 

AUC ROC, a measure of prediction performance. Areas in red represent high-accuracy prediction among a dataset pair; areas in blue represent 

low-accuracy cross-prediction.

Figure 5. Example of cross-cancer prediction with performance 

assessed by ROC curves. The prediction classifier was developed from 

the training dataset C3837 (non-small cell lung carcinoma in female 

non-smokers). The cancer-specific classifier was then applied to the 

following independent test datasets: p2635 (invasive ductal and lobular 

breast carcinomas), p3853 (mammary gland ductal carcinoma in situ), 

p4589 (stage I endometrial cancer), and p4794 (small cell lung cancer). 

The training set p3837 (non-small cell lung carcinoma in female 

non-smokers) was included as a cross-application reference set.
ROC: receiver operating characteristic.
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We searched the biomedical literature to better understand 
the biological functions of the 6 inferred genes across the 3 can-
cers. Based on existing experimental evidence, the genes DUSP1 
and TRPC1 are linked to all 3 cancers; IDH2 is associated with 
mammary gland ductal carcinoma in situ and small cell lung can-
cer; ADHFE1, HNMT, and MICU3 are linked to mammary 
gland ductal carcinoma in situ (Table 2). These findings support 
the biological carcinogenic relevance of the identified genes.

Discussion and Conclusions
This study presented a novel machine learning approach—
cross-cancer prediction—to discover shared multi-cancer 

molecular targets that are crucial to the carcinogenesis and 
progression of several cancers. We have demonstrated the 
capabilities of cross-cancer prediction in identifying groups 
of cancers with the underlying biological connections that 
inform cross-cancer predictability. Furthermore, a novel 
hybrid classifier, integrating PAM and RF classification mod-
els, has been developed to refine gene selection and improve 
prediction performance. As an application, this approach has 
successfully identified key genes shared by endometrial can-
cer, mammary gland ductal carcinoma, and small cell lung 
cancer. The resulting molecular target candidates were sup-
ported by high cross-cancer predictability analysis results, as 

Figure 6. patterns of KEGG pathways among different cancers identified using 2-dimensional hierarchical clustering. The horizontal dimension 

represents the cancer types and the vertical dimension represents the KEGG pathways identified from the cancer-specific signature genes. The clustering 

was based on the absence or presence of KEGG pathways in cancer types. The purpose of the clustering was to explore potential commonalities in 

KEGG pathways among different cancer types, which we believe is relevant to cross-cancer predictability. The figure reveals that a cluster of 3 cancer 

datasets with high cross-predictability (composed of mammary gland ductal carcinoma in situ, non-small cell lung carcinoma in female non-smokers, and 

invasive ductal and lobular breast carcinomas) shares 2 pathways: focal adhesion pathway and extracellular matrix (ECM) receptor interaction. In 

addition, the datasets from pancreatic cancer and pancreatic ductal adenocarcinoma share these 2 pathways. The cluster is indicated by the white star.
KEGG: Kyoto Encyclopedia of Genes and Genomes; ppAR: peroxisome proliferator-activated receptor; TGf: transforming growth factor.
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well as existing experimental evidence published by other 
researchers.

The cross-cancer prediction solution addresses the short-
comings of existing methods for analyzing common genes 
among cancers. First, the direct use of multiclass PAM clas-
sification performed poorly in cancer prediction when a 
large number of cancer types/classes were included. This is 
likely because cross-cancer predictability may only be pre-
sent in specific subsets, not consistently across all cancer 
types. To solve this problem, we developed the cross-cancer 
pairwise prediction method, which effectively identified 
cancer subsets with high cross-predictability. Second, meta-
analysis and gene network–based approaches have been pro-
posed to identify common biomarkers from genomics 

datasets of multiple cancers.8,9 These methods focus on the 
comparative summarization of differentially expressed gene 
lists from individual cancer types, but are unable to compu-
tationally validate these candidate genes. In addition, these 
methods often generate a large number of genes for expen-
sive and labor-intensive experimental validation. Our 
approach resolves the aforementioned problems using built-
in computational validation—cross-cancer prediction based 
on independent datasets—to ensure that classifiers with 
shared discriminative genes hold high predictive power for 
multiple cancer types. Therefore, the candidate molecular 
targets identified from this approach are chosen based on 
biological commonalities as well as novel data-driven cross-
cancer predictability.

Figure 7. The pAM-Rf classifier informed with 6 candidate genes, built from the C4589 training set (stage I endometrial cancer), showed higher 

prediction performance on p4794 (small cell lung cancer, left panel) and p3853 (mammary gland ductal carcinoma in situ, right panel) than the pAM 

classifier informed with the same 6 genes. performance was measured by ROC.
pAM-Rf: prediction Analysis for Microarrays and Random forest; pAM: prediction Analysis for Microarrays; ROC: receiver operating characteristic.

Table 2. Biological function of the 3 key genes shared by stage I endometrial cancer, ductal carcinoma in situ, and small cell lung cancer.

GEnE STAGE I EnDOMETRIAl CAnCER DUCTAl CARCInOMA In SITU: 
MAMMARY GlAnD

SMAll CEll lUnG CAnCER

Dual specificity 
phosphatase 1 
(DUSp1)

DUSp1 deficiency promotes endometrial 
cancer progression via the MApK/ERK 
pathway, suggesting that DUSp1 may 
serve as a potential therapeutic target for 
the treatment of endometrial cancer.18

DUSp1 is a key downstream 
target of HER2 in breast cancer 
cells and can prevent apoptotic 
induction by limiting the 
accumulation of phosphorylated 
active forms of the stress kinase 
JnK.19

DUSp1 in lung cancer cells 
contributes to tumor growth, 
tumor invasion, and 
angiogenesis.20

Transient receptor 
potential cation 
channel, subfamily 
C, member 1 
(TRpC1)

Upregulation of TRpC1 and consequent 
enhancement of SOC-mediated Ca2+ influx 
play a crucial role via p-CREB-mediated 
transcription, to which the activation of 
fOXO1 might contribute. This finding may 
provide a new therapeutic strategy for 
endometrial cancers.21

TRpC1 is a differential regulator 
of hypoxia-mediated events and 
Akt signaling in pTEn-deficient 
breast cancer cells.22

siRnA-mediated TRpC1 
depletion in non-small cell 
lung carcinoma cell lines 
induced G0/G1 cell cycle 
arrest, resulting in a dramatic 
decrease in cell growth.23

Isocitrate 
dehydrogenase 2 
(nADp+), 
mitochondrial (IDH2)

To be determined. Knockdown of IDH2 markedly 
decreased intracellular onco-
metabolite 2-hydroxyglutarate in 
breast cancer cells with aberrant 
2HG accumulation.24

functional IDH2 genetic 
variant is associated with the 
risk of lung cancer.25
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Although this study demonstrated promising results, there 
are a few external limitations. Tumor pathogenesis is complex 
and multifaceted, and may involve factors such as gene–envi-
ronment interaction and stochastic processes. Hence, this 
approach needs to be further developed to adapt to these com-
plex scenarios. In addition, more validation efforts are needed 
to evaluate the potential impact of organ/tissue type variability 
and heterogeneous sample processing methods. Nevertheless, 
this approach is generalizable to all cancer types and different 
genomic platforms. In the future, we will expand the approach 
to other genomic platforms, like RNA-Seq and Proteomics 
data.

This research holds significant translational potential in 
clinical oncology and pharmaceutical development for new 
cancer drugs. The proposed approach will open up new oppor-
tunities to discover molecular targets that are salient to the 
pathogenesis, progression, and metastasis of multiple cancers. 
Medication targeted towards multiple cancers is an important 
scientific and medical breakthrough that will reshape the land-
scape of clinical oncology. It provides new opportunities to 
treat patients of different cancers who share genetic predisposi-
tion but respond poorly to organ-specific treatment. In the 
world of pharmaceutical development, it will also potentially 
mitigate costs and streamline the cancer drug development 
cycle.
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