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Diabetes mellitus is a chronic metabolic disease characterized by hyperglycemia, due to 

deficiency in insulin or insulin resistance, and represents a major cause of morbidity and 

mortality in contemporary societies [1,2]. According to the world health organization 

(WHO), more than 285 million people worldwide suffered from diabetes of which 4 million 

died in 2010. The prevalence is expected to enhance to 380 million by 2030. Genetic and 

environmental factors associated with life style such as unhealthy diet, physical inactivity, 

harmful use of alcohol and tobacco, and obesity contribute to the increasing incidence of 

diabetes. The situation becomes extremely critical since type 1 and type 2 diabetes 

compromise the cardiovascular homeostasis. Based on the report of WHO and clinical 

studies, the direct cause of death for 80 % of diabetic patients is cardiovascular diseases.

Studies in human and experimental diabetic animal models have reported vascular 

dysfunction and structural arterial wall remodeling [3–5]. It is well known that endothelial 

dysfunction is an important risk factor of cardiovascular diseases [6,7]. Several hypothesis 

and mechanisms documented the relationship between diabetes and microvascular 

endothelial dysfunction [8,9], which include reduced endothelium-derived relaxing factor 

(EDRF) release and bioavailability, and enhanced endothelium-derived constricting factors 

release associated with augmented oxidative stress levels. Despite treatments have 

progressed, the development of novel effective treatments for patients with vascular 

complications in diabetes remains a major research goal.

The presence of insulin receptors on endothelial cells is well documented [10] but the role of 

insulin resistance at the level of the endothelial cell in vascular physiopathology is unclear. 

A number of studies in humans and genetically modified mice have demonstrated a close 

association between insulin resistance and nitric oxide (NO) bioactivity. Thus, Steinberg et 

al. [11] and Wheatcroft et al. [12] reported a direct link between insulin-induced 

vasodilatation and nitric oxide synthase (eNOS) activity. Additionally, Kuboki et al. [13] 

demonstrated that insulin regulates eNOS transcription in endothelial cells. Another study 

by Dr. Quon et al. [14] elucidated that insulin activates eNOS by insulin receptor tyrosine 
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kinase (IRS-1) and phosphatidylinositol 3-kinase (PI3K)-dependent mechanisms. These 

studies support the concept that insulin resistance impairs vascular endothelium-dependent 

relaxation by PI3K-NO defect-dependent mechanisms. Additionally, It has been shown that 

insulin increases extracellular signal signal-regulated kinases 1/2 (ERK1/2) and endothelin 

converting enzyme activity leading to endothelin-1 release increase [15]. Insulin resistance 

and reduced insulin levels decreased PI3K-NO-dependent signaling, which trigger 

imbalance between NO and endothelin-1 responsible for impaired vascular endothelium-

dependent relaxation [15]. Moreover, the mechanism by which insulin signaling becomes 

impaired in endothelial cells remains unclear. However, emerging evidence indicates that 

endoplasmic reticulum stress is an important factor in diabetes-induced pathology [16,17]. 

Therefore, endoplasmic reticulum stress could be a new potential intermediate signaling that 

explains the link between insulin resistance and vascular endothelial dysfunction. Various 

cellular stresses (ischemia, hypoxia, gene mutation, oxidative stress, and increased protein 

synthesis) lead to impairment of endoplasmic reticulum function, and create a state termed 

as endoplasmic reticulum stress that leads to the activation of a complex signaling network 

called the unfolded protein response (UPR) [18–21]. The UPR is regulated in the cell by 

three endoplasmic reticulum membrane-associated proteins that act as sensors of 

endoplasmic reticulum homeostasis. The three membrane bound proteins are protein kinase-

like endoplasmic reticulum eukaryotic initiation factor 2α kinase (PERK), inositol requiring 

endoplasmic reticulum to nucleus signaling protein-1α (IRE1α) and activating transcription 

factor-6 (ATF6).

Metabolic and cardiovascular diseases such obesity, stroke, myocardial ischemia and 

diabetes are associated with endoplasmic reticulum stress [22–24]. Additionally, 

endoplasmic reticulum stress is considered as a key element in pancreatic beta cell 

dysfunction and peripheral insulin resistance in diabetes [25,26]. This topic is not discussed 

here, but a number of excellent reviews in this area have been published [27–29]. In this 

review, we will focus on endoplasmic reticulum stress as a new mechanism that plays an 

important role in vascular dysfunction in diabetes. Thus, Ozcan et al. [16,22] demonstrated 

the first link between insulin resistance and reticulum endoplasmic stress suggesting that ER 

stress disrupts the mechanism of insulin signaling in liver, adipose tissue and pancreas. 

Moreover, Ozcan’s group also showed that endoplasmic reticulum stress increases c-Jun N-

terminal kinase (JNK) and catalytic IkappaB kinase subunits activity, and induces 

inflammation associated with IRS-1 signaling impairment [16,22] suggesting that 

endoplasmic reticulum stress is an important factor that probably links obesity, insulin 

resistance and diabetes to vascular endothelial dysfunction. These observations are 

supported by: 1) our recent publication indicating that treated type 2 diabetic mice with 

endoplasmic reticulum stress inhibitor reduced body weight and blood glucose and insulin 

levels [30], and 2) the occurrence of endoplasmic reticulum stress in endothelial cells in 

metabolic diseases [31–33], emphasizing that endoplasmic reticulum stress is a potential 

mechanism that contributes to the reduced nitric oxide release and bioavailability, which 

leads to vascular endothelial dysfunction. Importantly, it is more likely that endoplasmic 

reticulum stress impairs vascular function by inflammation and oxidative stress-dependent 

mechanisms. Thus, it has been shown that endoplasmic reticulum stress could facilitate 

eNOS uncoupling, which leads to increase in oxidative stress [34,35] and tumor necrosis 
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factor-α (TNF-α) production. Furthermore, enhanced TNF-α level in endothelial cells [36] 

has also been reported to induce endoplasmic reticulum stress that inhibits IRS-1 signaling 

by JNK and nuclear factor kappa B-dependent mechanisms [37–39]. It is also important to 

mention that eNOS uncoupling, which leads to oxidative stress generation can also induce 

endoplasmic reticulum stress in endothelial cells [40]. Together, these studies suggest the 

existence of potential circle between eNOS uncoupling, oxidative stress, endoplasmic 

reticulum stress and inflammation responsible for vascular endothelial dysfunction. It is 

important for future studies to determine the intermediate signaling linking endoplasmic 

reticulum stress to eNOS uncoupling, oxidative stress, inflammation and vascular 

endothelial dysfunction.

Recently, we reported that epidermal growth factor receptor tyrosine kinase (EGFRtk) plays 

an important role in vascular endothelial dysfunction in type 2 diabetes. Thus, we 

demonstrated that increased EGFRtk phosphorylation contributes to resistance artery 

dysfunction in type 2 diabetes [41]. Additionally, previous studies showed that the inhibition 

of EGFRtk activity promotes vasodilatation and reduces elevated arterial blood pressure in 

spontaneous hypertensive rat (SHR) and in insulin resistance and hypertensive animal 

models [42–44]. We recently have demonstrated an increase in EGFRtk activity in type 1 

diabetes that is responsible for vascular endothelial dysfunction (unpublished data). 

Importantly, the inhibition of EGFRtk not only improved vascular endothelial function in 

type 1 diabetic mice, but also reduced endoplasmic reticulum stress suggesting a relationship 

between endoplasmic reticulum stress and EGFRtk. Interestingly, the inhibition of 

endoplasmic reticulum stress also improves vascular endothelial function in type 1 diabetic 

mice (unpublished data). These results suggest that endoplasmic reticulum stress is down 

stream signaling to EGFRtk and is an important factor responsible for vascular endothelial 

dysfunction in type 1 diabetes.

All together, these studies provide evidence that endoplasmic reticulum stress is an 

important factor in vascular endothelial dysfunction and its inhibition should be considered 

as a therapeutic strategy to overcome diabetes-induced vascular pathology.
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