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Abstract

Current expectations on future climate derive from coordinated experiments, which compile

many climate models for sampling the entire uncertainty related to emission scenarios, initial

conditions, and modelling process. Quantifying this uncertainty is important for taking deci-

sions that are robust under a wide range of possible future conditions. Nevertheless, if

uncertainty is too large, it can prevent from planning specific and effective measures. For

this reason, reducing the spectrum of the possible scenarios to a small number of one or a

few models that actually represent the climate pathway influencing natural ecosystems

would substantially increase our planning capacity. Here we adopt a multidisciplinary

approach based on the comparison of observed and expected spatial patterns of response

to climate change in order to identify which specific models, among those included in the

CMIP5, catch the real climate variation driving the response of natural ecosystems. We

used dendrochronological analyses for determining the geographic pattern of recent growth

trends for three European species of trees. At the same time, we modelled the climatic

niche for the same species and forecasted the suitability variation expected across Europe

under each different GCM. Finally, we estimated how well each GCM explains the real

response of ecosystems, by comparing the expected variation with the observed growth

trends. Doing this, we identified four climatic models that are coherent with the observed

trends. These models are close to the highest range limit of the climatic variations expected

by the ensemble of the CMIP5 models, suggesting that current predictions of climate

change impacts on ecosystems could be underestimated.

Introduction

Global climate is changing and it is influencing many aspects of human societies and natural

ecosystems [1–3]. In order to plan effective adaptation strategies, global scenarios of climate

conditions at medium and long term are needed. As a response, a large number of climate

modelling centres around the world participated in the Coordinated Modelling
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Intercomparison Project Phase 5 (CMIP5), which represented the basis for the Fifth Assess-

ment Report of the Intergovernmental Panel on Climate Change (IPCC-5thAR)[4]. Models

used in the IPCC-5thAR are Global Climate Models (GCMs) based on four scenarios, denoted

Representative Concentration Pathways (RCPs). They are identified by the total radiative forc-

ing in year 2100 relative to 1750: 2.6 W/m2 for RCP2.6, 4.5 W/m2 for RCP4.5, 6.0 W/m2 for

RCP6.0, and 8.5 W/m2 for RCP8.5. These four RCPs include one mitigation scenario

(RCP2.6), two stabilization scenarios (RCP4.5 and RCP6.0), and one scenario with very high

greenhouse gas emissions (RCP8.5). The goal of working with scenarios is to better understand

uncertainties for taking decisions that are robust under a wide range of possible future condi-

tions [5].

These models provide a wide range of predictions, which are priceless for estimating the

potential alternatives on the ground [4], what human activities can produce, and what the

inhabitants of the earth must face. Nevertheless, the range of available scenarios is so large that

the uncertainty associated to comprehensive predictions may hamper the understanding of

what is actually happening and the deriving decisions are robust but often ineffective. This is

particularly true when decisions regard adaptation strategies for reducing the impacts of cli-

mate change on natural ecosystems. Therefore, it would be important to reduce such uncer-

tainty, identifying which specific scenarios describe and predict the real climatic trend. This

would allow to clarify with higher confidence the effect on nature and humankind and to plan

more effective strategies.

Several studies evaluated the predictive performances of climate models and their ability to

cope the current climatic trend. The IPCC-5thAR itself, in its 9th chapter [6], reviewed the

efforts to evaluate the performance of the CMIP5 models, both individually and collectively.

Basically, the most direct and simple strategy to evaluate a model is to compare its predictions

with measured values of the same quantities (e.g., global temperature, cumulative precipita-

tion, solar radiation), as generally done by climatologic literature [7–9]. Furthermore, other

property of CMIP5 climate models have been tested, such as the cross-scale properties of mod-

els [10], or uncertainty in responses to climate projections, such as carbon balance alterations

[11]. Nevertheless, to the best of our knowledge, no research was focused on quantifying how

well the available models explain the occurring variations in natural ecosystems and on identi-

fying which specific scenario does it better.

There is ample evidence that modern climate change has a strong influence on plant and

animal species world-wide [1,12,13]. The influence of changing climate on flora and fauna

regard several aspects of species biology (e.g. phenology, physiology, interspecific interactions)

[14–16]. In particular, effects on species geographic distributions were widely studied and doc-

umented [17–19]. This implies changes in marginal populations, which are exposed to less

suitable conditions than those in central sites and are expected to have lower density, fitness,

and genetic diversity [20–24]. In this perspective, the range shift of a given species in response

to climate change could be observed at a certain time by measuring population dynamics in

central and marginal sites.

This approach to range shift observation involves monitoring dynamic characteristics of

the populations, such as population density, reproductive success, condition of the individuals,

or other fitness-related traits whose variation can be interpreted as a response to climate

change [25]. Positive responses indicate an improvement of local suitability associated with

the range leading edge [26–28], neutral responses is a sign of no major variations in local suit-

ability of core sites, and negative responses highlight the reduction of suitability in trailing

edge sites [29,30]. On the basis of the spatial arrangement of these responses, it is possible to

detect any variation of species range compatible with climate change. On the other hand, it is

also possible to validate any prediction of climate change effects on species distribution by
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verifying whether the spatial pattern of observed responses is coherent with the expected varia-

tion in habitat suitability.

Our hypothesis is that, if an appropriate set of local data on population responses is avail-

able, it is possible to identify which specific range shift is actually occurring, indicating which

actual path of climate change the species is responding to. In other terms, we can validate the

different GCMs on the basis of the spatial arrangement of positive, neutral, and negative

responses in population dynamics (Fig 1), allowing to substantially reduce the uncertainty on

future predictions of global climate. In order to verify our hypothesis and to provide foresights

about future climatic trends, we adopted a multidisciplinary approach based on the compari-

son of observed and expected spatial patterns of response to climate change. More specifically,

we utilized dendrochronological data to define growth variations for European trees in a set of

sites and we compared this variations with those expected from an Ecological Niche Modelling

approach for the same species. Doing this, we identified which specific models, among those

included in the CMIP5, catch the real climate variation driving the response of natural ecosys-

tems. In addition, we quantified the extent of the potential improvement in habitat suitability

modelling when our criterion is adopted.

Fig 1. Schematic idea behind the experiment. Five hypothetical range shifts are shown with the relative expected effects on local populations.

Let’s suppose only one of the five hypothesized range shifts is actually occurring. In the case an appropriate set of local data on population

responses being available, it is possible to identify which specific range shift is actually occurring on the basis of the spatial pattern of positive,

neutral, and negative responses.

https://doi.org/10.1371/journal.pone.0189468.g001
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Methods

Experimental design

In order to identify which specific GCM explains the observed pattern of response by ecosys-

tems, we utilized the recent growth variation for three species of European trees. For each spe-

cies, we used dendrochronological data from several sites to define the observed spatial pattern

of growth variation and an approach based on ecological niche modelling to define the spatial

patterns of habitat suitability variation expected under each GCM. Then, we compared the

observed pattern of growth variation with the expected patterns of suitability variation in the

same sites, using a process based on null-models. The level of agreement between expected

and observed patterns was assessed and the GCMs with the highest agreement were identified.

These GCMs are those that better describe the specific changes which the trees are actually

responding to. Therefore, these GCMs are those indicating the most probable pathways the

ecosystems, and the humankind, are on.

Observed ecosystem changes

To define the observed pattern of response for each tree species, we adopted a dendrochrono-

logical approach. Site-specific series of average growth were created from measures of tree-

ring widths and the recent growth was compared with that of the previous century. This

allowed to define whether local populations are growing faster, slower, or as fast as in the past

and to obtain a pattern of observed growth variations for each tree species. The sequence of

favourable and unfavourable climate is faithfully recorded by the sequence of wide and narrow

annual rings in large numbers of tree species [31]. This pattern of wide and narrow rings can

be used as an indicator for monitoring environmental processes in most regions around the

world [32]. First, measures of tree-ring widths (Fig 2a) were analyzed for creating site-specific

series of average growth (Fig 2b). Second, for each site we compared the average growth of the

most recent decade with that of the previous century (Fig 2c) through a null-model approach

[33]. Third, we assigned positive observed trends to sites where the recent growth is signifi-

cantly faster than before, negative trends to sites where the recent growth is slower than before,

and neutral trends to sites where the recent growth is neither faster nor slower than before.

Doing this, we obtained a spatial pattern of observed growth trends for each tree species

(Fig 2d).

Tree ring data were obtained by The International Tree-Ring Data Bank (ITRDB) [34],

which is the world largest public archive of tree ring data, managed by the Paleoclimatology

Team at the National Centres for Environmental Information (NCEI) and the World Data

Centre for Paleoclimatology at the National Oceanic and Atmospheric Administration

(NOAA). The ITRDB contains tree ring data from samples collected in the field by using an

increment borer to extract a wood core of 5mm in diameter along the radius of the tree. Gen-

erally, two cores from 20 trees of the same species were collected in each site [34]. From each

core, series of tree-ring widths was measured with a variable resolution between 0.01 and 0.001

mm. All the series passed the standard dendrochronological methods of data cleaning and

cross-dating [35]. Species-specific data for each sampling site are provided as a raw data file,

containing all the measurements of the tree ring widths for each single series.

From the entire database, we selected data from European sites (west of 40.2˚ E) with series

ending after 2000. Then, we selected the species with data from at least 20 sites. We visually

inspected the geographic distribution of species sites and ranges and excluded two species

because they did not respond to the exigencies of the experimental design. First, we eliminated

Fagus sylvatica L. because the sites in the ITRDB were clustered in few areas of the species
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range. Second, we discarded Larix decidua Mill. because of the too small size of the distribu-

tion. As a consequence, we considered series of ring width from all the available sites for three

species (i.e. Norway spruce, Picea abies (L.) H.Karst.: 40 sites; Scots pine, Pinus sylvestris L.: 57

sites; Sessile oak, Quercus petraea (Mattuschka) Liebl.: 26 sites; see S1–S3 Tables). These species

are largely distributed in the study area and represent a significant part of the economic wood

exchange in Europe.

The downloaded raw series of ring width data for each site were detrended and the results

were averaged into one site-specific chronology. Detrending allows samples with large differ-

ences in growth rates to be combined, and can be used to remove age-related effects and

potential disturbance signals [31] on growth trends. The detrending process involves fitting a

curve to the ring-width series and dividing each ring-width value by the corresponding curve

value to generate a series of growth indices. To do this, we used a modified negative exponen-

tial curve [31] (or a linear model when the suitable nonlinear model could not be used) in the

Fig 2. Workflow of our approach to model evaluation. The green ellipse highlights the dendrochronological process that from tree ring data (a)

generates site-specific chronologies (b) and, through the comparison of recent and past growth (c), defines the pattern of observed responses (d).

The pink ellipse highlights the niche modelling process that from the species distribution (e) provides: first the current climatic suitability (f) and one

forecast of future suitability for each GCM (g); than, from the differences between future and current suitability (h), defines the GCM-specific

patterns of expected responses (i). The comparisons between the observed and the expected patterns of responses (j) provide an evaluation of

how well each GCM explains the current species response (k).

https://doi.org/10.1371/journal.pone.0189468.g002
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R-based [36] package ‘dplR’ [37]. The obtained index values are unitless, with a nearly stable

mean and variance, allowing indices from numerous trees to be averaged into a site chronol-

ogy. We combined the indices to produce a standardized site chronology using Tukey’s

Biweight Robust Mean [38].

Finally, for each species we defined the response to climate change (positive, negative, or

neutral) in the considered sites as follows. We compared the growth indices during the last

decade in the site chronology with those of the previous century. We adopted a null-model

based approach for this comparison, contrasting the average growth index of the last 10 years

with the averages of 30,000 random selections of 10 years from the previous 100 years. When

the recent growth was lower/higher than 5-th/95-th percentile of the randomized previous

growths, we rejected the null hypothesis (corresponding to a neutral response) that the recent

growth was drawn at random from the distribution of the randomized previous growths

[39,40] and assumed that a negative/positive response occurred. Using this criterion, we

assigned one response to each site, obtaining a spatial pattern of observed responses to climate

change.

Expected ecosystem responses to climate change

To define the spatial pattern of expected responses, we adopted an approach based on ecologi-

cal niche modelling. First, we defined the species-environment interactions [41] from the cur-

rent species distribution (Fig 2e), by fitting a set of models within an ensemble approach [42].

Second, we projected the defined interactions into climate surfaces for present conditions (Fig

2f) and for the different scenarios of future climate (i.e. GCMs) (Fig 2g). Third, we assigned

negative responses to sites where future climate suitability is lower than current, neutral

responses to sites where future climate suitability is similar to current, and positive responses

to sites where future climate suitability is higher than current (Fig 2h). Finally, by combining

all sites, we obtained the spatial pattern of expected response under every tested scenarios of

climate change (Fig 2i).

The current species distributions were derived from the EUFORGEN databank [43]. The

European Forest Genetic Resources Program (EUFORGEN) is a collaborative program among

European countries coordinated by Bioversity International in collaboration with the FAO,

aimed to fulfill the pan-European forest policy [44]. EUFORGEN provide distribution maps

for 34 species of European trees compiled by experts, based on existing bibliography and other

information sources. Distribution maps are supplied as polygons for the main range, plus

points for dispersed localities. We generated 5,000 random points across the study area (i.e.

Europe, west of 40.2˚ E) and assumed as presence sites those falling into the species range, or

close to the dispersed localities (< 2.5 arc-minutes), and as absence sites those falling outside.

These presence/absence data were used for fitting the habitat suitability models on current cli-

matic conditions.

We used climate surfaces from the WorldClim databank [45] for defining the species-spe-

cific climatic niche. The databank consists of climate data with global coverage for 19 climatic

variables interpolated using measures for the period 1950–2000. In particular, we used climate

surfaces with pixels of 2.5 arc-minutes of geographic degree, corresponding to a resolution of

approximately 5 km [46]. Climate variables were assigned to the presence/absence points and

selected for reducing multicollinearity by discarding those with Variance Inflation Factor

(VIF) > 8 [47]. After this selection eight variables were retained for modelling (see S4 Table).

Ecological modelling is associated to a certain degree of uncertainty coming also from the

model building procedure itself [48]. For incorporating the model-linked uncertainty into the

outputs, we adopted an ensemble modelling approach [42]. Therefore, we used different
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methods for calibrating models of climate suitability on species distribution data. In particular,

we fitted Generalized Linear Models (GLMs) [49], Generalized Additive Models (GAMs) [50],

Generalized Boosting Models (GBMs) [51], and Classification Tree Analyses (CTAs) [52] in

the R-based [36] package ‘biomod2’ [53]. Each independent model was projected into the cur-

rent climate across the study area and three-fold cross-validated by calculating the true skill

statistic (TSS) [54] and the area under the receiver operating characteristic curve (AUC) [55].

Finally, we calculated the TSS-weighted sum of the independent models for generating the spe-

cific consensus model of current habitat suitability.

In order to predict the variation of climate suitability under future respect to current condi-

tions, we projected the fitted models into the available Global Climate Models (GCMs). We

used GCMs elaborated by 19 research centres for the four RCPs for 2050 (average for 2041–

2060) and downscaled at the same spatial resolution as the current models (i.e. 2.5 arc-min)

using WorldClim as baseline climate [45]. Overall, we considered 59 different GCMs (see

Table 1 and S5 Table for a complete list) and we used the same model parameterizations as in

the current conditions for projecting climate suitability into the future and for creating the

final consensuses model. As a result, we obtained one single spatial prediction of future climate

suitability for each GCM.

Table 1. Agreement between observed responses by tree ring analyses and expected responses by habitat suitability models under different

GCMs for Pinus sylvestris.

Climatic Model RCP2.6 RCP4.5 RCP6.0 RCP8.5

aobs P{Asim > aobs} aobs P{Asim > aobs} aobs P{Asim > aobs} aobs P{Asim > aobs}

ac 20 0.600 21 0.166

bc 14 0.804 17 0.860 23 0.059 22 0.303

cc 19 0.614 20 0.603 25 0.101 20 0.369

ce 16 0.815

cn 21 0.365 26 0.073 27 0.056

gd 20 0.427 21 0.536

gf 21 0.355 21 0.545

gs 22 0.306 24 0.343 23 0.167 24 0.100

hd 22 0.660 19 0.549 24 0.196 23 0.120

he 21 0.362 21 0.362

hg 21 0.164 19 0.488

in 18 0.725 24 0.129

ip 21 0.535 19 0.668 21 0.201 25 0.111

mc 23 0.168 22 0.468 25 0.102 25 0.009

mg 21 0.479 23 0.169 21 0.366 20 0.716

mi 21 0.257 24 0.130 24 0.099 27 0.001

mp 17 0.892 18 0.317 17 0.779

mr 22 0.103 21 0.212 23 0.103 22 0.213

no 19 0.668 25 0.188 20 0.602 18 0.724

Each table row shows the measured agreement (aobs) and the result of the null-model test of agreement (P{Asim > aobs}) for one model and four RCPs. The

measured agreement (aobs) is the number of sites where the observed coincides with the expected responses. The result of the null-model test of

agreement (P{Asim > aobs}) is the probability of the null hypothesis that the measured agreement (aobs) was drawn at random from the distribution of the

simulated agreement (Asim). The four models with the highest level of agreement between expected and observed responses are highlighted in bold. Values

in italic indicate models with P{Asim > aobs} < 0.01. See S5 Table for model details.

https://doi.org/10.1371/journal.pone.0189468.t001
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The expected pattern of response (positive, negative, or neutral) under each GCM was

defined by generating a map of suitability variation as the difference between future and cur-

rent model predictions. From the map of variation, we identified the areas where climatic suit-

ability is expected to increase, reduce, or remain almost the same by selecting one positive and

one negative threshold of variation. Since the frequency distribution of suitability variation

had very high kurtosis and skewness, we selected two thresholds corresponding to the medians

of positive and negative values. Finally, the expected responses were assigned to the same sites

of the observed responses on the basis of their location. Doing this, we assigned negative

expected responses to sites falling in areas with decreasing suitability, neutral expected

responses to sites in areas with almost constant suitability, and positive expected responses to

sites in areas with increasing suitability. As a result, we obtained one spatial pattern of expected

responses for each of the considered GCMs.

Agreement between observed and expected trends

For each species, the spatial pattern of observed responses was compared with that expected

under each different GCM. To do this, we tested the level of agreement between observed and

expected responses in the same sites by adopting a null-model approach [33,40,56]. First, we

defined the measured agreement (aobs) as the number of sites where the observed and the

expected responses are spatially matching (i.e. both positive, both neutral, or both negative)

(Fig 2j). Second, we generated 30,000 random permutations of the expected responses and cal-

culated the simulated agreement with the observed responses for each permutation (Asim).

Third, we calculated the probability of the null hypothesis (P{Asim > aobs}) that the measured

agreement was drawn at random from the distribution of the simulated agreements (Gotelli,

2000) (Fig 2k). In other words, the null hypothesis is that the measured agreement is obtained

by chance from a random geographic pattern of expected responses. This probability is a mea-

sure of the level to which the responses expected on the basis of a given GCM explains the

actual responses observed in the sites. When the null hypothesis can be rejected (P{Asim > aobs}
< 0.05), the specific GCM used for modelling explains the real pattern of tree growth variation

occurring in Europe.

Potential improvement in habitat suitability modelling

Identifying which specific GCMs explain the real responses of ecosystems allows to estimate

the potential error committed using all the available GCMs in habitat suitability modelling by

including those that do not represent the real pressure on ecosystems. To do this, we compared

the consensus models of future suitability deriving from the entire set of predictions, based on

all the 59 GCMs, and from the restricted set of models that explain the observed ecosystem

responses. Consensus models were calculated as the average of the individual predictions. We

calculated the t-test between suitability values predicted by all the 59 models and by the

selected models in each and every raster cell. This means that we performed 434885 individual

t-tests, comparing all the pixels with mean suitability value > 30. In order to maintain this cal-

culation within reasonable time limit, we adopted a parallel computation approach using a

cluster of seven processors in the R-based package ‘parallel’ [36]. This allowed us to find pixels

where predictions of the entire set of models are significantly different from those of the

selected models.
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Results

Observed responses

The dendrochronological analyses identify sites with positive, neutral, and negative responses

for all the three species. The Norway spruce, Picea abies, has positive responses in 18 sites, neu-

tral responses in 18 sites, and negative responses in four of the 40 sites of this species (S1

Table). The Scots pine, Pinus sylvestris, has positive responses in 10 sites, neutral responses in

37 sites, and negative responses in 10 of the 57 sites of this species (S2 Table). The Sessile oak,

Quercus petrea, has positive responses in three sites, neutral responses in 18 sites, and negative

responses in five of the 26 sites of this species (S3 Table). Overall, the percentage of non-stable

sites (i.e. with positive or negative responses) is pretty high, being 55%, 35%, and 31% for the

three species, respectively. The non-stable sites have more often positive than negative

responses for Picea abies (χ2 = 8.91, p< 0.01) but positive responses are as frequent as negative

for Pinus sylvestris and Quercus petraea.

Expected responses

Ecological niche models under current climatic conditions obtain very high validation scores

for all the three species. Individual models for Picea abies have TSS and AUC values in the

range 0.77–0.86 (mean 0.82) and 0.94–0.98 (mean 0.96) respectively and the consensus model

for the same species have TSS = 0.88 and AUC = 0.98. Individual models for Pinus sylvestris
have TSS and AUC values in the range 0.77–0.83 (mean 0.80) and 0.93–0.96 (mean 0.95),

respectively and the consensus model for the same species have TSS = 0.85 and AUC = 0.97.

Individual models for Quercus petraea have TSS and AUC values in the range 0.77–0.83 (mean

0.81) and 0.93–0.96 (mean 0.95), respectively and the consensus model for the same species

have TSS = 0.85 and AUC = 0.98. These values guarantee good fittings and are solid bases for

robust predictions.

Future predictions of species climatic suitability vary largely with the different GCM con-

sidered. The number of sites with negative expected responses lays between 10 and 21 (mean

15.63) for Picea abies, between 15 and 37 (mean 23.10) for Pinus sylvestris, and between 0 and

9 (mean 1.41) for Quercus petraea. The number of sites with neutral expected responses lays

between 17 and 29 (mean 23.97) for Picea abies, between 15 and 29 (mean 22.09) for Pinus syl-
vestris, and between 14 and 23 (mean 21.59) for Quercus petraea. The number of sites with pos-

itive expected responses lays between 0 and 8 (mean 0.41) for Picea abies, between 1 and 20

(mean 11.81) for Pinus sylvestris, and is 3 for Quercus petraea. The mean percentage of non-

stable sites (i.e. with positive or negative expected responses) is 40%, 61%, and 17% for the

three species respectively. These values represent the GCM-specific expected responses that

are compared with the observed ones.

Trend agreement

For Norway spruce, Picea abies and Sessile oak, Quercus petraea the expected patterns of

responses for all the GCMs do not match the actual pattern of tree growth variation (P{Asim >

aobs}> 0.05 for all GCMs). On the contrary, predictions of habitat suitability variation from

four GCMs explain the observed pattern of responses for Scots pine, Pinus sylvestris (Table 1).

More specifically, for two GCMs the agreement between expected and observed patterns is

highly significant (P{Asim > aobs}< 0.01) and for other two GCMs the agreement is almost sig-

nificant (P{Asim > aobs}� 0.05). All the other GCMs do not provide any explanation to the

occurring pattern of responses in European populations of Pinus sylvestris.
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The four models explaining the spatial pattern of observed responses agree in predicting a

substantial split of suitable areas for Pinus sylvestris in Europe (Fig 3). In particular, Fennos-

candia and Alps are expected to remain climatically suitable even on the long run (i.e. 2050),

while a strong reduction of suitability is expected to occur in central Europe with variable

extent and intensity among the considered GCMs. This general pattern of geographic variation

in climate suitability is common to all the best performing four models. Overall, the level of

agreement increases with the strength and amplitude of the suitability reduction. Indeed, the

best explanation of the occurring pattern corresponds to the largest contraction predicted for

the main suitable areas and a small enlargement at the western range margin.

Model identification

The GCM predicting the pattern of variation with the highest agreement with the occurring

responses is MIROC-ESM-CHEM [57] ("mi" in Table 1) and the second best is MIROC5 [58]

("mc" in Table 1), both parameterized under the RCP8.5 (indicated in figures as "mi85" and

"mc85" respectively). Both MIROC-ESM-CHEM and MIROC5 are global climate models

developed by the University of Tokyo, the National Institute for Environmental Studies of

Japan, and the Japan Agency for Marine-Earth Science and Technology for the phase 5 of the

Coupled Model Intercomparison Project (CMIP5). The third and the fourth GCMs, which

obtained almost significant agreements, are CNRM-CM5 [59] ("cn" in Table 1) at RCP8.5

Fig 3. Models explaining the observed responses. Each column shows results for one of the four models with the highest level of agreement

between expected and observed responses. In the upper row, the current range of Pinus sylvestris (thin grey line) and its future climate suitability are

shown (grey-yellow-green scale; 0 <HS < 1000). In the lower row, the expected variation of climate suitability is shown (grey-yellow-green scale),

together with the observed responses of Pinus sylvestris populations: green points represent populations with positive responses, grey points

represent neutral responses, and red points represent negative responses. The small histograms within lower maps show the results of the null-model

tests of agreement between expected and observed responses: when the vertical red line is on the left of the black line, P{Asim > aobs} > 0.05, when the

red line is on the right of the black one, P{Asim > aobs} < 0.05. All the maps are Albers equal-area conic projections and coordinates are metric. See S5

Table for model details.

https://doi.org/10.1371/journal.pone.0189468.g003
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("cn85" in figures) and BCC-CSM1-1 [60] ("bc" in Table 1) at RCP6.0 ("bc60" in figures).

These GCMs are models developed for the CMIP5 by the National Centre for Meteorological

Research of France and the Beijing Climate Center, China Meteorological Administration,

respectively. These four GCMs are those explaining the geographic pattern of growth variation

in Pinus sylvestris populations across Europe with the best accuracy.

Among the best four GCMs, the level of agreement with the observed pattern grows with

the change intensity of climate scenario (Fig 4). Three of these models are based on the worst

assumption of greenhouse gas concentration trajectory (i.e. RCP8.5). The fourth GCM is

based on the RCP6.0 but, at the same time, it is the less significant among the best four (see

Table 1). On the other hand, the very best explanation of the occurring pattern derives from

the GCM predicting the highest temperature increase in the study area (i.e. mi85). Similarly,

the second model to obtain significant agreement with the observed pattern predicts very high

increases in air temperature and annual precipitation across Europe by 2050 (i.e. mc85). Our

results indicate that these GCMs catch the climate variation which Pinus sylvestris is respond-

ing to better than the other CMIP5 models.

Effects on habitat suitability modelling

The difference between the consensus model of the entire set of 59 models and the consensus

of the selected four models for P. sylvestris has a clear geographic pattern. This is particularly

high in a large area of north-eastern Europe (see green areas in Fig 5) and particularly low on

the Alps and in Scandinavia (see pink areas in Fig 5). As indicated by the pixel-based t-tests,

the difference is significant in a large area of central and eastern Europe as well as in several

smaller areas in Scandinavia, Alps, and Balkans (see darker areas in Fig 5). The future suitabil-

ity for P. sylvestris is significantly higher when predicted by the entire set of models in an area

of 1425251 km2 and it is higher when predicted by the four selected models in 202256 km2.

These areas indicate the extent of the error potentially done by predicting future suitability

including GCMs that do not represent the real pressure on ecosystems.

Discussion

In this study we adopted a multidisciplinary approach, using methods and expertise from cli-

matology, dendrochronology, and ecological niche modeling. We evaluated the performance

of 59 GCMs with regard to the observed response of 123 forest sites across central Europe

encompassing three species. Predictions from GCMs were translated into maps of expected

response (predicted change in suitability) using a niche modelling approach, while the

observed ecosystem responses were estimated using dendrochronological methods. Finally, we

identified the GCMs that significantly explained the observed spatial pattern of ecosystem

responses using a null model approach.

Our model-based expected responses suggest that the three species will have different shifts

in the years to come, as indicated by the variable number of sites with positive, neutral, and

negative expectations. However, the observed responses, derived from dendrochronological

data, support the predictions of four models for Pinus sylvestris only. These four models could

have several applications. For instance, they could be useful in adaptive forestry [61]. Indeed,

the cultivation of P. sylvestris in central Europe, where climate suitability is expected to

decrease, could become less efficient than in the past and questionable in the long run. Inter-

estingly, the four significant matches between observed and expected pattern only occurs for

Pinus sylvestris and, even more interestingly, all involves GCMs among those with the worst

prediction in terms of global warming. In other words, we found the fingerprint of a particu-

larly dangerous scenario of climate change in European forests.
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Fig 4. Variability of GCM predictions for 2050. Expected variation of annual mean temperature and cumulative annual precipitation in the study

area by the different GCMs. The four large full points indicate models (acronyms reported) with the highest levels of agreement between expected

and observed responses. Bold names highlight models with P{Asim > aobs} < 0.01. Small empty points represent all the other models and the symbol

colour indicate the Representative Concentration Pathways (RCP2.6: blue symbols, RCP4.5: azure symbols, RCP6.0: orange symbols, RCP8.5:

red symbols).

https://doi.org/10.1371/journal.pone.0189468.g004
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All the other predictions are not in agreement with the evidences from measured tree

growth. It means that these unsupported models did not catch the real processes occurring in

the considered European ecosystems. Several potential factors might prevent the identification

of tree responses to climate change. These factors can be linked to the nature itself of the

response, to the quality of the available data, to the uncertainty associated with the process of

dendrochronological analysis and ecological modelling, and to many other aspects. All these

factors can be simultaneous and interacting, amplifying the error and further reducing the

Fig 5. Potential improvement in future suitability predictions. Difference between habitat suitability under future climatic conditions as

predicted by the entire set of models and by the selected four. The colour scale is the difference between the consensus model of the entire

set of 59 models and the consensus of the selected four models. The darker area within the red line indicates where the difference is

significant.

https://doi.org/10.1371/journal.pone.0189468.g005
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sensitivity of our approach. In addition, these factors can act in one or more phases of our

approach to tree response detection blurring the observed pattern, undermining the predicted

response, or attenuating the agreement. In all these cases, the probability of identifying signifi-

cant explanations of the observed patterns of variation decreases.

Species distributions do not depend on climate only. Geographical range margins might

not correspond to the fundamental niche margins [62] and trees might react to non-climate

factors such as management history [63], invasive exotic species, or pests [64]. Under these cir-

cumstances, the observed growth variations may not represent tree response to climate change

and no agreement with predicted responses is expected. In other cases, trees might respond to

climate change varying other parameters than those considered. For example, tree height [65]

or recruitment rate [66] might be more affected than stem diameter; when this is true, using

dendrochronological data might be an ineffective choice. Furthermore, tree ring data might

come from unrepresentative specimens, site locations might be unsuitable to catch the global

range variation, or species distribution information might be incomplete or at low resolution.

Models of habitat suitability might be poor performers, too specific or too sensitive, or thresh-

olds for assigning positive, neutral, and negative responses might be misplaced. In all these

cases, the probability of type II errors increases and our approach fails.

As showed, our approach is prone to false negative, failing to reject the null hypothesis even

if it is false. In this light, the lack of significant results for Picea abies and Quercus petraea could

mean that one or more of the abovementioned issues prevented us to detect any pattern. It

means that the observed responses for Picea abies and Quercus petraea, which showed a gen-

eral positive pattern of growth and a stable pattern respectively, could be generated by non-cli-

mate linked factors (e.g. different forest management or pest outbreaks) or by their

interactions with climate change. It does not necessary imply that these two species are insensi-

tive to climate change, rather it simply shows that our approach failed to disentangle effects

from multiple, possibly interacting drivers.

On the other hand, the probability of false positive is very low for our approach, because the

level of agreement is due to the joint occurrence of multiple events (site-by-site match of

observed and expected trends). As a result, when everything works properly and no factor

interferes with the analyses, our spatial approach allows to identify very small differences in

geographic patterns of variations. In other words, our results show accurately what is happen-

ing in terms of geographic response to climate change by Scots pine and, therefore, which spe-

cific climate trajectory is driving such response. Overall, our approach can be interpreted as a

photographic film with very low-speed and high-resolution, which works properly only with

perfect lighting and setting but, under such conditions, provides extremely detailed images of

its subjects.

The capacity of evidencing with high precision the response of natural ecosystems and the

relative climatic pressures makes our spatial approach particularly suitable for the implementa-

tion of a monitoring/alarm system. This system should consist of a network of sites where

dynamic features of populations (e.g. individual growth, demographic trends, reproductive

success) are measured for multiple species. The network of sites could be coordinated at a

local, regional, or global scale and it would provide detailed background information for adap-

tation strategies. Indeed, effective strategies for reducing the impacts of climate change (e.g.

adaptive management of forests [61], dynamic prioritization of protected areas [67]) require as

precise as possible pictures of the stress to be faced. Interestingly, some efforts to set up net-

works of sites where monitoring and ecological research is carried out on the long run have

been made (e.g. the global ILTER network [68] with its regional and national affiliates, the

ICPForests monitoring network [69]): these networks could represent a perfect basis for pro-

ducing the necessary information through the explicit application of our spatial approach.
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This would only require the collection of some additional dynamic variables and a coordina-

tion that explicitly take this approach into account but valuable information for adaptation

strategies would be available in return.

Our results show that European ecosystems are facing a very harsh variation of climatic

conditions, which is compatible with the top end of all the available GCMs. Instrumental mea-

surements of global CO2 concentration already showed that current emission trends continue

to track scenarios that lead to the highest temperature increases [70]. Indeed, notwithstanding

the international community, in the UNFCCC Conference of Parties (COP21) in Paris, set the

target of holding the increase in the global average temperature above pre-industrial levels well

below 2˚C, with such a level of emissions the rise of global surface temperature for the end of

the 21st century is likely to exceed 2˚C [4]. In addition, recent analyses suggests that 2015 was

1˚C greater than pre-industrial temperatures [71] and that February 2016 exceeded 1.5˚C

above the base period [72]. Several scientists advise that ‘business as usual’ may produce a

3–5˚C increase in global temperatures this century [73,74] and that such level of change can be

catastrophic [75]. Global climate is following one specific and extreme trend of variation and

natural ecosystems are changing consequently.

In this light, estimating potential impacts of climate change on ecosystems on the basis of

the full spectrum of available GCMs, as usually done, can be misleading and unproductive.

Indeed, as we showed, future suitability can be over- or under-estimated over a large surface

by using the entire set of available GCMs. In addition, natural systems are responding to a cli-

matic variation that is close to the upper limit of the predicted variations. Therefore, consider-

ing all the possible scenarios as equally probable, albeit scientifically sound, can drive to

underestimate the real level of threat and can push to plan ineffective conservation programs.

Instead, as in a case of emergency management, the highest priority should be given to solve

the real, specific threat existing. All the other, potential options should be taken for developing

secondary plans to put in practice if conditions on the ground change. It means that ecosystem

responses should be monitored and the specific process occurring should be identified, allow-

ing to reduce the uncertainty on what is really happening and to improve the applicability of

the conservation measures. On our opinion, the time is come for a new generation of ecologi-

cal studies on climate change impacts, which focuses on a restricted range of future scenarios,

representing the real threat the ecosystems are facing in order to support practical and finally

effective measures.
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