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Abstract Loading of mRNA onto the ribosomal 43S pre-initiation complex (PIC) and its

subsequent scanning require the removal of the secondary structure of the by RNA helicases such

as eIF4A. However, the topology and mechanics of the scanning complex bound to mRNA (48S-

PIC) and the influence of its solvent-side composition on the scanning process are poorly known.

Here, we found that the ES6S region of the 48S-PIC constitutes an extended binding channel for

eIF4A-mediated unwinding of mRNA and scanning. Blocking ES6S inhibited the cap-dependent

translation of mRNAs that have structured 50 UTRs (including G-quadruplexes), many of which are

involved in signal transduction and growth, but it did not affect IRES-driven translation. Genome-

wide analysis of mRNA translation revealed a great diversity in ES6S-mediated scanning

dependency. Our data suggest that mRNA threading into the ES6S region makes scanning by 48S

PIC slower but more processive. Hence, we propose a topological and functional model of the

scanning 48S-PIC.

Introduction
Translation initiation of eukaryotic mRNA generally follows the scanning mechanism, which starts

with the attachment of an activated 40S ribosomal subunit (43S preinitiation complex; PIC) to the

cap structure of mRNA (forming the 48S-PIC), and the movement of the resulting complex along the

50 UTR of mRNA to locate the initiation codon (TIS, generally AUG). This process directly depends

on the extent to which a particular mRNA recruits the PIC, but also on the degree of RNA secondary

structure (classical dsRNA and G-quadruplexes) found in its 50 UTR (Hinnebusch, 2011;

Jackson et al., 2010; Kozak, 1989; Murat et al., 2018; Parsyan et al., 2011; Pelletier and Sonen-

berg, 1985). To locate the TIS, the 48S-PIC must inspect the mRNA sequence codon-by-codon in

the decoding groove of 40S neck (also known as the mRNA channel), which includes P and A sites

for aminoacyl-tRNA binding. Thus, mRNA molecules must enter the channel in a single-stranded

form, which requires prior unwinding by the RNA helicases associated with the 48S-PIC.

eIF4A is the main helicase that removes local secondary structure by alternating cycles of binding

and dissociation from the mRNA during the scanning process (Parsyan et al., 2011; Rogers et al.,

1999; Svitkin et al., 2001). eIF4A binds eIF4G to form the eIF4F complex together with eIF4E,

which collectively promotes activation of the mRNA, recruitment of the PIC and the scanning pro-

cess (Garcı́a-Garcı́a et al., 2015; Nielsen et al., 2011; Pestova and Kolupaeva, 2002;

Rogers et al., 1999). Recently, other RNA helicases such as yeast Ded-1 (and perhaps its mammalian

ortholog DDX-3), DHX-29, DHX-36 and DHX-9 have been reported to assist in the RNA unwinding

and scanning of specific mRNA subsets (Gao et al., 2016; Guenther et al., 2018; Gupta et al.,

2018; Murat et al., 2018; Pisareva et al., 2008). It is thought that eIF4F binding to the cap removes

the eventual secondary structure near the 50 extreme of the mRNA (activation) to favor recruitment
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of the PIC. Recent data support the notion that mRNA is threaded into the channel from the solvent

side of the 40S subunit through a chain of cooperative interactions involving eIF4E-eIF4G-eIF3-40S

(Kumar et al., 2016). The scaffold protein eIF4G can bind both eIF3 (as part of the PIC) and the 40S

subunit itself near the feet of the solvent side, thus promoting the attachment of PIC to mRNA

(LeFebvre et al., 2006; Villa et al., 2013; Yu et al., 2011). However, little is known about the topol-

ogy of the 48S-PIC, in part because its presumably dynamic nature has limited the use of cryo-EM

reconstruction, which has successfully resolved more stable complexes including the PIC

(Erzberger et al., 2014; Hashem et al., 2013; Marintchev et al., 2009). Recently, the helicase

eIF4A has been located bound to alphaviral mRNA on the solvent side of the 48S-PIC assembled in

vitro (Toribio et al., 2018). This would support a scanning complex model in which eIF4A is placed

at the leading edge of the 40S subunit, thus ‘pulling’ the complex forward as it advances along the

mRNA (Marintchev et al., 2009; Toribio et al., 2018). This model would also explain the greater

dependence on eIF4A activity of mRNAs that have structured or long 50 UTRs, many of which are

involved in cell-cycle regulation and proliferation (Modelska et al., 2015; Rubio et al., 2014;

Wolfe et al., 2014). For this reason, natural inhibitors of eIF4A are currently being tested as anti-

cancer drugs (Chu and Pelletier, 2015).

The existence of RNA extensions such as ES6S and ES3S protruding from the solvent side of the

40S body, specifically in mammals, has been interpreted as a platform to recruit eIFs and other

ligands, as described recently for ES27L of the 60S subunit (Fujii et al., 2018; Knorr et al., 2019),

although direct support for this idea has not yet been presented. The ES6S region is composed of

four RNA helices near the feet of the 40S particle, which form a bundle of tentacle-like structures

(Anger et al., 2013; Lomakin and Steitz, 2013; Melnikov et al., 2012). Two of these helices (ES6SA

and ES6SB) project outward from the ribosome body, and comparative analysis of the 40S particle

alone and in PIC or 80S complexes suggested that these helices can undergo some degree of con-

formational change (Melnikov et al., 2012; Toribio et al., 2016a). Moreover, because scanning is a

unique capability of 40S that is not present in the bacterial 30S subunit, ES6S has been proposed to

participate in the scanning process, at least for some viral mRNAs (Toribio et al., 2016b). The exis-

tence of a conserved pattern of ES6S rRNA sequence complementary with eukaryotic mRNA

50 UTRs also suggested a role for the ES6S region in mRNA loading onto PIC (Pánek et al., 2013).

In previous studies, we detected the interaction of AUG-downstream nucleotides of alphaviral

mRNAs with the ES6S region of the 40S ribosomal subunit (Toribio et al., 2016a). These viral

mRNAs contain a highly stable RNA stem-loop structure (DLP) located 27–31 nt downstream of the

AUG, so we were able to snapshot the eIF4A helicase bound to mRNA in 48S PICs assembled in

vitro. In this work, we studied the role of ES6S in genome-wide scanning process by the 48S PIC

using a combination of structural and functional analyses.

Results

The path of mRNA through the ES6S region of the 48S PIC
To explore the possibility that ES6S could represent a universal region of the 48S-PIC in which

mRNA enters and unwinds, we systematically identified the contacts of mRNA with the 18S rRNA

and 40S ribosomal proteins (RPSs) that are in or near ES6S region. To this end, we designed a syn-

thetic 128-nt mRNA (unstructured) bearing a short (19 nt) 50 UTR, a 30 poly(A) tail and minimal sec-

ondary structure (Figure 1, see also Supplementary file 1 for details). On the basis of previous

observations with alphaviral mRNA, we introduced photo-activatable 4-thio-UTPs (4-thio-U) at posi-

tions +24, +27, +31 and +34 (downstream of the AUG) as described previously (Figure 1a). Sites

that crosslink this mRNA with 18S rRNA were identified by reverse transcriptase termination site

(RTTS) assay and RNA-seq (Kielpinski et al., 2013) (Figure 1a, left panel), which provided much

higher sensitivity and coverage than the classical electrophoretic resolution in urea-polyacrylamide

gels (Toribio et al., 2016a). We included GMP-PNP in the assays to restrict the analysis to those

interactions that occurred within the 48S-PIC. The vast majority of specific crosslinking sites mapped

to within the nt 700–910 region of 18S RNA, concentrating in the ES6SE (nt 865–910), ES6SC–D (nt

795–864), ES6SB (nt 740–793) and ES6SA (nt 681–735) helices (Figure 1a). No crosslinking with

the inner residues of 18S rRNA was detected, indicating that mRNA contacted only surface-exposed

regions. We found abundant contacts not only with the projected parts of ES6S, but also with
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residues that are at the base of these helices (e.g. residues 802–803 of helix C), embedded in the

protein–RNA layer of the 40S body (Figure 1a). This allowed us to draw an mRNA path through the

ES6S region that extends from ES6SE to the distal loop of ES6SC–D, including the ES6SB and ES6SA

helices, and that is flanked by ribosomal proteins such as eS7, eS4 and uS4 (Figure 1a). In a parallel

experiment, we also included a previously characterized mRNA based on the Semliki Forest virus

(SFV) genome, which contains a single 4-thio-U at the 50 flank (+27) of the DLP (Figure 1—figure

supplement 1). SFV-DLP n27 mRNA generated a crosslinking pattern that is similar, though not

identical, to that observed for unstructured mRNA. Specifically, the number of crosslinks to residues

of the ES6SE and ES6SC-D helices increased in SFV-DLP n27 mRNA compared to unstructured mRNA

(Figure 1—figure supplement 1).

Figure 1. Identification of mRNA contacts with 18S rRNA and ribosomal proteins (RPSs) on the solvent side of the 48S-PIC. (a) Schematic diagram

representing the method used to identify mRNA-18S rRNA contacts by specific crosslinking of 4-thio-U, followed by reverse transcriptase termination

site (RTTS) assay and next-generation sequencing (NGS) (left panel). The middle and right panels show two solvent-side views of rabbit 40S (PDB: 4KZZ)

that include the classical mRNA entry channel and the ES6S region. The positions of 4-thio-U residues in unstructured mRNA used for 48S PIC assembly

are indicated, with the 18 most abundant crosslinking sites detected in 18S rRNA marked in red (see also Figure 1—figure supplement 1A for further

details). Residues that have been reported to crosslink with eIF4G (Yu et al., 2011) are marked in green. uS5 (formerly RPS2) and eS4 (formerly RPS4X)

are marked in brown, whereas the rest of the RPSs are shown in light blue. Note that, in this model, the ES6SA helix is in an ‘inward’ orientation towards

the eIF3b. (b) Identification of RPSs that crosslink with unstructured mRNA assembled into the 48S PIC. Protein–mRNA interactions were captured

throughout the mRNA (left panel); the 40 most-represented hits are shown in the right panel. Proteins marked in blue and black are those located on

the solvent side and on the 60S subunit side, respectively. Note that uS5 was the hit with the highest representation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Identification of SFV-DLP 27 mRNA contacts with 18S rRNA and RPSs on the solvent side of the 48S-PIC.
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Since the region that extends between ES6S and the classical mRNA entry channel contains no

exposed 18S rRNA, a proteomic analysis of RPSs that could contact the mRNA in this region was

performed. Attempts to detect proteins that are crosslinked to single 4-thio-U residues of mRNA by

mass spectrometry (MS) failed, so unlabeled unstructured and SFV-DLP n27 mRNAs were used to

assemble 48S-PICs that were subsequently crosslinked under a 254 nm lamp to detect RNA–protein

contacts along the entire mRNA path. A similar pattern of crosslinked RPSs was observed for both

mRNAs, with uS5 (formerly RPS2) the hit with the highest score and coverage (Figure 1b and Fig-

ure 1—figure supplement 1). Crosslinking of uS5 at +11 nt downstream of the AUG has been previ-

ously reported in 48S-PICs assembled in vitro using a synthetic mRNA and purified 40S subunits and

eIFs (Pisarev et al., 2008). Interestingly, uS5 was localized between the mRNA entry channel and

the ES6S region of the 40S subunit, extending about 48 Å along the channel (Figure 1a). We also

detected other crosslinked RPSs with lower scores, including some that were located either on the

solvent side of the 40S subunit (uS3, uS4, eS4, eS6 and eS24), or on the intersubunit side near the

decoding site (eS19) and at the mRNA exit channel (uS17).

In previous reports, we found that both eIF4A and eIF3g could be crosslinked with alphaviral

mRNAs bearing the DLP structure (Toribio et al., 2018). Thus, we compared the crosslinking pat-

terns generated by unstructured mRNAs, which lacks secondary structure, and SFV-DLP mRNAs

labeled with [a-32P] and 4-thio-U after assembly into the 48S-PIC. Owing to their similar apparent

molecular weight, eIF4A and eIF3g protein bands migrated as a doublet in SDS-PAGE

(Toribio et al., 2018). Both eIF4A and eIF3g bands were crosslinked with SFV-DLP n27 mRNA to a

similar extent, whereas unstructured mRNA generated strong crosslinking with eIF3g and little (if

any) with eIF4A (Figure 2a). This was confirmed by denaturing immunoprecipitation (dIP) experi-

ments with specific antibodies (Figure 2—figure supplement 1). The fact that unstructured

mRNA generated no crosslinking with eIF4A is consistent with previous data showing the critical role

of DLP structure in the trapping of eIF4A within the 48S-PIC (Toribio et al., 2018). To map the

placement of eIF4A in the 48S PIC more precisely, we systematically changed the position of 4-

thio-U along the AUG-DLP stretch of SFV-DLP n27 mRNA (Figure 2b). Maximum crosslinking with

eIF3g was observed when 4-thio-U was placed +24 nt downstream of the AUG, whereas maximum

crosslinking of eIF4A was achieved when 4-thio-U was placed at +27 nt. By modeling mRNA place-

ment throughout the ES6S region of the 48S-PIC (Toribio et al., 2018), we found that crosslinking of

eIF3g at position +24 fit well with the suggested placement of eIF3g bound to eIF3b near ES6SA

(des Georges et al., 2015; Eliseev et al., 2018; Hashem et al., 2013). According to our data,

eIF4A may be placed a bit further downstream, probably between the ES6SA and ES6SB helices

(Figure 2c).

ES6S blockage inhibits translation initiation
The high copy number of rDNA genes in eukaryotic genomes makes it impossible to determine the

role of the ES6S region in translation using classical genetic disruption approaches. Therefore, we

decided to block ES6S by means of specific oligos targeting 18S rRNA, or by fusing RPSs surround-

ing the ES6S region to proteins that could sterically block this region. From among all the oligos

tested, we selected oligo 4, which targets a partially single-stranded sequence in ES6SD that showed

some inhibitory effects on translation of alphavirus mRNA (Toribio et al., 2016a). We determined

the 30 effective pairings of oligo 4 with ES6SD on native 40S particles by RNAse H assay, which

allowed us to construct models of oligo 4 bound to the 40S particle (Figure 3—figure supplement

1). In all of these models, the 50 extreme of oligo 4 is likely to be projected towards an open cavity

that is delimited by ES6SB, ES6SA, uS19, uS4 and the C-terminus of eS4 (Figure 3—figure supple-

ment 1). We also conjugated fluorophores such as VIC, Texas Red (TR) and Fluorescein (FITC) to the

50 end of oligo 4 to increase its blocking capacity and to facilitate its detection (Figure 3—figure

supplement 1). First, we found the conditions for optimal oligo delivery into cells, which maximized

transfection efficiency and reduced oligo aggregation, to increase its bioavailability (Figure 3—fig-

ure supplement 2). We transfected human (HEK293T, HeLa) and murine (MEF) cells with 70–90%

efficiency. To confirm that oligo 4 bound to 18S rRNA properly in transfected cells, we carried out

an ‘in situ’ RT-PCR amplification using the endogenous bound oligo 4 to prime retrotranscription of

18S rRNA isolated from transfected cells. PCR amplification of the resulting cDNA revealed that

oligo 4 was bound to both 40S and 80S fractions (Figure 3a, lower right panel). Next, we analyzed

the effect of VIC-oligo 4 on general translation by means of metabolic labeling with [35S]-Met.
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Transfection of MEFs with VIC-oligo 4, but not with its unconjugated form, strongly inhibited protein

synthesis at 12 hr post-transfection (hpt) (Figure 3b, upper left panel). In these experiments, we also

included oligo 5.4 (both VIC-conjugated and unconjugated), which targets helix ES6SB (Figure 3—

figure supplement 1) without significantly affecting translation, showing that the effect of VIC-oligo

4 was specific.

To test the role of the fluorochrome in the inhibitory activity of VIC-oligo 4, we replaced VIC with

FITC or TR (Figure 3b, upper left panel), finding a similar degree of translation inhibition for all

of the fluorochromes tested. This suggests that the inclusion of an additional mass at the 50 end was

responsible for the inhibitory activity of oligo 4 on translation. The effect of VIC-oligo 4 on transla-

tion was rapid, starting at 4–6 hpt and reaching a maximum at 8 hpt (Figure 3b, upper right panel),

suggesting a direct impact on translation rather than an indirect consequence of cell growth arrest

that was induced by VIC-oligo 4 some time after post-transfection (Figure 3—figure supplement 2).

Analysis of polysome profiles at 6–8 hpt revealed the accumulation of 80S (monosomes) together

Figure 2. Identification of eIFs associated with mRNA in the ES6S region. (a) Patterns of protein crosslinking generated with the indicated

mRNAs, which are labeled with 4-thio-U and [a-32P]-GTP. The identified protein bands are indicated, with a relative quantification of the intensity

of the protein bands shown below, according to this experiment and the one shown in Figure 2—figure supplement 1. (b) Mapping of the interaction

of eIF4A and eIF3g with mRNA in the ES6S region. SFV-DLP mRNAs with a single 4-thio-U placed at the indicated positions were used to assemble the

48S-PIC, and the pattern of protein crosslinking was analyzed. (c) The positions of mRNA that crosslinked with eIF4A and eIF3g were projected on the

solvent side of the PIC, assuming that the mRNA is threaded along the ES6S region. The +11 position of mRNA is placed at the mRNA entry channel

(Lomakin and Steitz, 2013; Pisarev et al., 2008). A rise per base of 4.5 Å for a stretched RNA strand was used as described previously (Toribio et al.,

2016a).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Confirmation that eIF4A and eIF3g crosslinked with mRNAs in 48S-PIC.
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Figure 3. ES6S blockage affects global translation. (a) Binding site of oligonucleotides 4 (red) and 5.4 (blue) in the ES6S region of the 40S subunit (left

panel). Note that in this model of PIC (EMD-5658), the ES6SA helix is in an ‘outward’ orientation. Right panels show VIC-oligo 4 uptake and binding to

ES6SD. The upper panel shows fluorescence microscopy of VIC-oligo 4 (green) combined with an IF staining of eS7 (red) and DAPI (blue) in MEF cells.

Note the typical aggregation of the oligo inside the cells. The bottom panel shows an in situ RT-PCR of RNA extracted from the indicated fractions.

cDNA was primed exclusively by the VIC-oligo 4, which remained bound to ES6SD during RNA extraction. Total RNA from untransfected cells was

included as a negative control. (b) Metabolic labeling of MEF cells with [35S]-Met. Cells transfected with the indicated oligonucleotides were labeled for

30 min at 12 hr post-transfection (hpt), and analyzed by SDS-PAGE and autoradiography. A SYPRO staining of the middle part of gels is shown as

loading control (–). The upper right panel shows a time-course analysis of the VIC-oligo 4 effect on translation. The lower panel shows a polysome

profile of MEFs transfected with VIC-oligo 4 (red) or with unconjugated oligo 4 (black). Extracts were separated in a 10–40% sucrose gradient and

fractionated as described in the Materials and methods; the identities of the main peaks are indicated. (c) Fusion protein-mediated blockage of ES6S

affects global translation. Model of EGFP (green) fused to eS4 (orange) of the 40S subunit. Note that in this model of human 40S, the ES6SA helix is in

an ‘outward’ orientation (upper left panel). Fluorescence microscopy of HeLa cells expressing eS4–EGFP fusion protein (upper right panel). Micrographs

were taken at 36 h. Nuclei are encircled by a dashed line; note the bright nucleolar and cytoplasmic staining. The bottom panel shows the distribution

of eS4 and eS4-EGFP proteins in a 10–35% sucrose gradient from HEK293T cells transfected with eS4-EGFP. (d) Measurement of total protein synthesis

by OPP fluorescence in transfected cells expressing no/low (black line) or high levels of eS4-EGFP (green line). Cells were first gated into two groups

according to EGFP expression, and then the distribution of OPP fluorescence intensity was determined (left panel). The right panel shows OPP

fluorescence measurements for cells transfected with eS4 alone, cells treated with 50 mg/ml CHX for 20 min, and cells transfected with eS4–EGFP that

express (or do not express) EGFP. Data are the mean of three independent experiments ± standard deviations (SD).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mapping and modeling of the oligo 4 bound to 48S-PIC.

Figure supplement 2. Accumulation of VIC-oligo 4 into the cells and its effect on proliferation.

Figure supplement 3. VIC-oligo 4 does not significantly affect 40S subunit biogenesis.

Figure supplement 4. Effect of VIC–oligo 4 on protein crosslinking in 48S complexes assembled with unstructured or SV-DLP n27 mRNAs.

Figure supplement 5. Effect of eS4–EGFP overexpression on the formation of 40S and the PIC.
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with a decrease in heavy polysomes, strongly suggesting a blockade of the initiation step of protein

synthesis (Figure 3b, lower panel). We did not detect significant alteration in the 28S/18S ratio at

different times post-transfection, nor alteration in the distribution of representative RPSs across the

sucrose gradient, suggesting that 40S biogenesis was not significantly altered by the oligo (Fig-

ure 3—figure supplement 3).

Next, we tested the effect of VIC–oligo 4 on protein crosslinking with mRNA within the 48S com-

plex. As shown in Figure 3—figure supplement 4, ES6S blockage by VIC–oligo 4 drastically reduced

eIF4A/eIF3g crosslinking, suggesting that VIC–oligo 4 disturbed the interaction of mRNAs with ES6S

region.

We then aimed to block ES6S by fusion of heterologous polypeptides to some surrounding RPSs.

Among the proteins that are located within or near the ES6S region, we selected eS4 (formerly

RPS4X) as a candidate. The C-terminus of eS4 projects nearly perpendicular to the major axis of the

40S particle between ES6SA and ES6SD, offering a place for the fusion of polypeptides of increasing

sizes. Plasmids encoding recombinant eS4 fused to different polypeptides were transfected into

HEK293T and HeLa cells, and their expression, incorporation into 40S particles and effect on transla-

tion were analyzed. Among the constructs tested, eS4 fused to EGFP was the one that gave the

most consistent results. When eS4–EGFP in the 40S particle was modeled, the EGFP mass could be

easily placed between ES6SB and ES6SC-D, occupying a significant volume (28.67 � 103 Å3)

(Figure 3c, upper right panel).

Overexpressed eS4–EGFP accumulated in the nucleolus, but also in the cytoplasm of transfected

cells (Figure 3c, upper right panel), as previously reported for other overexpressed RPSs (Al-

Jubran et al., 2013). Comparison of the distribution of endogenous eS4 and eS4–EGFP in sucrose

gradients confirmed that eS4–EGFP was incorporated into 40S and 80S particles with the same effi-

ciency as eS4 (Figure 3c, lower panel). However, we found a differential increase in the 40S accumu-

lation of eS4–EGFP when compared to that of endogenous eS4, suggesting a block in the pre-

initiation step. The effect of eS4–EGFP overexpression on protein synthesis was measured by

O-propargyl-puromycin (OPP) incorporation followed by fluorescent quantification of the cells

expressing EGFP (or not). Clearly, protein synthesis was blocked by eS4–EGFP, to an extent compa-

rable to that resulting from cycloheximide treatment (Figure 3d). To test whether the incorporation

of eS4–EGFP into the 40S particle affected the binding of some eIF3 subunits (such as eIF3g, which

binds eIF3b near ES6SA of 40S), we probed sucrose gradients with different antibodies (Figure 3—

figure supplement 5), finding no significant differences in the distributions of the analyzed eIFs.

ES6S blockage differentially affects scanning-dependent translation
ES6S may represent an mRNA-threading region for the unwinding of the RNA secondary structure

that is necessary for scanning, so we evaluated the effect of VIC–oligo 4 on the translation of lucifer-

ase (luc) mRNAs bearing 50 UTRs of different lengths (33–656 nt) and secondary structure (DG˚ from

�5 to �70 kcal.mol�1) (Figure 4a and Supplementary file 1). MEFs were cotransfected with luc

plasmids and VIC–oligo 4, and luc activity was measured at 14 hpt. VIC–oligo 4 transfection reduced

the accumulation of luc in all cases, but the extent of inhibition dramatically differed among the con-

structions tested. Translation of luc mRNAs bearing a long 50 UTR (656 nt) or an average-sized

50 UTR (121 nt) with a stable stem-loop structure (SL20) was dramatically impaired by VIC–oligo 4

transfection (50–80-fold inhibition) (Figure 4a). By contrast, translation of luc mRNA bearing a short

50 UTR (33 nt) was much less affected by VIC–oligo 4 transfection (about two-fold inhibition). We fur-

ther confirmed that sensitivity to VIC–oligo-4-induced translational block increased with the 50 UTR

length of the mRNA (Figure 4—figure supplement 1). We also tested the effect of VIC–oligo 4 on

hepatitis C virus (HCV) IRES-driven translation, showing only a modest effect (2–3 fold inhibition),

similar to that observed for mRNA with a short 50 UTR (Figure 4a). To further confirm this differential

effect on cap-dependent and IRES-driven translation, we tested the effect of VIC–oligo 4 on the

translation of other viral mRNAs. Cells were first transfected with VIC–oligo 4, and then infected with

SFV or vesicular stomatitis virus (VSV) as prototypes of cap-dependent translation, and encephalo-

myocarditis virus (EMC) or poliovirus (PV) as prototypes of IRES-driven translation. Accumulation of

EMC or PV proteins was not significantly affected by VIC–oligo 4 transfection when compared with

controls, whereas translation of SFV and VSV proteins was dramatically inhibited by VIC–oligo 4 (Fig-

ure 4—figure supplement 1).
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Figure 4. Differential effect of ES6S blockage on cap-dependent translation. (a) Schematic diagram of luc mRNAs bearing different 50 UTRs (details in

Supplementary file 1). Note that the cap-proximal sequences are identical for the 63, 656 and SL20 mRNAs (denoted with a black line). HCV, hepatitis

C virus. MEF cells were cotransfected with 1 mg of the indicated luc plasmid and 10 pmol of VIC–oligo 4; transfections with oligo 4 and VIC–oligo

capsid did not significantly affect luc expression, and are included as controls. Data are expressed as fold inhibition with respect to oligo 4 control from

Figure 4 continued on next page
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As translation of ATF-4 mRNA upon stress-induced eIF2a phosphorylation is a paradigm of scan-

ning-dependent reinitiation on downstream bona fide ATG, we tested the effect of VIC–oligo 4 on

the translation of luciferase mRNA driven by the 50 UTR of human ATF-4 mRNA. Under normal con-

ditions, 40S initiates from the regulatory uORF1 and uORF2 in the 50 UTR of ATF-4 mRNA, leading

to constitutive translational repression that is relieved when the availability of ternary complex is

reduced by eIF2a phosphorylation (Vattem and Wek, 2004). Clearly, VIC–oligo 4 transfection of

MEFs expressing the 50 UTR ATF-4 Luc mRNA prevented the accumulation of luc upon thapsigargin

treatment, showing that VIC–oligo 4 did indeed block scanning and/or reinitiation on the 50 UTR

ATF-4 mRNA (Figure 4c).

Genome-wide analysis reveals the role of the ES6S region in
the translation of mRNAs with G-rich 50 UTRs
To test the effect of VIC–oligo 4 on genome-wide mRNA translation, we carried out polysome profil-

ing in HEK293T cells (Figure 5a). After transfection with oligo 4 or VIC–oligo 4, mRNA levels were

quantified in monosomal (M) and polysomal (P) fractions (Figure 5—figure supplement 1). The P/M

ratio faithfully represents the translation efficiency (TE) of a given mRNA, as we previously reported

(Ventoso et al., 2012). For each gene, the oligo 4/VIC–oligo 4 TE ratio was determined and

expressed as log2 fold change (FC TE), with those >1 considered to be downregulated (‘TE down’;

n = 1054) and those <�0.7 considered to be upregulated (‘TE up’; n = 333). We found that the sen-

sitivity of transcriptome-wide mRNAs to VIC–oligo 4 varied more than 30-fold, although the distribu-

tion of TE change was clearly skewed towards translation inhibition (Figure 5a). Very small

differences in total mRNA abundance were found when comparing cells transfected with oligo 4 and

VIC–oligo 4 (Figure 5—figure supplement 1).

Gene ontology (GO) analysis revealed that the ‘TE down’ group was enriched in mRNAs that are

involved in cell signaling and growth, especially in the G-protein-coupled receptor signaling and Ras

pathways (Figure 5b). This group was also enriched in KEGG pathway mRNAs related to cancer and

other diseases (Figure 5—figure supplement 1). On the other hand, the ‘TE up’ group was highly

enriched in GO terms related to RNA metabolism, including mRNA splicing, rRNA processing and

mRNA translation (Figure 5b). Accordingly, the TE down group was enriched in mRNAs encoding

membrane proteins and under-represented in mRNAs encoding nuclear proteins that have RNA

binding or ligase activities (Figure 5b, lower panel).

Next, we compared some basic features of the 50 UTR mRNA among TE groups. Principal compo-

nent analysis (PCA) confirmed that 50 UTR length, G+C composition and RNA secondary structure

content were the parameters that most contributed to the variance (Figure 5—figure supplement

2). We found that the G+C content and the propensity to fold into secondary structures (RNAfold,

DG˚) were the 50 UTR features that best correlated with TE groups. 50 UTRs of the ‘TE down’ group

showed a higher G+C content than those of the ‘TE up’ group (74% vs 62.96%, p=3�10�49, U test),

and a more stable predicted RNA secondary structure (�72.50 kcal.mol�1 vs �27.7 kcal.mol�1,

p=3�10�23, U test) (Figure 5c). The 50 UTRs of the ‘TE down’ group were also larger than those of

the ‘TE up’ group (p=6�10�12, U test) (Figure 5c). Next, we used the MEME algorithm to search for

short motif enrichment in the ’TE down’ and ’TE up’ groups of mRNAs. Interestingly, we found a

strong enrichment of 15-mer and 12-mer (GGC/A)4 motifs (E-value = 2.7�10�76 and 2.7 � 10�47,

respectively) in the ‘TE down’ group that was not detected in the ‘TE up’ group (Figure 5—figure

supplement 2). As (GGC/A)4 motifs can fold into G-quadruplexes (G4s) (Wolfe et al., 2014), we car-

ried out a systematic research of the classical G4 motif in our dataset using the QuadBase2 program

Figure 4 continued

four independent experiments (mean ± SD). (b) Effect of VIC-oligo 4 on translation of viral mRNAs. MEFs were transfected with the indicated

oligonucleotides and infected 6 hr later with the indicated viruses at a multiplicity of infection (MOI) of 10 pfu/cell. At 4 hr post-infection, cells were

metabolically labeled with [35S]-Met for 30 min and analyzed as described in the Materials and methods. The positions of the main viral protein bands

are indicated. (c) Effect of VIC–oligo 4 on luc translation driven by the 50 UTR of ATF-4 mRNA. MEFs constitutively expressing 50 UTR ATF-4–Luc mRNA

were transfected with the indicated oligonucleotides, and treated 6 hr later with 2 mM thapsigargin for the indicated times.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of 5’ UTR length of luc mRNAs on the sensitivity to VIC-oligo 4-mediated translational block.
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Figure 5. Genome-wide effect of ES6S blockage on translation. (a) Distribution of translational changes induced by VIC–oligo 4 transfection of

HEK293T cells. Only mRNAs showing a p-adj <0.05 between replicas were selected; data are expressed as log2 fold change (FC) of translation

efficiency (TE) (4/VIC-4). The tails of the distribution with FC TE >1 (TE down) and FC TE <�0.7 (TE up) were selected for further analysis. (b) Gene

ontology (GO) analysis of the ‘TE down’ and ‘TE up’ groups, showing the six terms (biological processes) with the highest significance (p-value) and

fold-enrichment (numbers within the bars) (upper panels). The lower panel shows the differential enrichment of the ’TE down’ group in terms of GO-

molecular function and GO-molecular component. The under- and over-represented terms are shown. (c) Analysis of the 50 UTR features of mRNAs in

TE groups. The length, G+C composition and RNA structure content of 50 UTRs were analyzed and compared among groups using the Mann-Whitney

U test (p-values are shown). (d) Differential enrichment in the (GGC/A)4 and G4 (G3L1-12) motifs found in the 50 UTR of ‘TE down’ mRNAs. Data

represent the accumulated percentage of mRNAs that show at least one of the indicated motifs (left panel); p-value<10�5 after c2 test. The lower panel

shows a box plot of the log2 FC TE of mRNAs showing at least one (GGC/A)4 motif (left) or one G4 (G3L1-12) motif (right) compared with the

corresponding subset of mRNA showing no motifs. The p-values generated by U tests are shown. (e) Effect of VIC–oligo 4 on the translation of Luc

mRNAs bearing the indicated motifs in the 50 UTR. Translations were carried out in RRL as described in the Materials and methods. Data represent the

mean ± SD of six (pLuc and 1x(GGC)4) or three (G41, G42 and G43) independent experiments. The calculated stability of the motifs is shown as DG˚ (-

kcal.mol�1, gray dots); the sequences of the G4 motifs are also indicated (bottom).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Quality and reproducibility of the experiment shown in Figure 5.

Figure supplement 2. Further bioinformatic analysis of the data from experiment shown in Figure 5.
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(Dhapola and Chowdhury, 2016). A strong enrichment of the (G3N1–12)4 motif was found in

the 50 UTRs of the ‘TE down’ mRNAs (c2 < 10�4), being 3-fold higher than that found in the ‘TE up’

group. About 75% of ‘TE down’ mRNAs contained either 12-mer (GGC/A)4 or classical G4

(Figure 5d, upper left panel). To test the contribution of (GGC)4 and G4 motifs to the observed

translation sensitivity to VIC–oligo 4, we cloned a single copy of either motif into the 50 UTR of a

pLuc plasmid. For G4, we tested three experimentally validated variants of the motif, including one

‘perfect’ G4 and two motifs that are present in human Bcl2 (Shahid et al., 2010) and TM3-MMP

(Morris and Basu, 2009) mRNAs (Figure 5E). Clearly, the presence of G4 motifs rendered the trans-

lation of luc mRNA more sensitive to VIC–oligo 4, whereas the presence of (GGC)4 had less of an

effect. Moreover, we found a correlation between the predicted stability of the G4 motif and the

extent of translation inhibition by VIC–oligo 4 (Figure 5e).

Next, we selected some representative mRNAs from the ‘TE down’ and ‘TE up’ groups for valida-

tion and further analysis. Among the downregulated mRNAs, we selected CCND3, HRAS, ODC-1,

AKT and GRK2, whereas eIF4B and eEF1A1 TOP mRNAs were selected as representatives from the

upregulated group. The ‘TE down’ mRNAs had longer than average 50 UTRs (188–395 nt) with mod-

erate-to-strong secondary structure, including the presence of G4 or/and (GGC)4 motifs (Figure 6a,

left panel). The presence G3- and G2-quadruplexes in the 50 UTRs of CCND3 and ODC1,

respectively, has been reported before to inhibit translation (Lightfoot et al., 2018; Weng et al.,

2012). By contrast, representative ‘TE up’ mRNAs showed shorter than average 50 UTRs (23 and 63

nt) and lacked the secondary structure typical of 50 TOP mRNAs (Figure 6—figure supplement 1).

Thus, most of the 50 TOP mRNAs detected in our dataset fell within the ‘TE up’ group (Figure 6a,

right panel). Western blot analysis revealed a dramatic reduction in the accumulation of CCND3,

ODC-1, HRas and AKT1 protein upon VIC–oligo 4 transfection, whereas GRK2 protein accumulation

was reduced but to a lesser extent (Figure 6b). Time-course experiments confirmed the high sensi-

tivity of CCND3, followed by AKT1 and HRAS, to VIC–oligo 4 (Figure 6b, right panel). The short

half-life of the CCND3 protein (about 30 min) probably accounts for its rapid disappearance after

blockage of de novo synthesis by VIC–oligo 4. However, the accumulation of eIF4B increased slightly

in cells transfected with fluorophore-conjugated oligo 4s, especially TR-oligo 4 (Figure 6c). These

results are in good agreement with the data from polysome profiling (Figure 6—figure supplement

2).

Translation of CCND3 has been reported to be sensitive to eIF4A inhibition (Wolfe et al., 2014),

so we compared the effects of VIC–oligo 4 and the eIF4A inhibitor hippuristanol (hipp)

(Bordeleau et al., 2006). Interestingly, a similar but not identical effect on translation was found

(Figure 6c). Whereas hipp, like VIC–oligo 4, reduced the accumulation of GRK2, AKT1 and CCND3

proteins, HRAS translation was not affected by hipp, and translation of eIF4B mRNA increased upon

treatment with hipp, as also observed for TR–oligo 4 (Figure 6c). These results suggest a partial

functional overlap of the ES6S region and helicase eIF4A in the translation of specific mRNAs. To

analyze this in more detail, we compared our data set with that published by Modelska et al. (2015)

using human cells, in which the expression of eIF4A was silenced by interference. Notably, transla-

tion of these eIF4A-dependent mRNAs was also affected by VIC–oligo 4, and about half of the

eIF4A-dependent mRNAs fell into our VIC–oligo-4-sensitive group (Figure 6—figure supplement

2). However, in comparing our data set with the available information on the genome-wide effects

of eIF4A inhibition or downregulation, we find that ES6S blockage seems to have a wider impact on

translation than eIF4A downregulation (Modelska et al., 2015; Rubio et al., 2014; Wolfe et al.,

2014).

We also tested the effect of the overexpression of two different eS4–EGFP fusion proteins on the

accumulation of some representative proteins. Notably, translation of AKT-1 mRNA was strongly

inhibited by eS4–EGFP overexpression, whereas the accumulation of GRK2 and HRAS proteins was

less affected. A slight increase in eIF4B protein level was also observed upon transfection of eS4–

EGFP (Figure 6d). This confirmed that ES6S blockage by both VIC–oligo 4 and eS4–EGFP resulted

in comparable effects on translation. mRNA threading into the ES6S region makes scanning slower

but more processive.

To better understand the influence of the ES6S region on the scanning process, we studied the

effect of VIC–oligo 4 on translation in vitro. As observed in transfected cells, the addition of VIC–

oligo 4 to rabbit reticulocyte lysates (RRL) drastically inhibited the translation of mRNAs bearing sta-

ble RNA stem-loops in their 50 UTRs. However, for mRNAs with short and unstructured 50 UTRs (63
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nt and G-less), translation was unaffected or even stimulated by VIC–oligo 4 when reactions were

measured at end-point times (Figure 7a). To better understand this, we analyzed the effect of FITC–

oligo 4 in real-time translation experiments. Continuous recording of luc activity has been used to

measure the time required to detect luc activity (full-translation time, FTT) and its dependence on

scanning time (Vassilenko et al., 2011). Thus, FTT increases linearly with 50 UTR length, as the 48S-

PIC requires more time to complete the scanning of the mRNA when a long 50 is present

(Vassilenko et al., 2011). Surprisingly, FITC–oligo 4 accelerated the accumulation of luc activity in

the reactions programmed with 50 UTR G-less mRNA, and to a lesser extent in those programmed

Figure 6. Effect of VIC–oligo 4 and TR–oligo 4 on the translation of mRNAs representative of the ‘TE down’ and ‘TE up’ groups. (a) 50 UTR features of

the representative mRNAs selected for the analysis, with structure stability per nucleotide shown, as well as the presence of (GGC/A)4 and G4s (G2L1–12
and G3L1–12) (left panel). The right panel shows a comparative analysis of log2 FC TE between all mRNAs and those TOP mRNAs that we detected in

our dataset (36). p-value after U test is shown. (b) (Left) Western blot of the accumulated proteins at 24 hr post-transfection (hpt) of the indicated oligos

in HEK293T cells. (Right) Time course of protein accumulation at 8 hr, 16 hr and 24 hr post-transfection (hpt) of VIC–oligo 4, with data represented as

percentage of the control values (+ oligo 4). (c) Comparative effect of hippuristanol (hipp), VIC–oligo 4 and TR–oligo 4 on the indicated protein levels.

Data were analyzed by western blot at 24 hpt with the indicated oligonucleotides; hipp was used at 1 mM. (d) Effect of eS4–EGFP and eS4A–EGFP

overexpression on the accumulation of some representative proteins. HEK293T cells were transfected with plasmids expressing the indicated proteins

and cell extracts were analyzed by western blot at 48 hpt.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparative analysis of the 50 UTR of TOP mRNAs detected in our dataset.

Figure supplement 2. Raw and processed data for representative mRNAs and analysis of the functional overlapping between ES6S region and eIF4A.
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with 50UTR 63 mRNA (Figure 7b). FITC–oligo 4 reduced the FTT of 50 UTR G-less mRNA by 2 min,

suggesting accelerated scanning (Figure 7c).

In parallel experiments using highly structured 50 UTR-SL20 mRNA, the addition of FITC–oligo 4

drastically reduced the accumulation of luc activity at every time point, although the FTT was not sig-

nificantly altered, suggesting arrest rather than delay of scanning (Figure 7c). Interestingly, addition

of hipp to 50 UTR-SL20 mRNA delayed the accumulation of luc activity, which followed a differently

shaped curve than that observed for FITC–oligo 4 (Figure 7b). In contrast to the addition of FITC–

oligo 4, the addition of hipp increased the FTT by 2 min, suggesting a delay in the scanning process.

Thus, the effect of eIF4A inhibition was similar but not identical to that observed for FITC–oligo 4 on

mRNAs that have stable structures in their 50 UTRs.

To further explore the functional links between the ES6S region and eIF4A, we tested the com-

bined effect of VIC–oligo 4 and hipp on the translation of mRNA with stem-loop (50 UTR-SL30) or G4

(50 UTR-G4-1). To this end, we used suboptimal concentrations of VIC–oligo 4 that induced a moder-

ate blockage of translation (2–3-fold), in combination with increasing concentrations of hipp. Clearly,

the combination of VIC–oligo 4 and 0.3 mM hipp induced a dramatic synergistic inhibition of

Figure 7. mRNA threading into the ES6S region slows down scanning but makes it more processive. (a) Effect of FITC-oligo 4 on the translation of Luc

mRNAs with different 50 UTRs in RRL. Translation mixtures were incubated for 90 min, which represented the endpoint measurement because no further

increase in luc activity was detected. Data are represented as the mean ± SD from at least three independent experiments. (b) Luc activity accumulation

in continuously recording experiments programmed with the indicated mRNAs. Measurements were taken every 3 min: gray line, no oligo; black line,

+FITC–oligo 4. Hipp was added to the indicated samples at a concentration of 2 mM (dashed line). (c) Estimates of full translation time (FTT) for 50 UTR

G-less and 50 UTR-SL20 mRNAs, and the effect of FITC–oligo 4 and hipp on FTT. Data from panel (B) were processed as described before

(Vassilenko et al., 2011). The determined FTT values were: 50 UTR G-less = 9.53 min; 50 UTR G-less+FITC–oligo 4 = 7.89 min; 50 UTR-SL20 = 17.57 min;

50 UTR-SL20+FITC–oligo 4 = 17.56 min; 50 UTR-SL20+hipp = 19.44 min. (d) Synergistic inhibitory effect of VIC–oligo 4 and hipp on translation of 50UTR

SL30-Luc and 50 UTR G4-1-Luc mRNAs in RRL. Translation mixtures were preincubated with 6 mM of VIC–oligo 4 and with increasing concentrations of

hipp for 5 min. Then, mRNAs were added and measurements were taken 90 min later; the calculated combination index (CI) for each mRNA is

indicated.
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translation of 50 UTR-SL30 mRNA (up to 60-fold), whereas the effect on 50 UTR-G41 translation was

less dramatic (12-fold inhibition) (Figure 7d). These results strongly suggest that the function of

eIF4A helicase and the ES6S region converge during the initiation step.

Discussion
Here, we present structural, biochemical and functional data supporting a role of the ES6S region in

the scanning process, acting as a threading region where mRNA is unwound before entering the

classical mRNA channel of the 40S subunit. Rather than a narrow cleft like the decoding groove, the

topology of the ES6S region resembles an open channel in which some differences in the accommo-

dation of mRNA molecules are found. The presumed flexibility of ES6S extensions, especially of

ES6SA and ES6SB, may assist in the placement of mRNAs according to their secondary structure

content. These extensions are similar to the tentacle-like structures described recently for some ESs

of the 60S subunit, which are involved in the recruitment of MetAP and NatA proteins to 80S

(Fujii et al., 2018; Knorr et al., 2019). Moreover, as eIF4G has been found to contact both ES6SE

and ES6SB extensions (Yu et al., 2011), direct participation of eIF4F in the accommodation of the

mRNA in the ES6S region seems likely. Three lines of evidence presented here suggest that eIF4A

helicase acts on the mRNA in the ES6S region: (1) crosslinking of eIF4A with mRNA was only

detected when 4-thio-Us were placed in mRNA positions that fit in the ES6S region of 48S-PIC

model; (2) Hipp and VIC–oligo 4 exhibited a strong inhibitory synergy when assayed on 50 UTR-SL30

mRNA in vitro; and (3) ES6S blockage affected the translation of mRNAs with a 50 UTR

that is enriched in classical dsRNA structures and/or G4s, similar to that previously described when

eIF4A activity was inhibited by drugs or silenced (Modelska et al., 2015; Rubio et al., 2014;

Wolfe et al., 2014). Nonetheless, the exact placement of the eIF4A helicase bound to mRNA in the

scanning complex could not yet be mapped, most probably because of the dynamic nature of

eIF4A–mRNA interactions. Besides eIF4A, we also detected interaction of eIF3g with mRNA in the

ES6S region, which fits well with its binding to eIF3b very close to the ES6SA helix (des Georges

et al., 2015; Eliseev et al., 2018). Furthermore, some mutations in the RNA-binding domain of

eIF3g have shown decreased processivity of scanning of the structured 50 UTRs of yeast mRNA

(Cuchalová et al., 2010). The possibility that other RNA helicases, such as DDX3, DHX9 and DHX36,

could also associate with the ES6S region to unwind dsRNA and G4 structures in mRNA deserves

further investigation.

The blocking activity showed by oligo 4 was striking because it was only observed when relatively

bulky molecules (such as VIC) were conjugated to its 50 extreme. Although the exact arrangement of

VIC–oligo 4 bound to 40S was not determined, the fluorophores probably project toward the cavity

of the ES6S region, at least partially blocking it. However, we cannot rule out the possibility that

the binding of VIC–oligo 4 to the target sequence may also restrict the conformational changes that

ES6SA and ES6SB helices have been shown to undergo during initiation (Melnikov et al., 2012;

Toribio et al., 2016a). The differential sensitivity of mRNAs to the translational blockage imposed

by VIC–oligo 4 reveals the existence of a great diversity in mRNA-dependence for scanning. Thus,

the translation of mRNAs with relatively long and structured 50 UTRs (like CCND3, H-RAS and ODC-

1) was impaired by ES6S blockage, whereas the translation of mRNAs with short and unstructured

50 UTRs (like many 50TOP mRNAs) was unaffected or even enhanced by VIC–oligo 4 transfection.

This differential effect can be explained if we consider the ES6S region as a true threading path for

mRNA that makes the scanning of the 48S-PIC slower but more processive (Figure 8a). Thus, transla-

tion initiation of mRNAs with short and unstructured 50 UTRs could be enhanced by blocking of

ES6S, as PIC recruitment and scanning of these mRNAs does not require unwinding. Under ES6S

blockage, these mRNAs could be threaded directly into the classical mRNA channel, bypassing the

ES6S region and thus accelerating the scanning process (Figure 8b). In addition, these mRNAs could

also better compete for translational machinery in the context of general shut-off induced by VIC–

oligo 4. According to this, participation of the ES6S region in ribosomal attachment to mRNA would

be dispensable, at least for some mRNAs with unstructured 50 UTRs such as 50 TOP mRNAs, which

also show little or no requirement for eIF4A (Gandin et al., 2016; Meyuhas and Kahan, 2015). How-

ever, whether mRNA is threaded into the ES6S region during ribosomal attachment, or rather is slot-

ted into the ES6S region once the 50-cap has entered the classical mRNA channel is still an open

question that deserves further investigation.
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For mRNAs that have long and structured 50 UTRs, ES6S blockage probably reduces

the processivity of the scanning complex along the 50 UTR. The stem-loop and G4 structures in the

50 UTR of mRNAs that are not effectively unwound in the ES6S region would become stacked at the

mRNA entry channel, resulting in stalling and/or dissociation of the 48S-PIC from the mRNA. Even if

the 48S-PIC could bypass some stem-loops without unwinding, as previously observed in vitro

(Abaeva et al., 2011), it is not clear whether these aberrant complexes would end up being produc-

tive. The DHX29 helicase located at the mRNA entry channel of PIC may also alleviate the eventual

stacking of some RNA structures at the mRNA entry channel (Hashem et al., 2013), although its

involvement in the genome-wide unwinding of stable stem-loops and G4s is unknown.

Finally, our data point out the ES6S region as a novel target for small molecules (oligos and

aptamers) that could block the translation of specific mRNA subsets, for example those involved in

signal transduction and oncogenesis that show extensive RNA structure in their 50 UTR. This could

represent a more specific alternative to the use of eIF4A inhibitors as anti-cancer drugs (Chu and

Pelletier, 2015).

Materials and methods

Oligonucleotides and recombinant DNA
A complete list of the oligonucleotides used in this work can be found in Supplementary file 2. Oli-

gonucleotides were purchased from Sigma except for VIC-conjugated versions, which were pur-

chased from Life technologies. In some in vitro experiments using nuclease-treated RRL (Promega),

we used a derivative of oligo 4 with phosphorothioate and 20O-Met modifications

that provided increased stability. Templates for in vitro transcription were generated by PCR using

Figure 8. Model of the scanning 48S-PIC showing the path of mRNA through the ES6S region. (a) Stem-loop (SL) and G4 (three layer square) represent

elements of mRNA secondary structure; core eIF3 and some peripheral subunits (3b/3 g/3i) are shown. For simplicity, only the helicase component

(eIF4A) of the eIF4F complex is shown. (b) Effect of ES6S blockage on mRNA threading. The model represents an extreme situation upon ES6S

blockage that excludes mRNA from the ES6S region. For mRNAs with short and unstructured 50 UTRs, bypassing the ES6S region could accelerate the

scanning process (upper). For scanning-dependent mRNAs with long and structured 50 UTRs, exclusion from the ES6S region would cause the stacking

of secondary structural elements at the mRNA entry channel (shown), dissociation of the 48S-PIC, or even the aberrant threading of folded structures

into the decoding groove (not shown).
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the corresponding oligonucleotides, and the resulting products were purified by the DNA Clean and

Concentrator-25 kit (Epigenetics). Firefly luciferase constructs bearing different 50UTRs were con-

structed in the pLuc plasmid, derived from pEGFP-N1 (Clontech) by exchanging the EGFP CDS for

the luciferase-coding sequence using BamHI and XbaI sites. The sequences of the 50UTRs are shown

in Supplementary file 1.

To construct eS4-EGFP fusion proteins, cDNA of human eS4 mRNA (NM_001007.4) was obtained

by reverse transcription of total RNA from HeLa cells using the primer fw-hRPS4X, followed by PCR

amplification with primers fw-hRPS4X and rev-hRPS4X. The resulting PCR product was cloned into

pEGFP-N1 (Clontech) using NheI and HindIII, resulting in a frame fusion of the two proteins sepa-

rated by a 23-aa linker (LQDPKLRILQSTVPRARDPPVAT). eS4A–EGFP was constructed by cloning the

above PCR product using a similar strategy, but the resulting PCR product was cloned into NheI and

PstI sites, resulting in a shorter linker (LQSTATS).

RNA synthesis and purification
RNAs were in vitro synthesized using HiScribe T7 Quick (NEB) as described previously

(Toribio et al., 2018). Where indicated, 4-thio-U and/or 30 mCi [a-32P]GTP were included in the reac-

tion, and the resulting mRNAs were purified through Chromaspin-30 columns (Clontech). To prepare

Luc mRNAs for in vitro translation, mRNA transcripts were capped using the vaccinia capping system

(NEB) and purified using the RNA Clean and Concentrator-25 kit (Epigenetics). All of the mRNAs

used in this work contained a poly(A) tail of 25 nt.

Cell culture and transfection
MEFs, HeLa and HEK293T cells were grown in DMEM supplemented with 10% fetal calf serum. Cells

were authenticated by microscopic examination and they were free of mycoplasma contamination.

For oligonucleotide transfection, cells were grown in 24-well plates at 60–70% confluency and then

transfected with 100 pmol of oligonucleotide using TurboFect (Thermo Fisher Scientific) or Lipo-

transfectin (NiborLab). Oligonucleotide uptake was monitored using a fluorescence microscope. At

the indicated times, cells were fixed for immunofluorescence (IF), infected with the indicated viruses

or metabolically labeled with [35S]-Met/Cys for 1 hr and analyzed as described previously

(Ventoso et al., 2006).

esiRNA-mediated interference
To silence the expression of eIF4A1 gene, HeLa cells (» 5 � 104 growing in 6-well plates) were trans-

fected with 0.6 mg of esiRNA (EHU-11150–1, SIGMA) targeting human eIF4A1 mRNA (NM_001416),

using INTEREFERin (PolyPlus) as facilitator. Three days later, the level of eIF4A1 protein was ana-

lyzed by WB.

Polysome analysis and profiling
Two subconfluent p100 plates of MEF or one plate of HEK293T cells were transfected with the indi-

cated oligonucleotide for 12 hr and lysed in polysome buffer (Tris-HCl 30 mM [pH 7.5], 100 mM KCl,

5 mM MgCl2, 1 mM DTT, 1% Triton X-100 and 50 mg/ml cycloheximide) for 10 min on ice. After

three passages through a 22G needle, cell lysates were clarified by low-speed centrifugation and

loaded on a 10–40% sucrose gradient prepared in polysome buffer. Gradients were centrifuged at

35,000 rpm in a SW-40 rotor for 3 hr at 4˚C in a Beckman SW40.1 rotor and fractionated from the

bottom using an ISCO fractionator coupled to a UV recorder. For protein analysis, fractions were

extracted with a methanol-chloroform protocol and analyzed by WB with the indicated antibodies.

For RNA analysis, fractions were extracted with phenol, ethanol precipitated and pooled in submo-

nosomal (40S, 48S and 60S), monosomal (80S) and polysomal (>2 ribosomes per mRNA) fractions.

RNA-seq and data processing
A total of 12 samples were prepared for sequencing. To track the dilutions made during the con-

struction of RNA-seq libraries, 0.3 mL of 50X Mix 1 dilution of ERCC RNA spike-in mix (Thermo Fisher

Scientific Fisher) was added to the samples prior to rRNA depletion. The cDNA libraries were pre-

pared with 1 mg of rRNA-depleted RNA using the TruSeq Stranded mRNA Sample Preparation kit

(Illumina, Inc). RNA-seq was carried out on an Illumina HiSeq 2500 platform, and raw data quality
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control was generated using FastQC. We used the GRCh38 human genome release and Ensembl

annotation for further analysis. Bowtie 1.1.2 (Langmead et al., 2009) was used with default parame-

ters to remove rRNA reads, to estimate the differential dilution of the samples via the spike-in, and

to align RNA reads. About 75% of reads were aligned in each sample. Alignments were refined with

Hisat2 2.1.0 (Kim et al., 2015) using the –known-splicesite-infile parameter to define the intron lim-

its. Read counting per gene was done with Featurecounts release 1.6.3 (Liao et al., 2014). The

library size and spike-in were used to normalize counts using the median of ratios method

(Love et al., 2014). The DESeq2 R package was used to estimate the translation efficiency (TE) of

each sample and to compare TE between samples (Love et al., 2014). We defined TE as the ratio of

the mRNA abundance in the polysomal fraction divided by the abundance in the monosomal frac-

tion. Change in TE was calculated as TEoligo 4/TEVIC–oligo4 and expressed in log2fold change TE (FC

TE). To generate the database with feature annotations for every mRNA, we integrated information

from the Ensembl human 95 database with stable RefSeq ID, with Transcript Support Level (TSL) and

APRIS annotation. We also incorporated experimental mapping of the +one transcription start site

(TSSs) using the nanocage technique that was available for 2500 mRNAs of HEK293T cells

(Gandin et al., 2016). RNA secondary structures were predicted using the RNAfold 2.2.10 algorithm

of the ViennaRNA package (Lorenz et al., 2011). For the analysis, the minimum folding energy of

the centroid structure was used, including G4s or not.

UV crosslinking experiments
Crosslinking experiments using [32P]-labeled mRNAs with photoreactive 4-thio-U were carried out as

previously described (Toribio et al., 2016a). 48S or 80S complexes were assembled with GMP-PNP

or cycloheximide, respectively, and incubated at 30˚C for 20 min. After crosslinking at 360 nm,

lysates were centrifuged over a 20% sucrose cushion at 90,000 x g for 3 hr, and the whole ribosomal

fraction (WRF) was resuspended in 50 mL of TE buffer. For protein analysis, samples were digested

with RNAse A and T1 for 1 hr at 37˚C before SDS-PAGE analysis as described previously

(Toribio et al., 2016a).

Mapping mRNA–18S rRNA contacts
To identify contacts between mRNA and 18S rRNA within the 48S PIC, a large-scale experiment

using 0.5 ml of RRL and cold 4-thio-U labeled mRNAs was carried out. After UV crosslinking at 360

nm, the WRF was denatured in 500 ml buffer D (Tris-HCl 30 mM [pH 7.5], 0.5 M LiCl, 0.5% LiDS, 0.5

mM EDTA and 1 mM DTT) and poly(A)+ mRNA was captured with oligo(dT) magnetic beads (NEB)

under denaturing conditions. After extensive washing, RNA was eluted with 100 ml H2O and concen-

trated by ethanol precipitation in the presence of glycogen. Captured 18S RNA that was crosslinked

to mRNA was analyzed by reverse transcriptase termination site (RTTS) assays as described previ-

ously (Kielpinski et al., 2013). Briefly, 18S rRNA was retrotranscribed with Superscript IV (Invitrogen)

using 2 pmol of primer 3 followed by a 20 min digestion with RNAse H. The resulting cDNA popula-

tion was purified with AMPURE beads and 30 ligated to primer 30 RTTS_adapter with CirLigase (Illu-

mina). Then, a 30-cycle PCR with oligos 30_adapter and RP_FWD was carried out, followed by a final

10-cycle PCR with oligo RP_FWD and oligos RP_REV_INDEX 5, 6, 7 or 12 (see Supplementary file

1). The resulting libraries were sequenced in a MiSeq system (Illumina), and reads were aligned to

rabbit 18S rRNA with Bowtie 2 using the default parameters. The crosslinking sites in 18S were iden-

tified as the 50-adjacent nucleotide to the 50 end of every aligned read.

Mapping mRNA–protein contacts
To identify proteins that crosslinked to unlabeled mRNA in the 48S-PIC, a large-scale experiment

using 0.5 ml of RRL and 3 mg of the indicated mRNA were used. After 30 min crosslinking at 254 nm,

WRFs were resuspended in buffer D (Tris-HCl 30 mM [pH 7.5], 0.5 M LiCl, 0.5% LiDS, 0.5 mM EDTA

and 1 mM DTT) and poly(A)+ mRNA was captured with oligo(dT) magnetic beads (NEB) under dena-

turing conditions as described above. After extensive washing, RNA was eluted with 100 ml H2O and

digested with RNAse A and T1. Samples were trypsin digested, concentrated and analyzed by high-

resolution LC-ESI-MS/MS.
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Denaturing immunoprecipitation
dIP was carried out as described recently (Toribio et al., 2018). Briefly, the ribosomal fraction from

a 500 ml translation reaction including 2 � 106 cpms of [a-32P]�4-thio-U-SV-DLP U1 mRNA and 2

mM GMP-PNP was obtained as described previously (Toribio et al., 2016a). The WRF was obtained

as above and denatured in a buffer containing Tris-HCl 50 mM (pH 7.4), 5 mM EDTA, 10 mM DTT

and 5% w/v SDS. After 5 min boiling, samples were kept on ice and slowly renatured in Tris-HCl 50

mM (pH 7.4), 150 mM NaCl, 5 mM EDTA, and 1% Triton X-100. Then, the extract was split and incu-

bated with the indicated antibodies overnight at 4˚C. Next, a mixture of protein A/G conjugated to

magnetic beads (Thermo Fisher Scientific) was added and incubated for 1 hr at room temperature,

and immunoprecipitated complexes were analyzed by SDS-PAGE and autoradiography.

Mapping of 30 oligo 4–18S rRNA pairing
5 pmol of oligo 4 or VIC–oligo 4 were incubated with 30 pmol of 40S subunits purified from RRL and

incubated for 30 min at 30˚C in polysome buffer. Then, DNA–RNA hybrids were digested with 5 U of

RNAse H (NEB) for 15 min at 37˚C, extracted with phenol and ethanol precipitated. The 30 end of

the resulting RNA fragments was polyadenylated with poly(A) polymerase (NEB) and retrotran-

scribed with oligo(dT) primer. Finally, the resulting cDNA was amplified by PCR using oligo(dT) and

oligo 9 primers, and sequenced. Data confirmed that the final 6 nt at the 30 end of oligo 4 remained

unpaired, and that the first nt of 18S rRNA that paired with the oligo 4 was C835.

Western blot and immunofluorescence
Western blots were carried out as described previously (Ventoso et al., 2006) using the following

primary antibodies: anti-RPS4X (sc-85133, Santa Cruz Biotech.), anti-RPS7 (sc-377317, Santa Cruz

Biotech.), anti-RPS6 (sc-74576, Santa Cruz Biotech.), anti-eIF4A (STJ2724, St. John´s lab,), anti-eIF3g

(STJ23512, St. John´s lab), anti-EGFP (11814460001, Roche), anti-eEF1A1 (2551, Cell Signaling), anti-

AKT1 (9272, Cell Signaling), anti-ACTB (T-5168, Sigma), anti-eIF4b (sc-376062, Santa Cruz Biotech.),

anti-HRas (sc-53959, Santa Cruz Biotech.), anti-CCND3 (sc-453, Santa Cruz Biotech.), anti-ODC1 (sc-

398116, Santa Cruz Biotech.), anti-GRK2 (a gift from C. Murga, CBMSO). Blots were developed with

ECL (GE) and bands were quantified by densitometry. Immunofluorescence analysis was carried out

as described previously using anti-RPS7 (1:500) and anti-mouse Alexa 595 as secondary antibody

(Invitrogen). The preparations were analyzed under a Nikon A1R confocal microscope.

Protein and oligonucleotide modeling
Models of the human PIC (EMD-5658), 80S (EMD-5326) and rabbit 48S PIC (PDB: 4KZZ) were visual-

ized in Chimera (Pettersen et al., 2004). Models of eS4–EGFP were generated in Phyre2

(Kelley et al., 2015) and I-Tasser (Yang et al., 2015). Both programs rendered models covering

95% of protein length at high confidence (>90%), showing a root mean square deviation (RMSD) of

0.5–1 Å. The linker was predicted to adopt a random coil conformation, so the resulting models dif-

fered somewhat in the relative orientation of the two proteins. eS4–EGFP was modeled into the

human 40S subunit (EMD-5326) using the matchmaker command of Chimera with default parame-

ters. Models showing clashes between EGFP and ES6SC-D were discarded.

In vitro translation and luciferase measurement
Translations were carried out in 10–15 ml samples containing 70% vol of RRL (Promega) and 50 ng of

luciferase mRNA, and reactions were incubated at 30˚C for the indicated times. For continuous

recording of luc activity, 1 ml samples were taken every 2 min and kept on ice. Luc activity was mea-

sured on a Berthold luminometer.
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Dı́az-López et al. eLife 2019;8:e48246. DOI: https://doi.org/10.7554/eLife.48246 19 of 22

Research article Chromosomes and Gene Expression

http://orcid.org/0000-0002-2408-6561
https://orcid.org/0000-0001-7887-3520
https://doi.org/10.7554/eLife.48246.sa1
https://doi.org/10.7554/eLife.48246.sa2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129651
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129651
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129651
https://doi.org/10.1038/emboj.2010.302
http://www.ncbi.nlm.nih.gov/pubmed/21113134
https://doi.org/10.7554/eLife.48246


Al-Jubran K, Wen J, Abdullahi A, Roy Chaudhury S, Li M, Ramanathan P, Matina A, De S, Piechocki K, Rugjee
KN, Brogna S. 2013. Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in
the nucleus. RNA 19:1669–1683. DOI: https://doi.org/10.1261/rna.038356.113, PMID: 24129492

Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R. 2013. Structures of
the human and Drosophila 80S ribosome. Nature 497:80–85. DOI: https://doi.org/10.1038/nature12104,
PMID: 23636399

Bordeleau ME, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, Belsham GJ, Wagner G, Tanaka J, Pelletier J.
2006. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nature Chemical Biology
2:213–220. DOI: https://doi.org/10.1038/nchembio776, PMID: 16532013

Chu J, Pelletier J. 2015. Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochimica Et
Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1849:781–791. DOI: https://doi.org/10.1016/j.bbagrm.
2014.09.006
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