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Abstract: Hypoxia is one of the most frequent and severe stresses to an organism’s homeostatic
mechanisms, and hypoxia during gestation has profound adverse effects on the heart development
increasing the occurrence of congenital heart defects (CHDs). Cardiac progenitor cells (CPCs) are
responsible for early heart development and the later occurrence of heart disease. However, the
mechanism of how hypoxic stress affects CPC fate decisions and contributes to CHDs remains
a topic of debate. Here we examined the effect of hypoxic stress on the regulations of CPC fate
decisions and the potential mechanism. We found that experimental induction of hypoxic responses
compromised CPC function by regulating CPC proliferation and differentiation and restraining
cardiomyocyte maturation. In addition, echocardiography indicated that fetal hypoxia reduced
interventricular septum thickness at diastole and the ejection time, but increased the heart rate, in
mouse young adult offspring with a gender-related difference. Further study revealed that hypoxia
upregulated microRNA-210 expression in Sca-1+ CPCs and impeded the cell differentiation. Blockage
of microRNA-210 with LNA-anti-microRNA-210 significantly promoted differentiation of Sca-1+

CPCs into cardiomyocytes. Thus, the present findings provide clear evidence that hypoxia alters
CPC fate decisions and reveal a novel mechanism of microRNA-210 in the hypoxic effect, raising the
possibility of microRNA-210 as a potential therapeutic target for heart disease.

Keywords: hypoxia; microRNA-210; cardiac progenitor cells; congenital heart defects;
differentiation; maturation

1. Introduction

Congenital heart defects (CHDs) represent the most common type of birth defects, with an
incidence of 0.8% of live newborns in the United States (i.e., 35,000 annually) [1,2]. Although advances
in surgical management have greatly improved survival, many children still experience reduced
heart function and heart failure, which not only need frequent special care but also may require
transplantation. CHDs affect more than one million adults in the United States alone [1,2]. Apart from
a minority of CHD cases caused by genetic factors, the majority of CHD cases have been reported
to be tightly linked with environmental factors including smoking, diabetes mellitus, obesity, and
hypoxia [3–6]. Pregnancy at high altitude, with diseases of anemia, pulmonary or heart problems
and preeclampsia, or placental insufficiency has been reported to cause hypoxic stress to the fetal
development and increase the occurrence of CHDs [2,7,8]. These findings indicate that studies of
understanding how hypoxic stress contributes to heart defects during cardiac morphogenesis are of
clinical interest.
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Cardiac stem/progenitor cells (CPCs) are tissue-specific stem cells that are identified based on
the expression of certain transcription factors or cell surface markers. Isl1 and Nkx2.5 are two critical
transcription factors, which are differentially expressed in different regions of fetal heart and strictly
control cell lineage specification during cardiac development [9–12]. Stem cell antigen-1 (Sca-1) is
one of useful cell surface markers, which has been selected to purify CPCs for clinical interest [13–15].
Intensive research has demonstrated that cardiac development follows a stem cell paradigm where a
limited number of endogenous CPCs are responsible for generating all the major functional cell types
including cardiomyocytes, endothelial cells and smooth muscle cells for cardiac myogenesis [16–18].
Any disruption in the step-wise processes of CPC commitment to differentiated progeny can cause
cardiac malformation and CHDs [2]. Fate-mapping studies have shown that oxygen levels directly
influence stem/progenitor cell-fate decisions [19,20], suggesting that hypoxic stress affects CPC fate
and contributes to heart defects during cardiac morphogenesis. However, the mechanisms underlying
hypoxic stress-induced effect on CPC fate decisions remain a topic of debate.

MicroRNAs are a family of non-coding RNAs (~22 nucleotides in length) that most commonly
regulate gene expression by binding to complementary sites of the targeted mRNAs [21,22].
A substantial body of evidence has demonstrated that microRNAs participate in regulating CPC
proliferation, differentiation and lineage specification by modulating cardiac gene expression [23–26].
MicroRNA-210 is regarded as a master microRNA of the hypoxic response due to its high
popularity in all the tested cell types [27,28]. Our previous studies have shown that hypoxia
promotes the ischemia-sensitive phenotype by increasing microRNA-210 expression during fetal heart
development [5,29]. It is likely that microRNA-210 modulates CPC cell fate under hypoxia.

Here we examined the effect of hypoxic stress on the regulations of CPC fate decisions and the
potential mechanism. We exposed time-dated pregnant CD-1 mice to 12% oxygen for 72 h from
embryonic day 15 (E15) to embryonic day 18 (E18), and differentiated Sca-1+ CPCs to cardiomyocytes ex
vivo under 1% oxygen. We found that experimental induction of hypoxic responses compromised CPC
function by regulating CPC proliferation and differentiation and restraining cardiomyocyte maturation.
In addition, echocardiography indicated that hypoxic stress reduced interventricular septum thickness
at diastole (IVSd) and the ejection time, but increased the heart rate, in mouse young adult offspring
with a gender-related difference. Further study revealed that hypoxia increased microRNA-210
expression in Sca-1+ CPCs and impeded the cell differentiation. Blockage of microRNA-210 with
LNA-anti-microRNA-210 significantly promoted differentiation of Sca-1+ CPCs into cardiomyocytes.
Our findings provide clear evidence that hypoxia alters CPC fate decisions and reveal a mechanism of
microRNA-210 in the hypoxic effect, raising the possibility of microRNA-210 as a potential therapeutic
target for heart disease.

2. Materials and Methods

2.1. Animal

Pregnant CD-1 mice were purchased from Charles River Laboratories (Wilmington, MA). Animals
were allowed to give birth and were then kept with their pups in a room maintained at 20 ± 2 ◦C with
a 12 h light–dark cycle. Time-dated pregnant CD-1 mice were randomly divided into two groups
of normoxic control and hypoxic treatment. To induce hypoxic responses, the animals were placed
in their home cages in a hypoxia chamber with 12% O2/88% N2 generated by an Altitude Generator
(Everest Summit II, Hypoxico Altitude Training System, New York, NY, USA) from E15 to E18 for 72 h
continuously. Oxygen in the chamber was measured using an oxygen analyzer (OxyCheq Expedition-X,
FL, USA). The normoxic group was housed identically with room air flowing. Pups at day 21 were
weaned and maintained till 4 weeks old at 20 ± 2 ◦C with a 12 h light–dark cycle. Animals were
provided ad libitum access to normal mouse chow and water. All animal experiments were performed
according to protocols approved by the Institutional Animal Care and Use Committee of Loma Linda
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University and followed the guidelines by the National Institutes of Health Guide for the Care and
Use of Laboratory Animals.

2.2. Isolation of Primary Cardiac Cells and Sca-1+ Cardiac Progenitor Cells

Hearts from E15 and E19 embryos, postnatal day 7 (P7) and 14 (P14) pups, and 4-week old mice
were used for isolating primary cardiac cells. Briefly, hearts were cut into small pieces and digested
with 0.3 mg/mL Trypsin (Invitrogen, Carlsbad, CA, USA), 0.3 mg/mL collagenase II (Worthington,
Lakewood, NJ, USA), 5.5 µg/mL DNase I (Sigma, St. Louis, MO) and 1 mg/mL BSA (Sigma) in HBSS
solution (Gibco, Waltham, MA, USA) containing 1% penicillin-streptomycin (Gibco). Primary cardiac
cells were obtained using Percoll (Sigma) gradient separation. For isolation of Sca-1+ CPCs, primary
cardiac cells were first stained with CD31 beads (Miltenyi Biotec, Cat# 130-097-418) to deplete CD31+

cells using the Magnetic Cell Sorting System (MACS) (Miltenyi Biotec, San Diego, CA, USA), and then
the negative portion was stained with Sca-1 beads (Miltenyi Biotec, Cat# 130-098-374) for MACS sorting.

2.3. In Vitro Cardiac Progenitor Cell Culture, Transfection, and Differentiation

Newly isolated Sca-1+ CPCs were cultured on 0.1% gelatin-coated well plates with the growth
medium composed of EGM2 medium (Lonza, Allendale, NJ, USA) and M199 medium (Gibco) at
the ratio of 1:3, supplemented with 10% FBS (Gibco), 20 ng/mL basic fibroblast growth factor (bFGF,
Peprotech), 1% nonessential amino acids (Gibco), 100 µg/mL penicillin (Gibco), and 250 µg/mL of
streptomycin (Gibco) plus 5 µM ROCK inhibitor Y-27632 (Sigma) at 37 ◦C in humid air with 5% CO2

overnight [15]. From the next day, the media was changed without ROCK inhibitor every 2–3 days.
To measure the proliferation rates of Sca-1+ CPCs, cells were dissociated using 0.25% Trypsin (Gibco)
for cell counting after culture under normoxia and hypoxia. Once the cell confluence reached ~85%,
Sca-1+ CPCs were transfected with 50 nM LNA-anti-microRNA-210 (Exiqon, Germantown, MD, USA)
or LNA scramble control (Exiqon) using optiMEM for 18 h [5]. Differentiation experiments were
initiated with non-transfected and transfected Sca-1+ CPCs under normoxic (21% oxygen) and hypoxic
(1% oxygen) conditions, respectively. Sca-1+ CPCs from three treatments of normoxia, hypoxia plus
LNA-anti-microRNA-210, and hypoxia plus the scramble control were then treated with 5 µM of
5′-azacytizine in the differentiation medium composed of DMEM/F12 (Gibco) and IMDM (Gibco) at the
ratio of 1:1, supplemented with 4% horse serum, 1% GlutaMAX (Gibco), 1% nonessential amino acids
(Gibco), 1% insulin-transferrin-selenium (ITS, Gibco), 100 µg/mL penicillin (Gibco), and 250 µg/mL of
streptomycin (Gibco) for 72 h, and freshly prepared 5′-azacytizine was added everyday [30]. Three
days later, the differentiation medium was changed without 5’-azacytizine. From day 5, 20 µg/mL
of ascorbic acid (Sigma) and 1 ng/mL TGF-β (Peprotech, Rocky Hill, NJ, USA) were added to the
differentiation medium. Cells were maintained in this medium for 3~4 weeks with a medium change
every 2~3 days. After the treatments, differentiated cells were harvested for staining by different
antibodies for analysis.

2.4. Antibodies and Flow Cytometry

Fluorochrome-conjugated monoclonal antibodies specific for mouse Sca-1 (Cat#: 108125; Dilution:
1:200) was purchased from Biolegend (San Diego, CA, USA); and monoclonal antibodies specific
for mouse MF20 (Cat#: 564408; Dilution: 1:100) and cTnT (Cat#: 564767; Dilution: 1:100) were
purchased from BD Biosciences. Primary antibodies cTnT (Cat#: ab45932; Dilution: 1:200), Nkx2.5
(Cat#: PA5-49431; Dilution: 1:50) and Isl1 (Cat#: 40.2D6; Dilution: 1:25) were purchased from Abcam,
ThermoFisher Scientific (Waltham, MA, USA) and Development Studies Hybriddoma Bank (DSHB),
respectively. Secondary antibodies of Alexa Fluor 488 (Cat#: A32723; Dilution: 1:300) and Alexa Fluor
647 (Cat#: A27040; Dilution: 1:300) and Fixable Viability Dye eFluor®506 (Cat#: 65-0866; Dilution:
1:1000) were purchased from ThermoFisher Scientific. Cells were stained with surface markers and
then Fixable Viability Dye following a standard procedure. To detect intracellular proteins, cells were
subjected to intracellular protein staining using a Cell Fixation/Permeabilization Kit (BD Biosciences)
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following the manufacturer’s instructions. Stained cells were analyzed by using a MACSQuant
Analyzer 10 flow cytometer (Miltenyi Biotec). FlowJo software (Tree Star) was used to analyze the data.

2.5. MicroRNA Quantitative RT-PCR

Total RNA from cells was isolated using a miRNeasy Mini Kit (Qiagen, Germantown, MD, USA)
and was reverse-transcribed with miScript II RT kit (Qiagen) following the manufacturer’s instructions.
MicroRNA-210 expression was measured using miScript SYBR Green PCR kit with miScript Primer
Assay kit (Qiagen) according to the manufacturer’s instructions. SNORD61 was used as an internal
control. The relative expression of microRNA-210 was calculated by the 2−∆∆CT method and was
presented as the fold induction relative to control.

2.6. Echocardiography

Four-week old mice were subjected to transthoracic echocardiography using the LOGIQ E
Ultrasound (GE Medical System, Chicago, IL, USA) with a 13 MHz probe (12L-RS). Briefly, one mouse
each time was anaesthetized with 2% of isoflurane, the hair over the anterior chest was shaved and
a layer of warm acoustic-coupling gel was applied over the thorax. The mouse was then placed in
the left lateral decubitus position. The probe was positioned over the chest in a parasternal position.
An M-mode recording of the left ventricular (LV) functions was obtained at the level of the mitral
valve in the parasternal view using two-dimensional echocardiographic guidance in both the short
and long axis views. Measurements and analysis were then performed using the methods described
for mice [31] using AccessPoint software (Freeland Systems LLC, SantaFe, NM, USA).

2.7. Statistical Analysis

Paired comparisons were performed using the Student’s two-tailed t test. Multiple comparisons
were performed using the ordinary one-way ANOVA followed by Tukey test. Data are presented as
mean ± SEM, unless otherwise indicated. p ≤ 0.05 was considered significant (*, p ≤ 0.05; **, p ≤ 0.01;
***, p ≤ 0.001).

3. Results

3.1. Fetal Hypoxia Regulates CPC Proliferation and Restrains Cardiomyocyte Maturation in Mouse Fetal and
Postnatal Hearts

In order to examine the effect of hypoxia on mouse heart development, we exposed time-dated
pregnant CD-1 mice to low oxygen tension (12% oxygen) for 72 h from E15 to E18. At three time points
of E19, P7, and P14, whole hearts from fetuses and pups were collected for isolating cardiac cells.
Different populations of CPCs and cardiomyocytes were analyzed by flow cytometry. Sca-1+ cells
and Nkx2.5+ cells accounted for approximately 6%~8% and 3%~7%, respectively, in control fetal and
postnatal mouse hearts after excluding cardiomyocytes (Figure 1A–D), which is consistent with the
previous studies [2,11,15,32]. We found that experimental induction of hypoxic responses significantly
enhanced Sca-1 and Nkx2.5 expressions in cardiac cells at E19, compared to the normoxic control. This
hypoxic stress-induced effect was sustained in the postnatal heart at P14 for Sca-1+, but not Nkx2.5+

cells. Isl1+ CPCs drop sharply in fetal heart from late embryonic stages and are very few in postnatal
and adult hearts [32,33]. In the present study, Isl1+ cells were not detectable in fetal and postnatal
hearts. cTnT expression follows the pattern of increasing expression with the age [34]. The similar
trend of cTnT expression was noticed in our study, but the data did not show significant differences of
cTnT expression in the fetal and postnatal hearts between normoxic and hypoxic groups (Figure 1E,F).
In contrast, the immature cardiomyocytes (cTNT−/MF20+) decreased with the age, but hypoxia caused
a significant and sustained increase in immature cardiomyocytes from fetal to postnatal P14 mouse
hearts (Figure 1G,H). Collectively, these results reveal that hypoxic stress differentially regulates CPC
proliferation and retards cardiomyocyte maturation in mouse fetal and postnatal hearts.
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To further investigate the long-term effect of antenatal hypoxic stress on the heart development 
in mouse young adult offspring, pups from normoxic and hypoxic groups were kept until four weeks 
old after birth. One day after transthoracic echocardiography, mouse hearts were collected for 

Figure 1. Hypoxia regulates cardiac progenitor cell (CPC) proliferation and restrains cardiomyocyte
maturation in mouse fetal and postnatal hearts. (A) Representative flow plots showing the surface
Sca-1 staining of cardiac cells after depletion of cardiomyocytes. (B) Quantification of the flow plots
presented in (A). Data are presented as the mean ± SEM (n = 4). (C) Representative flow plots showing
the intracellular Nkx2.5 staining of cardiac cells after depletion of cardiomyocytes. (D) Quantification
of the flow plots presented in (C). Data are presented as the mean ± SEM (n = 4). (E) Representative
flow plots showing the intracellular cTnT staining of cardiac cells. (F) Quantification of the flow plots
presented in (E). Data are presented as the mean ± SEM (n = 4). (G) Representative flow plots showing
the intracellular cTnT and MF20 staining of cardiac cells. (H) Quantification of the flow plots presented
in (G). Data are presented as the mean ± SEM (n = 4). * p ≤ 0.05 and ** p ≤ 0.01.

3.2. Antenatal Hypoxia Regulates CPC Proliferation and Restrains Cardiomyocyte Maturation with a
Gender-Related Difference in Young Adult Mice

To further investigate the long-term effect of antenatal hypoxic stress on the heart development in
mouse young adult offspring, pups from normoxic and hypoxic groups were kept until four weeks old
after birth. One day after transthoracic echocardiography, mouse hearts were collected for isolating
cardiac cells. Analysis of cardiac cell population by flow cytometry showed that experimental induction
of hypoxic responses resurged the significant effect on enhancing Sca-1 and Nkx2.5 expressions in
cardiac cells after excluding cardiomyocytes (Figure 2A–D). In agreement with these results, the
previous study demonstrated a resurgence of Nkx2.5 cell population during the first three weeks after
birth [11]. Of interest, the effect of antenatal hypoxia is sex-dependent. As shown in Figure 2A–D,



Genes 2020, 11, 328 6 of 14

prenatal hypoxia did not cause a significant difference in Sca-1 and Nkx2.5 expressions in cardiac
cells compared to the normal control in females, but significantly increased Sca-1+ and Nkx2.5+

cardiac cells in young adult males, compared to the normal control. Apparently, prenatal hypoxia
significantly raised more Sca-1 and Nkx2.5 expressions in cardiac cells in males than those in females
(Figure 2A–D). There was no significant difference of cTnT expression between normoxic control and
hypoxic groups in both male and female cardiac cells (Figure 2E,F). Nevertheless, more immature
cardiomyocytes were observed in male mouse hearts from hypoxic group than those from normoxic
group (Figure 2G,H). Likewise, prenatal hypoxia did not cause significant difference in the number
of immature cardiomyocytes compared to the normal control in females. Instead, prenatal hypoxia
significantly increased the number of immature cardiomyocytes, compared to the normal control in
males (Figure 2G,H). Moreover, prenatal hypoxia significantly raised more immature cardiomyocytes in
males than those in females (Figure 2G,H). Taken together, these results document that regulation of CPC
proliferation and restraint of cardiomyocyte maturation by prenatal hypoxia shows a gender-related
difference in young adult offspring.
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Figure 2. Prenatal hypoxia regulates CPC proliferation and restrains cardiomyocyte maturation in
four-week-old offspring with a gender-related difference. (A) Representative flow plots showing the
surface Sca-1 staining of cardiac cells after depletion of cardiomyocytes. (B) Quantification of the
flow plots presented in (A). Data are presented as the mean ± SEM (n = 4). (C) Representative flow
plots showing the intracellular Nkx2.5 staining of cardiac cells after depletion of cardiomyocytes.
(D) Quantification of the flow plots presented in (C). Data are presented as the mean ± SEM (n = 4).
(E) Representative flow plots showing the intracellular cTnT staining of cardiac cells. (F) Quantification
of the flow plots presented in (E). Data are presented as the mean ± SEM (n = 4). (G) Representative
flow plots showing the intracellular cTnT and MF20 staining of cardiac cells. (H) Quantification of the
flow plots presented in (G). Data are presented as the mean ± SEM (n = 4). * p ≤ 0.05 and ** p ≤ 0.01.
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3.3. Prenatal Hypoxia Impairs Heart Function with a Gender-Related Difference in Young Adult Mice

To evaluate the effect of prenatal hypoxia on the heart function in mouse young adult offspring,
an M-mode echocardiography was used to record the left ventricle (LV) structure and function at the
level of the mitral valve in the parasternal view in four-week-old offspring after birth. Representative
images showed echocardiographic measurements of LV structures for females (Figure 3A) and males
(Figure 3B), respectively, under the indicated conditions. In comparison with normoxic control offspring,
offspring treated with prenatal hypoxia showed on echocardiography a reduction in interventricular
septum thickness at diastole (IVSd) in all three comparisons (Figure 3C). Prenatal hypoxia did not affect
the heart rate compared to the normoxic control in females. Interestingly, prenatal hypoxia resulted in a
significant increase in the heart rate in males, compared to the normoxic control (Figure 3D). In addition,
prenatal hypoxia did not affect the ejection time compared to the normal control in females. However,
it significantly decreased the ejection time compared to the normal control in males (Figure 3D). Thus,
echocardiographic measurements of LV illustrate that young males were more susceptible to prenatal
hypoxia than females, revealing that antenatal hypoxia impairs the heart function of mouse young
adult offspring with a gender-related difference (Figure 3C,D).
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Figure 3. Prenatal hypoxia impairs heart function in four-week-old offspring with a gender-related
difference. Mice were studied by echocardiography at four weeks old using an M-mode recording
of the left ventricular (LV) at the level of the mitral valve in the parasternal view. (A) Representative
echocardiographic images of M-model measurement of LV structures for females under the indicated
conditions. (B) Representative echocardiographic images of M-model measurement of LV structures
for males under the indicated conditions. (C) Interventricular septum thickness at diastole (IVSd) for
all mice under the indicated conditions. Data are presented as the mean ± SEM (nALL-Normoxia = 8 and
nALL-Hypoxia = 12; nFemale-Normoxia = 4 and nFemale-Hypoxia = 5; nMale-Normoxia = 4 and nFemale-Hypoxia =

7). (D) Ejection time for all mice under the indicated conditions. Data are presented as the mean ± SEM
(nALL-Normoxia = 8 and nALL-Hypoxia = 12; nFemale-Normoxia = 4 and nFemale-Hypoxia = 5; nMale-Normoxia =

4 and nFemale-Hypoxia =7). (E) Heart rate for all mice under the indicated conditions. Data are presented
as the mean ± SEM (nALL-Normoxia = 8 and nALL-Hypoxia = 12; nFemale-Normoxia = 4 and nFemale-Hypoxia =

5; nMale-Normoxia = 4 and nFemale-Hypoxia =7). * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.



Genes 2020, 11, 328 8 of 14

3.4. Hypoxia Induces MicroRNA-210 Expression in Sca-1+ CPCs and Inhibits Their Differentiation to
Cardiomyocytes Ex Vivo

To access the possible mechanism of regulation of CPC proliferation and restraint of cardiomyocyte
maturation by hypoxia, cardiac cells were isolated from whole hearts of E15 fetal mice and Sca-1+

CPCs were sorted by MACS beads for the ex vivo study. Newly-sorted Sca-1+ CPCs were cultured
for expansion under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions, respectively. We
observed that Sca-1+ CPCs expanded ~1.7-fold by day 5 and ~4.4-fold by day 10 under normoxic culture,
while they expanded ~4-fold by day 5 and ~13-fold by day 10 under hypoxic culture (Figure 4A,B).
Quantitative RT-PCR analysis of microRNA-210 expression in Sca-1+ CPCs harvested from normoxic
and hypoxic conditions revealed an upregulation of microRNA-210 expression in these cells cultured
under the hypoxic condition (Figure 4C). To directly assay the differentiation capacity of Sca-1+ CPCs
into cardiomyocytes under hypoxia, newly-sorted Sca-1+ CPCs were first cultured under normoxia to
reach a confluence of ~85%. Sca-1+ CPCs were then transfected with LNA-anti-microRNA-210 (Hypoxia
plus LNA) or its scramble control (Hypoxia plus Scramble) or without transfection (Normoxia). About
three to four weeks after differentiation experiment, analysis of differentiated cells showed that
hypoxia dramatically maintained a higher percentage of Sca-1+ CPCs in the treatments of hypoxia
plus scramble control (~43%) than that in the treatment of normoxia (~23%) (Figure 4D,E). At the
same time, hypoxia dramatically impeded differentiation of Sca-1+ CPCs into cardiomyocytes with a
differentiation percentage of ~3% in the treatment of hypoxia plus scramble control versus ~15% in that
of normoxia (Figure 4D,E). Of importance, blockage of microRNA-210 with LNA-anti-microRNA-210
significantly inhibited the effects of hypoxia and resumed the differentiation capacity of Sca-1+ CPCs
under hypoxia with a differentiation percentage of ~8% in the treatment of hypoxia plus LNA versus
~3% in that of hypoxia plus scramble control (Figure 4D,E). Hence, the results suggest that inhibition of
microRNA-210 reverses the effect of hypoxic stress on differentiation of Sca-1+ CPCs to cardiomyocytes.
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(B) Fold change of Sca-1+ CPC proliferation under normoxia and hypoxia. Data are presented as
the mean ± SEM (n = 3). (C) Quantitative RT-PCR analysis of microRNA-210 expression in Sca-1+

CPCs cultured under the indicated conditions. Data are presented as the mean ± SEM (n = 3).
(D) Representative flow plots showing the surface Sca-1 staining and intracellular cTnT staining of
Sca-1+ CPCs after differentiation into cardiomyocytes. (E) Quantification of the flow plots presented
in (D). Data are presented as the mean ± SEM (n = 3). * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.
LNA: LNA-anti-miR-210.

4. Discussion

The compelling evidence of the present study demonstrates that fetal hypoxia regulates CPC
proliferation and differentiation as well as restrains cardiomyocyte maturation to impair heart
development and function after birth with a gender-related difference. To buttress this argument,
analysis of cardiac cell population reveals that prenatal hypoxia causes more adverse effects on male
offspring than on female ones. In addition, echocardiography indicates that prenatal hypoxia leads to
a stronger reduction of IVSd and the ejection time and a greater increased heart rate in male offspring
than in female ones. Thus, prenatal hypoxia impedes heart development and impairs heart function
with a gender-related difference in mouse young adult offspring. Consistency with the previous studies
was that prenatal exposure to hypoxia impairs heart function in later adult life with a gender-related
difference [35–37]. Moreover, the present study has disclosed that hypoxia upregulates microRNA-210
expression in Sca-1+ CPCs and blockage of microRNA-210 with LNA-anti-microRNA-210 significantly
promoted differentiation of Sca-1+ CPCs into cardiomyocytes.

Cardiac development adheres to a stem cell paradigm and endogenous CPCs can generate all the
major functional cells for cardiac myogenesis [14,16–18,32]. Previous studies have reported that oxygen
levels play a critical role in stem/progenitor cell-fate decisions and cardiac development [19,20,38–40].
Non-physiological hypoxia, as a major challenge to fetuses during the gestation due to the reduction in
oxygen delivery to the developing fetus, has been reported to increase the occurrence of congenital
cardiac anomalies [8,35,39,41]. Thus, the role of hypoxia in regulation of CPC proliferation and
differentiation for cardiac malformations has gained increasing attentions. Several studies have shown
that hypoxic stress destroys the balance between the amounts of oxygen supplied to the cardiac cells
and of that needed, which disrupts the step-wise processes of CPC commitment to differentiated
progeny [2,42]. Severe hypoxia compromises CPC function via down-regulating c-Myc protein
stability [38]. In addition, hypoxia directly or indirectly alters the expression of many genes that are
involved in stem cell proliferation and differentiation [40,42]. Hypoxia ceases Isl1 expression and
activates Nkx2.5 expression by recruitment of the protein deacetylase sirtuin 1 to break the homeostasis
of CPCs [2]. Low oxygen levels have been reported to maintain self-renew and an undifferentiated
state of stem cells and improve their proliferative capacity by activating canonical Wnt pathway
signaling and PI3K/Akt pathway [43]. Prenatal hypoxia leads to an increase in cardiac vulnerability to
cardiovascular dysfunction in later life through upregulation of Akt pathway [41,44]. A recent study has
shown that short-term preconditioning of CPCs by hypoxia improves CPC proliferation and survival
to enhance the cell function ex vivo [45]. Cardiomyocytes occupy around one third of the cells found in
the heart. cTnT is a cardiomyocyte specific marker and does not express in CPCs. In our study, the high
basal levels of cTnT expression masked the small percentage changes of cardiomyocytes differentiated
from endogenous CPCs caused by hypoxia (Figure 1E,F; Figure 2E,F). In our in vitro study, we directly
differentiated isolated Sca-1+ CPCs into cardiomyocytes. Thus, compared to the differences of cTnT
expression change in vivo, the difference of CPC differentiation into cardiomyocytes in vitro between
under hypoxia and under normoxia was much more significant (Figure 4D,E). Our study demonstrates
that hypoxia not only regulates CPC proliferation and differentiation, but also restrains cardiomyocyte
maturation to impair heart development and function. Overall, these findings indicate that hypoxic
stress affects CPC fate and contributes to heart defects during cardiac morphogenesis.
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It is generally accepted that insults at critical stages of heart development may lead to permanent
changes in tissue structure and function. As the first organ to form in the embryo, hearts fully develop
during the later stages and function at birth. Exposure to 12% of hypoxic stress from E15 to E21 impairs
rat offspring’s vascular function in later life [41]. Hypoxic insult by 8% oxygen for 24 h causes a lethal
rate of 89% of E13 fetuses, but 5% of E11.5 and 51% of E17.5 fetuses [46], indicating E13 is a very
sensitive heart development stage. Using CD-1 mice, this work further proves the detachment of
epicardium and the thinning of myocardium by hypoxic stress [46]. In our initial experiments, E13
pregnant CD-1 mice were treated with 10% oxygen for three days, and we found that most fetuses
were absorbed or died after birth. These findings validate that maternal hypoxia can cause growth
restriction and even lethality. It has been shown that hearts from male offspring appear more vulnerable
to hypoxic stress than those from female ones [35–37,47]. In addition, Zhao et al. demonstrated
that hypoxia induced the activation of signal pathway controlling cell fate with a gender-related
difference in cardiac fibroblasts [48]. Female cells are relatively resistant to hypoxia-induced inhibition
in DNA synthesis, but male cells are susceptible [48]. In the present study, we performed a hypoxia
of 12% oxygen on pregnant CD-1 mice from E15 to E18. The selected oxygen level is equivalent to
over 4500 m above sea level as calculated by altitude air pressure calculator. At this altitude, the
standard barometric pressure is similar to the situation seen in pregnant mothers exposed to extremely
high altitude. Echocardiography was used to examine the heart functions in our study, so we chose
to check four-week-old offspring after hypoxic treatment. Our previous study has reported that
prenatal hypoxia decreased sheep fetal heart weights in a sex-related manner [29], indicating that the
sex-dependent response to hypoxia might have already manifested at an earlier stage than four weeks
old in mice. We observed significant increases in Sca-1+ and Nkx2.5+ cardiac cells as well as immature
cardiomyocytes in young adult males in a sex-dependent manner, resulting from antenatal hypoxia.
Consistently, echocardiography showed a reduction of IVSd and the ejection time and an increase in the
heart rate in a sex-dependent manner in male offspring that exposed to fetal hypoxia. The thickness of
IVSd is associated with heart physiology and functions. We did not detect significant changes in heart
rate and ejection time at four weeks old in female offspring, which suggests that it may require a longer
time follow-up in female. Primary Sca-1+ CPCs were isolated from E15 mouse hearts for the in vitro
study (Figure 4). We aimed to use Sca-1+ CPCs to explore the possible mechanisms on how hypoxia
impeded CPC differentiation to cardiomyocytes. Thus, we did not compare the differences between
primary cells from E15 female and male fetuses. Further investigation of whether sex differences
influence CPC differentiation potential under hypoxia is warranted. Therefore, accumulating evidence
suggests that antenatal hypoxia contributes to heart defects during cardiac morphogenesis impacting
cardiac structure and function in offspring with a gender-related difference.

MicroRNAs have been tightly associated to the initiation and development of heart disease
due to their role of “fine-tuning” cardiac gene expression to regulate the CPC fate. In particular,
several microRNAs have been reported to play important roles in regulating CPC proliferation and
differentiation as well as cardiomyocyte proliferation [21,49]. MicroRNA-21 efficiently accelerates
proliferation of c-kit+ CPCs through targeting PTEN/PI3K/Akt signaling [26]. Similarly, microRNA-21
promotes proliferation of cultured rat neural stem/progenitor cells after hypoxic stimulation
by activating Akt signaling pathway [22]. MicroRNA-218 promotes proliferation and inhibits
differentiation in mouse CPCs through canonical Wnt signaling pathway [25]. On the other hand,
microRNA-21 increases in CPC-derived exosomes under oxidative stress to protect cardiomyocytes
from apoptosis through downregulating programmed cell death 4 (PDCD4) [23]. MicroRNA-133a has
been identified as critical components of a myogenic transcriptional circuit to regulate cardiomyocyte
proliferation and inhibit smooth muscle gene expression [49]. MicroRNA-210 modulates differentiation
and migration of endothelial cells under hypoxia via downregulating Ephrin-A3 expression [50].
To explore the mechanisms on how hypoxia impeded differentiation of Sca-1+ CPCs to mature
cardiomyocytes, we isolated Sca-1+ CPCs and directly differentiated them into cardiomyocytes. Sca-1
as the most representative marker for this subpopulation was used to measure the differentiation
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capabilities under the indicated conditions. Markers Nkx2.5 and Isl1 for other subpopulations were
not analyzed. Compared to MF20, cTnT is a specific marker for mature cardiomyocytes that exhibit
structural maturity and execute the functions in the heart. Therefore, analysis of Sca-1 for CPC
subpopulation and cTnT for mature cardiomyocytes is sufficient for the in vitro study (Figure 4D,E).
Our previous studies have shown that hypoxia-induced microRNA-210 expression increases fetal
heart susceptibility to ischemia injury [5,29]. We have characterized the microRNA-210 promoter
and identified the hypoxia response element HRE-63 as the HIF-1α binding site responsible for the
robust induction of the microRNA-210 promoter in response to hypoxia in cardiomyocytes [5]. Similar
findings in mouse and human showed that microRNA-210 promoter harbors three HREs and the
HRE3 is identified as the HIF-1α binding site responsible for the robust induction of microRNA-210
promoter activity [51,52]. We and others have shown that hypoxia increases microRNA-210 expression
in both fetal and neonatal cardiomyocytes [5,53]. Glucocorticoid receptor (GR) signaling pathways
play a critical role in proper cardiomyocyte development and over all cardiac function. Our previous
study demonstrated that the GR is a downstream target of microRNA-210 and HIF-1α-dependent
microRNA-210-mediated GR suppression increased cardiomyocyte apoptosis in rat primary fetal
heart [5]. Blockage of hypoxia-induced reduction of GR protein by LNA-anti-microRNA-210 alleviated
cardiomyocyte apoptosis [5]. A recent study has shown that hypoxia-induced microRNA-210 promoted
apoptosis of mouse spermatocyte GC-2 cells by directly targeting Kruppel-like factor 7 [54]. Our present
study demonstrated that hypoxia significantly upregulated microRNA-210 expression in Sca-1+ cardiac
cells and increased Sca-1+ cell proliferation. Of importance, inhibition of endogenous microRNA-210
with microRNA-210-LNA significantly decreased hypoxia-induced Sca-1+ cell proliferation, providing
novel evidence of a causal role of microRNA-210 in hypoxia-mediated CPC proliferation. In addition,
the inhibition of microRNA-210 significantly rescued differentiation capacity of Sca-1+ CPCs into cTnT+

cardiomyocytes under hypoxia, indicating the great potential of a functional restoration. Currently, no
evidence could support that miR-210 directly targets cardiomyocyte markers of differentiation or that
LNA-anti-miR-210 can directly restore myocardial function. However, these finding suggest a vital
role of microRNA-210 in regulating hypoxia-mediated CPC fate and cardiomyocyte maturation in
the developing heart. Given that mitochondrial function plays a critical role in the regulation of stem
cell proliferation and differentiation and it is a major downstream target of microRNA-210, further
investigation is needed to explore the mechanisms of mitochondria in microRNA-210 modulating CPC
fate and cardiomyocyte maturation under hypoxia.

In a clinical study, microRNA-210 has been identified as a biomarker for CHDs [55]. The present
study highlights that inhibition of microRNA-210 significantly resumes the differentiation capacity of
CPCs and promotes cardiomyocyte maturation under hypoxia. Thus, the present finding raises the
possibility of microRNA-210 as a promising therapeutic target for heart disease.
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