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f Fundación Pública Galega de Medicina Xenómica, Hospital Cĺınico Universitario de Santiago, E-15706 Santiago de Compostela, Spain
a r t i c l e i n f o

Article history:

Received 30 April 2009

Received in revised form

18 July 2009

Accepted 20 July 2009
Available online 29 July 2009

Keywords:

Graph theory

Complex networks

Proteomics

Mass spectrometry

Leishmaniosis

2D-electrophoresis

Parasite population polymorphism

Single nucleotide polymorphism

Schizophrenia

Microarray

Cancer

Patents and copyright studies
93/$ - see front matter & 2009 Elsevier Ltd. A

016/j.jtbi.2009.07.029

esponding author. Fax: +34 981594912.

ail addresses: gonzalezdiazh@yahoo.es, humb

z�alez-Dı́az).
a b s t r a c t

Several graph representations have been introduced for different data in theoretical biology. For

instance, complex networks based on Graph theory are used to represent the structure and/or dynamics

of different large biological systems such as protein–protein interaction networks. In addition, Randic,

Liao, Nandy, Basak, and many others developed some special types of graph-based representations. This

special type of graph includes geometrical constrains to node positioning in space and adopts final

geometrical shapes that resemble lattice-like patterns. Lattice networks have been used to visually

depict DNA and protein sequences but they are very flexible. However, despite the proved efficacy of

new lattice-like graph/networks to represent diverse systems, most works focus on only one specific

type of biological data. This work proposes a generalized type of lattice and illustrates how to use it in

order to represent and compare biological data from different sources. We exemplify the following

cases: protein sequence; mass spectra (MS) of protein peptide mass fingerprints (PMF); molecular

dynamic trajectory (MDTs) from structural studies; mRNA microarray data; single nucleotide

polymorphisms (SNPs); 1D or 2D-Electrophoresis study of protein polymorphisms and protein-research

patent and/or copyright information. We used data available from public sources for some examples but

for other, we used experimental results reported herein for the first time. This work may break new

ground for the application of Graph theory in theoretical biology and other areas of biomedical sciences.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Several graph representations have been introduced for
different data in theoretical biology. For instance, complex
networks based on Graph theory are used to represent the
structure and/or dynamics of different large biological systems
such as protein–protein interaction networks. Complex networks
are made up of nodes and edges/arcs (node–node connections or
links). Drugs, genes, RNAs, proteins, organisms, brain cortex
regions, diseases, patients or environmental systems may play
the role of nodes. In general, the edges represent similarity/
dissimilarity relationships between the nodes. In complex net-
works, both nodes and edges are placed generally in space
without any geometrical constrains; nodes do not need spatial
ll rights reserved.

erto.gonzalez@usc.es
coordinates and edges have not a specific length or shape
(Barabasi and Oltvai, 2004; Boccaletti et al., 2006; Estrada,
2006). In addition, Randic, Nandy, Basak, Liao, and many others
developed some special types of graph-based representations.
This special type of graph includes geometrical constrains to node
positioning in space and sometimes adopts final geometrical
shapes that resemble lattice-like patterns (Chen et al., 2009;
Huang et al., 2009; Liao, 2005; Liao and Wang, 2004; Liao and
Ding, 2005; Liao et al., 2005; Liao et al., 2006; Liao et al., 2009;
Novic and Randic, 2008; Randic, 2006; Randic and Balaban, 2003;
Randic et al., 2007; Randic et al., 2008; Randic et al., 2009; Randič,
2002 ; Randic0 et al., 2005; Zhang et al., 2009).

Using graphical approaches to study biological problems can
provide an intuitive picture or useful insights in order to support
the analysis of complicated relations within these systems, as
demonstrated by many previous studies on a series of important
biological topics, such as enzyme-catalyzed reactions (Andraos,
2008; Cornish-Bowden, 1979; Chou, 1980; Chou, 1981; Chou, 1989;
Chou and Forsen, 1980; Chou and Liu, 1981; Chou et al., 1979;
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King and Altman, 1956; Kuzmic et al., 1992; Myers and Palmer,
1985; Zhou and Deng, 1984), protein folding kinetics and folding
rates (Chou, 1990; Chou and Shen, 2009; Shen et al., 2009),
inhibition kinetics of processive nucleic acid polymerases and
nucleases (Althaus et al., 1993a; Althaus et al., 1993b; Althaus et al.,
1993c; Althaus et al., 1996; Althaus et al., 1994a; Althaus et al.,
1994b; Chou et al., 1994), analysis of codon usage (Chou and Zhang,
1992; Zhang and Chou, 1993; Zhang and Chou, 1994), base
frequencies in the anti-sense strands (Chou et al., 1996), analysis
of DNA sequence (Qi et al., 2007). Moreover, graphical methods
have been introduced for a QSAR study (Gonz�alez-Dı́az et al., 2006;
Gonz�alez-Dı́az et al., 2007b; Prado-Prado et al., 2008) and they
have also been used to deal with complicated network systems
(Diao et al., 2007; Gonzalez-Diaz et al., 2008b; Gonz�alez-Dı́az et al.,
2007a). Recently, the ‘‘cellular automaton image’’ (Wolfram, 1984;
Wolfram, 2002) has also been applied to study hepatitis B viral
infections (Xiao et al., 2006a), HBV virus gene missense mutation
(Xiao et al., 2005b), and visual analysis of SARS-CoV (Gao et al.,
2006; Wang et al., 2005), as well as in representing complicated
biological sequences (Xiao et al., 2005a) and helping to identify
various protein attributes (Xiao and Chou, 2007; Xiao et al., 2009;
Xiao et al., 2006b). In this study, we attempted to propose a
different 2D graphical representation for some relevant areas.

In recent reviews, we have discussed the applications of these
ones and other graphs in Proteomics and other Biomedical
Sciences (Gonzalez-Diaz, 2008; Gonzalez-Diaz et al., 2008a;
Gonz�alez-Dı́az et al., 2008). However, despite the proved efficacy
of new lattice-like graph/networks to represent diverse systems,
most works focus on only one specific type of biological data.
This work proposes a generalized type of lattice and illustrates
how to use it in order to represent and compare biological data
from different sources. Specifically, we extend the method from
protein sequence to mass spectra (MS) of peptide mass finger-
prints (PMF), molecular dynamic (MD) results from protein
structural studies, mRNA microarray data, single nucleotide
polymorphisms (SNPs), 1D or 2D-Electrophoresis (2DE) study of
protein polymorphisms and protein-research patent and/or copy-
right information.
2. Methods

2.1. Generalized lattice graphs

Let there be a set of n elements or signals of a biological
system, each one identified by a label sj, and arranged in the form
of a sequence of objects or numeric series. For instance, the one-
letter code for all bases in a DNA sequence, amino acids in a
protein sequence, gene in a chromosome, signals in a mass
spectrum, values from the microarray data results, etc. First, we
arrange all these elements nj as a vector s ¼ [s1, s2, s3, sj,y,sn].
Next, we assign to each element aj one or more up to m properties
or weights (kwj) arranged also as vectors: 1w ¼ [1w1,

1w2, 1w3,y,
1wj,y, 1wn]; 2w ¼ [2w1,

2w2, 2w3,y, 2wj,y, 2wn]; y
kw ¼ [kw1,

kw2, kw3,y,kwj,y,kwn];y and mw ¼ [mw1,
mw2, mw3,y,mw-

j,y,mwn]. For instance; given an MS we can consider as elements
aj the n signals in the MS and we can assign at least two weights to
each signal aj: 1) the mass/charge ratio (m/z)j of sj and 2) the
intensity Ij of sj. Consequently, we have two weight vectors:
1w ¼ [(m/z)1, (m/z)2, (m/z)3,y, (m/z)j,y, (m/z)n] and 2w ¼ [I1, I2,
I3,y,Ij,y, In]. In addition, we can regroup all the elements or
signals of the biological system (sj) into one or more classes (q) if
they obey certain sets of conditions Cq. These are usually simple or
even composed logical conditions and we assign one letter symbol
to all the elements of the same class. For instance, we can label as
A, T, G, or C each nucleotide in a sequence if it belongs to the class
of Adenine, Thymine, Guanine, or Cytosine. Another example is
that we can label as H or L each signal sj in an MS if the respective
intensity value Ij is Higher (H) or Lower than the average of all
intensities in the MS. Given all these starting facts, we deal here
with the following question. How could we graphically visualize,
in a simple way, all the information related to systems (sequences
or numeric series), elements or signals, weights or properties, sets
of conditions and classes if we have one or, even more
complicated, up to ith systems or sequences altogether? Our
method assigns each element/signal of one sequence as a point
with the Cartesian coordinates r2 ¼ (x, y) in a 2D Euclidean space.
To this end, we star with the first node (it is not necessarily a data
point) at the centre of the system placed at r2 ¼ (0, 0) coordinate.
The coordinates of the successive data points are calculated as
follows in a similar manner to those for DNA spaces (Randic,
2004) but extended to multiple weight and condition sets for
these weights or properties kwj of the elements or signals sj.
(a)
 Increases in +1 the y axe if kwj obey the set of conditions C1

(upwards-step) or:

(b)
 Increases in +1 the x axe if kwj obey the set of conditions C2

but not C1 (leftwards-step) or:

(c)
 Decreases in �1 the y axe if kwj obey the set of conditions C3

but not C1 nor C2 (rightwards-step) or:

(d)
 Decreases in �1 the x axe otherwise (downwards-step).
Once we have placed the first sequence or system using the
following rules we can superpose over it the remnant q sequences.
It allows us the display of large databases in a simple 2D picture.
We can use colour-scales highlighting systems or sequences with
a given property. For instance, use different colours for enzymes of
different classes or for MS signals of the blood samples of healthy
vs. cancer patients. This type of visual graphs may be interpreted
as 2D overlapping or alignment maps. As follows, we give here
below some examples to illustrate the high versatility of this
approach.
3. Results and discussion

3.1. Classic lattices for protein and peptide sequences

Several authors have used pseudo-folding lattice hydrophobi-
city-polarity (HP) models to simulate polymer folding by
optimizing the lattice structure and resembling the real folding
(Berger and Leighton, 1998). However, we can choose notably
simpler polymer chain pseudo-folding rules to avoid optimization
procedures and speed up notably the construction of the lattice. In
this sense, useful graph representations of DNA, RNA and/or
protein sequences have been introduced by Gates (1986), Nandy
(1996a), Leong and Morgenthaler (1995), Randic et al. (2001)
based on 2D coordinate systems. We call these graph representa-
tions as polymer sequence pseudo-folding lattice networks
because they look like lattice structures and in fact, we force a
sequence to fold in a way that does not necessarily occur in
nature. In this regard, a novel 2D lattice representation for protein
sequence similar to the one proposed by Nandy for DNA
sequences was introduced by our group in the study of protein
sequences (Nandy, 1996b; Nandy, 2003; Roy et al., 1998). In this
2D graph, each of the four amino acid groups is assigned to each
axis direction according to the physicochemical nature of the
amino acids (non-polar and non-charged, polar but non-charged,
positively charged, or negatively charged) (Aguero-Chapin
et al., 2006). These four classes characterize the physicochemical
nature of the amino acids as: polar, non-polar, acid, or basic.
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Fig. 1. Sequence vs. MDT and MS lattice graphs for peptides found on PMF of

proteins.

H. Gonz �alez-Dı́az et al. / Journal of Theoretical Biology 261 (2009) 136–147138
Classification as positively or negatively charged prevails over
polar/non-polar classification in such a way that the four classes
do not overlap each other. In mathematical terms, it means that in
this example, we used the vector s ¼ [s0, s1, s2,y, sj,y,sn] to list
the labels for the n amino acids sj, which are the elements of the
system (protein sequence). Here we also used two vectors of
weights to characterize numerically the sj. The first 1w ¼ [q0, q1,
q2,y, qj,y,qn] lists the electrostatic charge of each one of the n

amino acids in the sequence of the protein or peptide. The second
vector 2w ¼ [m1, m2, m3,y, mi,y, mn] lists the dipolar moments of
each amino acid. We also used herein the sets of conditions C1, C2,
and C3 that consist of two logic order operations. First, we place
the node of the initial amino acid s0 at the coordinates (0, 0) in a
Cartesian 2D space. The coordinates of the successive amino acids
are calculated as follows in a similar manner to that for DNA
spaces:

C1: Increases in +1 the y axe if qj 4 0 (upwards-step) or:
C2: Increases in +1 the x axe if qj ¼ 0 and mja0 (rightwards-step)
or:
C3: Decreases in �1 the y axe if qjo0 (downwards-step) or:
C4: Decreases in �1 the x axe otherwise (leftwards-step).

The reader must note that the new representation is very
similar to the ones previously reported for DNA but it contains a
protein sequence of 20 amino acid types instead a DNA sequence
of 4 base types. The key of the method we propose to overcome
the above-mentioned 10D-space bottleneck is the previous
grouping of the 20 natural amino acids into only four groups. As
an illustrative example, we have under study a protein that
belongs to the family of dyneins. This protein has the accession
number LmjF25.0980 in the public database GenDB related to the
Sanger institute (http://www.genedb.org/genedb/) and it is ex-
pressed by the parasite Leishmania major. Leishmania spp. is
required intracellular protozoa that exist in two forms, a
promastigote form (elongated cells with a long flagellum) and
an amastigote one (ovoid cells that have a very short flagellum).
The flagellum is responsible for the motility of trypanosomatids
and for their early interaction with the hosts, either by adhering to
the insect digestive tract, or by initiating the contact with
mammalian cells. Trypanosomatids depend on this adhesion to
survive and differentiate. This surface organelle plays a key role in
Leishmania motility and sensory reception, and it is essential for
parasite migration, invasion and persistence in host tissues. In this
regard, some authors have applied lattice representations to study
dyneins (Dea-Ayuela et al., 2008). Due to both the high interest of
dyneins for the mechanism involved in protein–protein interac-
tion or binding process, some authors have proposed experi-
mental studies of peptide sets found in these proteins (Lajoix
et al., 2004). Fig. 1(A) illustrates the isolated and overlapped
lattice graphs only for the first two peptides found in this protein
presented in Table 1. In this table we give the sequence of these
peptides and other relevant information (see also next section).
We used the first peptide (P01) with the sequences ‘‘vlmntlrdir’’ as
example, where the vectors are s ¼ [v0, l1, m2, n3, t4, l5, r6, d7, i8, r9],
1w ¼ [00, 01, 02, 03, 04, 05, 16, �17, 08, 19] and 2w ¼ [00, 01, 02, 13, 04,
05, 16, 17, 08, 19]. The vector 1w is based on amino acid net charges
and the vector 2w is based on the discrete dipole moments (see
Table S1 from the Supplementary material for more details).
3.2. Lattices for MD outcomes

The 3D structure of the L. major dynein protein sequence
represented in the previous example is unknown; which is the
case for many other proteins nowadays. In this sense, and taking
into consideration the issues discussed in the previous section, the
study of the 3D structure of its component peptides is of major
interest. Since the advent of MD in bioscience with the study
carried out by McCammon et al. on the dynamics of the bovine
pancreatic trypsin inhibitor, MD has become the by the foremost a
well-established computational technique to investigate the 3D
structure and function of peptides and proteins (Karplus and
McCammon, 2002; McCammon et al., 1977). Consequently, MD
studies of peptides of the template protein used in the previous
example are also interesting. In general, the analysis of the MD-
Trajectories (MDTs) resulting from the integration of the motion
equations in MD remains, however, the greatest challenge and
requires a great deal of insight, experience, and effort. In a recent
and very important work, Hamacher (2007) has proposed a new,
theoretical sound, and versatile analysis procedure that provides
scientists with a semi-quantitative tool to compare various
scenarios of their respective simulations. In this regard, we
extended the lattice representations of proteins to allow easy
comparison of MDTs. In Fig. 2 we illustrate an example that
consists of the superposition or 2D-alignment of 18 lattices
derived from 100-steps MDTs results. Each MDT was obtained
after a Monte Carlo study of 18 peptides found on the PMF of a
very important parasite protein. In Table 1 we summarize some
details on the MD study used here as example. The key of the
method we propose is the regrouping into four classes the energy
values Ej obtained from different steps (s) of one MD trajectory

http://www.genedb.org/genedb/
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Table 1
Some information for peptides used to construct sequence, MDT, or PMF-MS lattices.

Peptide Sequence AAs E0 E1 E100 ACCR (m/z)j

P01 vlmntlrdir 10 635.4 �175.49 �22.38 0.48 1246.67

P02 dqelhfsefk 10 264.1 �15.71 107.65 0.46 1279.71

P03 hgimvvgpamcgk 13 17719.8 67.89 211.26 0.47 1356.70

P04 hwqeimkvsgr 11 10779.3 �34.40 133.33 0.47 1370.71

P05 qvmeylchfr 10 456.1 �75.29 75.14 0.47 1382.71

P06 mdsanglidalsger 15 714.9 �84.51 65.21 0.48 1564.81

P07 mnpkaitapqmfgr 14 15383.8 �42.80 137.60 0.47 1593.84

P08 mmytiaryyptr 12 16704.0 �116.06 62.84 0.47 1597.85

P09 lratmnadgqmlpr 14 14499.2 �145.61 26.08 0.48 1605.85

P10 ldfsslfiptadsvr 15 1325865.3 �80.48 98.25 0.47 1667.86

P11 lvrhgimvvgpamcgk 16 18520.6 18.45 197.03 0.48 1740.96

P12 eavahdaaivahgeaeakk 19 1343.8 13.43 222.83 0.47 1917.03

P13 qvvemsqvydlskpgvr 17 15611.8 �124.14 84.37 0.47 1935.04

P14 qvvemsqvydlskpgvrr 18 15565.5 �184.71 56.38 0.48 2091.14

P15 ylqsldtyfdvlyssnlqr 19 1532.4 �184.84 73.61 0.47 2325.15

P16 aqskpwetitdavtllrvwk 20 43367.0 �104.21 167.46 0.47 2342.16

P17 ldfsslfiptadsvrlhylak 21 1.4�10�7
�62.93 193.21 0.47 2393.28

P18 iwvtsephnsvpigllqmsikltneppqgik 31 1.5�10�7
�66.01 298.05 0.47 3442.90
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obtained in peptide structure study with the Monte Carlo method.
These four classes characterize the deviation of the energy value Ej

from the average energy of the same MDT at different steps (MD-
average); or the deviation from average energy values in the same
step for other MDTs (step-average).

First, we place the values of energy for a MDT in a Cartesian 2D
space starting with s0 at the coordinates (0, 0). In this example, we
used the vector s ¼ [s0, s1, s2,y, sj,y,s100] to list the labels for
optimization steps sj in the MDT, which are the signals or
elements of the system. Herein, we also used three vectors of
weights to numerically characterize sj. The first 1w ¼ [E0, E1, E2,y,
Ej,y, E100]n ¼ 101 lists the energy values for each sj in the MDT
numeric sequence (of one peptide). The second vector 2w ¼ [avgE1,
avgE2, avgE3,y,avgEi,y, avgE9] lists the average of Ej for each one of
the ith MDT for the ith peptides. The third vector 3w ¼ [avgE0, avgE1,
avgE2,y, avgEj, y,avgE100] lists the average of Ej for each one of the
jth steps of all MDT for all peptides. We also used the sets of
conditions C1, C2, and C3 that consist of two logical order
operations. These operations perform the comparison (‘‘4’’ or
‘‘o’’) with respect to the average values MDT-average and step-
average:

C1: Increases in +1 the y axe; if Ej4
avgEj and Ej4

avgEi (upwards-
step) or:
C2: Increases in +1 the x axe; if Ej4

avgEj and EjoavgEi (rightwards-
step) or:
C3: Decreases in �1 the y axe; if EjoavgEj and EjoavgEi

(downwards-step) or:
C4: Decreases in �1 the x axe; otherwise (leftwards-step).

In Fig. 1(B), we depict the 2D alignment for MD results
obtained after the optimization of the structure of 18 peptides and
successive Monte Carlo search of different conformations. Re-
markably, the MDT lattice obtained for peptide P03 notably
deviates from the other peptides while the graph for P15 lies in
the middle of the rest of peptides. It may indicate that this type of
lattice is useful to differentiate visually peptides with high initial
energy after MD geometry optimization (E1) and not optimal MDT
from the rest of peptides (see Table 1). The reader may note the
differences between sequence and MD lattice graphs; which
indicates that both types of graphs may be used as complemen-
tary information visualization techniques.
3.3. Lattices for MS of peptide mass fingerprints

The study of peptides found on the PMFs of new proteins
may become an interesting source to discover new peptides
with potential use as drug, in vaccine design, or as disease
biomarkers. In particular, toxicity and inefficacy of actual organic
drugs against Leishmaniosis justify research projects to find
new drugs or drug molecular targets in Leishmania species
including L. infantum and L. major, both important pathogens
(Chenik et al., 2006; Dea-Ayuela et al., 2008; Roldos et al., 2008;
Sarciron et al., 2005). In the two previous examples, we used
lattices to study the sequences and MD results of peptides found
in a dynein of L. major. In this example, we propose to construct
PMF lattices, in analogy to sequences and MDTs lattices. To this
end, we use a real experiment as example. We isolate all the
peptides found on the PMF of a protein expressed on the parasite
L. infantum with 2DE and characterize them with MALDI-TOF MS.
After a MASCOT search of similar PMF-MS, we found that this new
protein is similar to the protein of L. major studied in the previous
examples. In Fig. 2(A), we illustrate the 2DE map experimentally
obtained and highlight the position of the spot for the new
protein. In Table 1 we give details on the (m/z)j values for the
peptides found on the PMF of the new protein. We report
the experimental study of this protein for the first time but the
method used is essentially the same we had used before for
other dynein protein. That is why we omit the experimental
details in this work and refer to the previous work (Dea-Ayuela
et al., 2008).

Next, we report the generation of the 2D lattice graphs for large
MS data generated in PMF experiments. The idea of using the
graph to study MS is a promising field of research. Bartels
proposed for the first time the application of Graph theory to MS
for peptide sequencing (Bartels, 1990). The fundamental idea
consists in transforming an MS into a graph called the spectrum

graph, each peak in the experimental spectrum being represented
as a graph node (or several nodes). Directed edges (or arc) connect
between two vertices if the mass difference of the two vertices
equals the mass of one or several amino acids. ‘‘SeqMS’’
(Fernandez-de-Cossio et al., 1995), ‘‘Lutefisk’’ (Taylor and Johnson,
1997), ‘‘Sherenga’’ (Dancı́k et al., 1999) and ‘‘PepNovo’’ (Frank and
Pevzner, 2005) are the most popular algorithms that make
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Fig. 2. 2D/1D Electrophoresis experiments reported in this work and examples of lattices.
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use of spectrum graphs based on the basic idea proposed by
Bartels.

In our lattice graph, MS signals are placed in a Cartesian 2D
space starting with the first data point at the coordinate r2 ¼ (0,
0). The coordinates of the successive data points are calculated as
follows. In this example, we used the vector s ¼ [s1, s2, s3,y, sj,y,
s68] to list the labels for the 68 MS signals sj of the new protein.
We also used four vectors of weights; the first 1w ¼ [1(m/
z)j] ¼ [1(m/z)1,

1(m/z)2,y,1(m/z)j,y,1(m/z)68] lists the mass/charge
ratio values for each sj. The other three vectors are: 2w ¼ [2(m/z)1,
2(m/z)2,y, 2(m/z)jr68]; 3w ¼ [3(m/z)1,

3(m/z)2,y, 3(m/z)j,y, 3(m/
z)jr68]; and 4w ¼ [4(m/z)1,

4(m/z)2,y,4(m/z)j,y,4(m/z)jr68]. These
vectors list, in an increasing order, the (m/z)j values for sj also
present in the MS of the three most similar template proteins
found after the MASCOT search. In order to generalize the
procedure, we can refer to the vectors: k+1w ¼ [k+1(m/z)j],
k+2w ¼ [k+2(m/z)j], and k+3w ¼ [k+3(m/z)j]. These vectors list the
(m/z)j values of the three proteins (kth-triad) placed at positions k,
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k+1, and k+2 in the list of template proteins, found after the
MASCOT search, ordered from higher to lower similarity to the
query protein. Next, we can use a set of conditions C1, C2, and C3 to
align many triads and detect the similarity patterns.

C1: Increases in +1 the y axe if 1(m/z)j A
kw and e k+1w and e k+2w

(upwards-step) or:
C2: Increases in +1 the x axe if 1(m/z)j e

kw and A k+1w and e k+2w
(rightwards-step) or:
C3: Decreases in �1 the y axe if 1(m/z)j e

kw and e k+1w nor A
k+2w (downwards-step).
C4: Decreases in �1 the x axe if otherwise (leftwards-step).

In Fig. 1(C), we depict the alignment of these types of lattice
graphs for the query protein vs. 17 triads found with MASCOT in
the template database. It is relevant that the method perfectly
discriminates the alignment (black colour) with the best triad
(more similar proteins), with respect to triads formed by other
less similar or dissimilar proteins (grey colour). Last, we can apply
alternatively and somehow complementary operations �C1,

�C2,
�C3 and �C4 if our aim is the study of the sj in the query protein
that does not match up with any template protein.

�C1: Increases in +1 the y axe if 1(m/z)j e
2w (upwards-step) or:

�C2: Increases in +1 the x axe if 1(m/z)j e
2w and e3w neither

(rightwards-step) or:
�C3: Decreases in �1 the y axe if 1(m/z)j e

2w and e 3w and e 4w
neither (downwards-step).
�C4: Decreases in �1 the x axe if otherwise (leftwards-step).

Note that the first lattice graph based on C1, C2, C3 and C4 plots
the MS signals present in both the query protein and at least one
of the triad of template proteins selected. Consequently, this graph
gives us a visual idea on how similar our query protein is with
respect to the known template proteins (like in BLAST). Con-
versely, the second type of graph based on �C1,

�C2, �C3 and �C4

plots precisely those MS signals that do not match up with MS
signals found on the triad of template proteins. In consonance,
this graph may give an idea on how dissimilar this protein is and
then how useful it may be to decide an investigation of unknown
peptides.

3.4. Lattices for mass spectra of proteins serum profiles (PSP-MS)

In the previous paragraphs, we have introduced 2D lattice
graph representations for DNA/protein sequences, MDT results,
and PMF-MS experiments. Now, we report the generation of the
2D lattice graphs for large MS data generated in PSP-MS
experiments with blood samples. Blood proteome is continuously
changing due to the effect of the drug-induced damage in the
affected organ. After the separation of the small peptide fragments
from the actual insult, the remaining mixture of peptides retains
the specificity of the disease due to the specific biomarker
amplification process in a unique tissue microenvironment in
the organ where the toxicity occurs (Hu et al., 2006). Therefore,
we can use the serum, the saliva, or the urine because they are
protein-rich information reservoirs containing blood traces (Hu
et al., 2006). In addition, it is well-known the optimal performance
in the low mass range demonstrated by the mass spectroscopy
(Kantor, 2002; McDonald and Yates, 2002) applied to proteomics
by offering the great chance of discovering these early stage
composition changes. The main problems in the identification of a
single disease-related protein are the following: there are
thousands of intact and cleaved proteins in the PSP that require
the separation and identification of each protein biomarker and
most toxicity biomarkers appear only when significant organ
damage has occurred. Thus, the pattern identification in PSP-MS
becomes a realistic complementary approach compared with the
direct identification of a single marker candidate. Consequently,
we can state that PSP-MS may allow detecting disease biomarkers
at the first stages. In this regard, the development of new graph
representations becomes significant to visually depict interesting
similarity/dissimilarity patterns between PSP-MS of different
groups of patients. In a recent work, we have introduced novel
Randic’s spiral network representation of PSP-MS (Cruz-Montea-
gudo et al., 2008a). Other example is the previous theoretical
study of Human Prostate Cancer with new graph representations
(Ferino et al., 2008). In previous works, our group has extended for
the first time the spiral, star (Cruz-Monteagudo et al., 2008b), and
lattice (Petricoin et al., 2004) graphs to represent the PSP-MS with
a very high number of intensity (Ij) signals and wide (m/z)j

bandwidth. As these types of graphs had been studied before, we
do not depict a PSP-MS lattice here, by reasons of space. However,
we give as follows a mathematical formalization of this type of
graph in order to generalize them and show more possibilities to
codify information in PSP-MS experiments. For it, each signal in
the MS is placed in a Cartesian 2D space starting with the first
data point at the coordinate r2 ¼ (0, 0). The coordinates of the
successive data points are calculated by using the following
mathematical formalism. Although the binned process reduces
efficiently the number of data points, it is still unmanageable for
graph generation. Hence, the number of data points in the binned
data files was condensed by taking the averaged �(m/z)j and �Ij

values for consecutive regions containing a fixed number n� of
(m/z)j and Ij data points. The value n� may be changed according
to the interest of the research; in particular when we keep n� ¼ 1
the number of averaged regions �sj is equal to the number of
original signals sj. In this example, we used the vector s ¼ [s1, s2,
s3,y,sj,y,sn�] to list the labels for the MS signals sj of the new
protein. We also used two vectors of weights; the first 1w ¼ [�(m/
z)j] ¼ [�(m/z)1,

�(m/z)2,y, �(m/z)j,y,�(m/z)�n] list the average
mass/charge ratio values for each region �sj out of �n altogether.
The other vector lists in a similar way the average intensity values
2w ¼ [�I1,

�I2,y,�Ij,y,�I�n]. We also used the sets of conditions C1,
C2, C3 and C4:

C1: Increases in +1 the y axe if �(m/z)j40.5 and �Ij40.5 for �sj

(upwards-step) or:
C2: Increases in +1 the x axe if �(m/z)j40.5 and �Ijo0.5 for �sj

(rightwards-step) or:
C3: Decreases in �1 the y axe if �(m/z)jo0.5 and �Ijo0.5 for �sj

(downwards-step).
C4: Decreases in �1 the x axe if otherwise (leftwards-step).

3.5. Lattices of protein polymorphisms determined by

electrophoresis

Different electrophoresis such as: immunofixation electro-
phoresis, capillary electrophoresis, 2D-gel electrophoresis or 2DE,
are used to characterize protein polymorphism in populations
(Alper and Johnson, 1969; Hadi et al., 1998; Kanamori-Kataoka
and Seto, 2009; Lopez-Galvez et al., 1995). In fact, the amount of
protein variation undetected by electrophoresis may be reason-
ably small and at the protein level, a typical sexually-reproducing
organism may be heterozygous at 20 or more percent of the gene
loci. Although the evidence is limited, it seems that at the level of
the DNA nucleotide sequence every individual is heterozygous at
every locus-if introns as well as exons are taken into account
(Ayala, 1983). In the present example, we characterized experi-
mentally for the first time the polymorphism for 17 enzymes in
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three populations of Fasciola hepatica (F. hepatica). The parasite
F. hepatica is the causal agent of fasciolosis infection, an important
cause of lost productivity in livestock worldwide. Effective control
of fasciolosis is difficult, especially in milking cows, which can
only be treated during dry periods, a control strategy that has not
been evaluated yet. Recently, our group has studied the effect of
the type of flukicide treatment on the prevalence and intensity of
infection in dairy cattle from Galicia, an area where fasciolosis is
endemic and which is also the main milk-producing region in
Spain (Mezo et al., 2008). In the present preliminary study, we
found that 8 loci out of 17 studied presented polymorphisms
expressing up to 3 different isoforms of the enzyme. The
polymorphic enzymes were: Aconitate Hydratase or Aconitase
(ACO), Adenilate Kynase (AK), Glutamate Oxaloacetate Transami-
nase (GOT), Hexokinase (HK), Isocitrate Dehydrogenase (IDH),
Phosphogluconate Dehydrogenase (PGD),: Phosphoglucomutase 1
(PGM1), and Phosphoglucomutase 2 (PGM2). Considering that: (1)
heterozygous organisms are common, (2) each protein has one or
even two locus, and (3) each locus may present one out of two or
more alleles; we can construct large databases with the informa-
tion obtained by electrophoresis for individuals in different
populations. This situation determines the necessity of the use of
computational techniques. Actually, the necessity of the use of
computational techniques for phenotypic analysis in adults and eggs
of F. hepatica has been recently proposed by Valero et al. (2005).

In this regard, the present type of data is another interesting
candidate to be studied with lattice graphs. Consequently, in this
example we need 1 lattice graph for each parasite individual with
8 enzymes. Altogether, each of the 6 enzymes is encoded by 1
gene; which presents 2 loci that may express 1 out of 3 possible
isoforms of the enzyme. In addition, one of the enzymes PGM is
codified by two different gene producing two different proteins,
PGM1 and PGM2. We used the vectors as ¼ [as1,

as2, as3,y,as-

j,y,as8] and bs ¼ [bs1,
bs2, bs3,y,bsj,y,bs8] to list the labels for the

two possible alleles asj and bsj for two enzyme isoforms A and B
codified by a gen. Commonly, we use the magnitude called
Retention factor (Rfj) to characterize each signal in 1D electro-
phoresis; which measures the chromatographic displacement
distance (electrophoresis in this case) of the band from the point
of application. In Fig. 2(B), we illustrate the 1D electrophoresis
bands for one individual parasite experimentally characterized in
this work. Herein, we used an integer-value scale for Rfj ¼ 1, 2, or 3
for the bands with lower absolute displacement, second higher
displacement, etc. Then, we also used two vectors of weights; the
first aw ¼ [aRfj] ¼ [aRf1,

aRf2,y, aRfj,y, aRf8] and the second
bw ¼ [bRfj] ¼ [bRf1,

bRf2,y,bRfj,y,bRf8]. These vectors list the first
1Rfj and the second 2Rfj values of Rf for two isoenzymes codified by
the same gene. In general, when 1Rfja

2Rfj the organism is
heterozygote for this character (enzyme) it means that the two
loci of the gene codify different alleles. In this case we assign the
lower absolute value of retention factor (1Rfj4

2Rfj) to the first
vector 1s the enzyme. Otherwise, 1Rfj4

2Rfj the two alleles of the
gen produce the same enzyme and the organism is homozygote
for this character. We can use the following sets of conditions C1,
C2, C3, and C4 to obtain the lattice graph for 1s or 2s separately. In
particular, C4 refers to cases when the Rfj could not be accurately
determined and the genotypic information is not clear; the
condition sets are as follows:
C1: Increases in +1 the y axe if kRfj ¼ 1 (upwards-step) or:
C2: Increases in +1 the x axe if kRfj ¼ 2 (rightwards-step) or:
C3: Decreases in �1 the y axe if kRfj ¼ 3 (downwards-step).
C4: Decreases in �1 the x axe otherwise (leftwards-step).
However, both alleles are determinant in the polymorphism.
Therefore, it is more interesting to generate graphical plots for one
individual containing both alleles at the same time. In this regard,
we extended our mathematical formalism as follows (see the
previous example on SNPs). Let there be, cs ¼ as[bs ¼ [as1,

as2,
as3,y,asj,y,asn, bs1,

bs2, bs3,y,bsj,y,bsn] the vector that list the
labels of two possible alleles of n genes and cw ¼ aw[bw ¼ [1Rf1,
1Rf2,y, 1Rfj,y,1Rf8,2Rf1,

2Rf2,y,2Rfj,y,2Rf8]; we can use it to
characterize the polymorphism of one individual in the following
manner. We can refer to s and w as genotypic-polymorphism
vectors and apply the same rules outlined above. Fig. 3 depicts the
cs-alignment of all individuals belonging to different populations
using the same above-mentioned rules C1, C2, C3 and C4.

In any case, as the elements asi and bsj for i ¼ j are haplotypes of
the same loci that codify the same enzyme, it is easier to list them
successively. In this regard, it is probably easier to use the vectors
sc ¼

as\bs ¼ [as1,
bs1,

as2, bs2, as3, bs3,y,asj,
bsj,y,asn, bsn] and

wc ¼
aw\bw ¼ [1Rf1,

2Rf1,
1Rf2, 2Rf2,y,1Rfj,

2Rfj,y,1Rf8, 2Rf8] to list
the labels and weights of two possible alleles of n genes. In terms
of computational cost, both procedures are equivalent but, with
respect to facilitating data input, the sc vectors are more user-
friendly. In any case, it is important to note that, in general, the
lattice graph is different for cs and sc schemes; which may offer
alternative solutions to the same problem. In Fig. 2(B), we also
give examples of lattice graphs for one individual parasite using
cs ¼ as[bs or cs ¼ as\bs as alternative schemes. On the other hand,
if you are interested not in the characterization of the poly-
morphism of individuals within a population but in specific
enzymes in different individuals you have to invert the previous
approach using one vector of labels to list individuals and vectors
of weights to characterize a haplotypes of the specific a enzyme in
different individuals.

Last, in other type of electrophoresis methods such as 2D
electrophoresis (see Fig. 2 for instance) the different proteins are
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characterized by Mass (Mj) and isoelectric point (pIj) instead of
only one Rfj value (Dea-Ayuela and Bol�as-Fern�andez, 2005). In
these cases, we may use one label vector s, two weight vectors
1w ¼ [Mj] and 2w ¼ [pIj], and cut-off values d1 and d2, to define
condition sets C1, C2, C3 and C4 similar to those used for PSP-MS
above:

C1: Increases in +1 the y axe if Mj4d1 and pIj 4d2 (upwards-step)
or:

C2: Increases in +1 the x axe if Mj4d1 and pIjod2 (rightwards-
step) or:

C3: Decreases in �1 the y axe if Mjod1 and pIjod2 (downwards-
step).
C4: Decreases in �1 the x axe otherwise (leftwards-step).

3.6. Lattices of single nucleotide polymorphisms (SNPs)

In the previous paragraphs, we have introduced 2D lattice
graph representations for DNA/protein sequences, MDT results,
and MS outcomes. Now, we report the generation of the 2D lattice
graphs for large SNP of schizophrenia patients. The HTR2A and
DRD3 genes codify protein receptors for the biogenic amine
serotonin (5-HT) and dopamine (DA) neurotransmitter; which are
the primary targets of the antipsychotic drugs in the schizo-
phrenia treatment (Meltzer et al., 1989). The silent SNP T102C
(rs6313) at HTR2A as well as the non-synonymous SNP Ser9Gly
(rs6280) at DRD3 have been extensively analyzed in schizophrenia
case-control studies (Abdolmaleky et al., 2004; Jonsson et al.,
2003). In this example we aim to study a SNPs database based on
the 17bp-long and 32bp-long SNPs of the DRD3 and HTR2A gene
respectively, from 260 schizophrenic patients and 354 control
subjects (Dominguez et al., 2007). These SNPs are codified with
the following haplotypes: 0 if the first allele is homozygous, 1 if
heterozygous, 2 if the second allele is homozygous and 3 if it is
unknown. As a result, we have a large amount of information
contained in raw data of 614 patients with 17 inputs each one
making 17�614 ¼ 10,438 input data points altogether for DRD3
gene or 32�614 ¼ 19,648 input data points altogether for HTR2A
gene. In this type of cases, the use of simple graph methods may
be very interesting in order to perform a fast visualization of the
large database. In addition, the alignment of superposition in
some way of all inputs may unravel hidden patterns of similarity/
dissimilarity between all patients. In any case, to the best of our
knowledge, no lattice graph has been reported to represent and
perform 2D alignment of SNPs in schizophrenia patients.

In this example, the sequences of the SNPs genotype informa-
tion are transformed into lattice graphs using the following
mathematical formalism. To this end, each nucleotide in the 32bp
SNPs sequence of one patient was placed as a node in a Cartesian
2D space starting with the first data point at the coordinate
r2 ¼ (0, 0). The coordinates of the successive data points are
calculated as follows. In this example, we used the vector 1s ¼ [1s1,
1s2, 1s3,y,1sj,y,1s17] and 2s ¼ [2s1,

2s2, 2s3,y,2sj,y,2s32] to list the
labels for each of the 17 signals sj for gene DRD3 or 32 signals for
gene HTR2A of one patient. We also used two vectors of weights;
the first 1w ¼ [1hj] ¼ [1h1,

1h2,y, 1hj,y,1h17] and the second
2w ¼ [2hj] ¼ [2h1,

2h2,y, 2hj,y, 2h32] to list the haplotype types
1hj or 2hj ¼ 0, 1, 2, or 3 for each sj of DRD3 or HTR2A gene
respectively. We also used the following sets of conditions C1, C2,
C3, and C4:
Fig. 4. Examples of lattices for: (A) SNPs of schizophrenia patients, (B) microarray

for cancer patients and (C) patents related to protein-research methods.
C1: Increases in +1 the y axe if 1hj ¼ 0 (upwards-step) or:
C2: Increases in +1 the x axe if 1hj ¼ 1 (rightwards-step) or:
C3: Decreases in �1 the y axe if 1hj ¼ 2 (downwards-step).
C4: Decreases in �1 the x axe if otherwise (leftwards-step).
1 1
We may apply these conditions to the vectors s and w in
order to obtain a 2D alignment of all SNPs for all patients by using
gene DRD3 or HTR2A separately. However, it has been admitted
that both genes were involved in schizophrenia so the generation
of graphical plots for both sets of SNPs is interesting. In this
regard, we extended our mathematical formalism as follows. Let
there be, ns ¼ 1s[2s,y,[ns ¼ [1s1,

1s2, 1s3,y,1sj,y,1sn1,
2s1,

2s2,
2s3,y,2sj,y,2sn2,y,ns1,

ns2, ns3,y,nsj,y,nsnn] the vector that lists
the labels of all SNPs for n genes with n1, n2,y,nn SNPs and
nw ¼ 1w[2w,y,[nw ¼ [1h1,

1h2, 1h3,y,1hj,y,1hn1,
2h1,

2h2,
2h3,y,2hj,y,2hn2,y,nh1,

nh2, nh3,y,nhj,y,nhnn]; we can consider
it as a single list of SNPs for n genes instead of only one. We can
refer to ns and nw as partial or total chromosome vectors if they
incorporate all gene in the same chromosome or only some of
them. We can refer to ns and nw as ordered if the order of union of
vectors is the same as in the original chromosome. Last, ns and nw
are mixed and/or disordered if they assemble vectors coming from
different chromosomes and/or in another order, different from the
one specific to natural chromosome order. Last, the vectors ns and
nw generated with all the genes of an organism may be classified
as hole-SNPs genome vectors. In this example we can construct
the vectors: ns ¼ 1s[2s ¼ [1s1,

1s2, 1s3,y,1sj,y,1s17,
2s1,

2s2, 2s3,y,2s-

j,y,2s32] and nw ¼ 1w [2w ¼ [1h1,
1h2, 1h3,y,1hj,y,1h17,

1h1,
1h2,

2h3,y,2hj,y,2h32] that list the labels and weights for SNPs
of a patient and the two genes DRD3 and HTR2A at the same

retical Biology 261 (2009) 136–147 143
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time. Fig. 4A depicts the 2D-alignment of all these vectors for all
patients using the same above-mentioned rules C1, C2, C3 and C4.
We can note that both groups overlap notably in the lattices of
schizophrenia patients (in grey), by expanding leftwards to areas
not covered by healthy patients, but there are no significant
results because this region is the consequence of the unknown
allele-type component (1hj ¼ 3). The area with interesting overlap
differences that can be used to perform further research to find
SNPs biomarkers for schizophrenia is the upper part of the lattice
that is generated by the homozygous allele (1hj ¼ 0). The graph
allowed us to depict visually 17�614+32�614 ¼ 10,438+
19,648 ¼ 30,086 SNPs points for 614 healthy vs. schizophrenia
patients in a single 2D graph.
3.7. Lattices for mRNA microarrays

In the previous sections, we have introduced 2D lattice graph
representations for DNA/protein sequences, MDT results, MS
outcomes, and SNPs. In this example, we introduce 2D lattice
graphs for the results obtained in mRNA microarray experiments.
Microarrays have been used to find gene expression patterns with
special relevance as molecular biomarkers for different diseases
including cancer. Specifically, human breast cancer (HBCa) is the
most common neoplasia in women since approximately 211,000
women are diagnosed with it annually in the United States. In
spite of earlier detection and improved treatment, it remains the
second leading cause of cancer-related death in the United States
and in other developed countries. The genetic background of
patients and the tumor’s genetic and epigenetic anomalies create,
in combination, molecularly distinct subtypes arising from
distinct cell types within the ductal epithelium. This genetic
complexity underlies the clinical heterogeneity of HBCa limiting a
rational selection of treatment tailored to individual patient/
tumor characteristics. In this regard, Modlich et al. (2005)
published a very interesting study whose declared goal was to
identify gene signatures predictive of response to preoperative
systemic chemotherapy (PST) with epirubicin/cyclophosphamide
in patients with primary HBCa. The authors obtained pre-
treatment needle biopsies from 83 patients with breast
cancer and profiled mRNA on Affymetrix HG-U133A arrays.
Response ranged from pathologically confirmed complete remis-
sion (pCR), to partial remission (PR), to stable or progressive
disease, ‘‘No Change’’ (NC). A primary analysis was performed in
breast tissue samples from 56 patients and 5 normal healthy
individuals as a training cohort for predictive marker identifica-
tion. The high complexity of this dataset makes these results
another interesting candidate to be visually depicted with lattice
graphs. In addition, the 2D alignment or superposition of all
inputs may unravel hidden patterns of similarity/dissimilarity
between all patients. In any case, we have not found a previous
report using lattice graphs to represent and/or perform 2D
alignment of mRNA microarray results in cancer patients or
another disease.

In this example, values of mRNA levels for each patient
obtained with Affymetrix HG-U133A arrays are directly trans-
formed into one lattice graph using the following mathematical
formalism. To this end, each value for one specific mRNA for one
patient is placed as point (node) in a Cartesian 2D space starting
with the first data point at the coordinate r2 ¼ (0, 0). We
calculated the coordinates of the successive data points as follows.
In this example, we used the vector 1s ¼ [1s1,

1s2, 1s3,y, 1sj,y,1sn]
to list the labels sj for the different mRNA profiled with the
Affymetrix kit. We also used the vector of weights:
1w ¼ [1cj] ¼ [1c1,

1c2,y,1cj,y,1cn] to list the numeric value of the
level of the mRNA. Last, we used the following sets of conditions
C1, C2, C3, and C4:

C1: Increases in +1 the y axe; if 1cj 4
avgcj and 1cj 4

avgci (upwards-
step) or:
C2: Increases in +1 the x axe; if 1cj 4

avgcj and 1cjoavgci

(rightwards-step) or:
C3: Decreases in �1 the y axe; if 1cjoavgcj and 1cjoavgci

(downwards-step) or:
C4: Decreases in �1 the x axe; otherwise (leftwards-step),

where avgcj is the average of 1cj of the same mRNA value for all
patients whereas avgci is the average of 1cj for mRNA value of all gen
in a given patient. Fig. 4B depicts the 2D-alignment of all these
vectors for a sub-set of patients using the same above-mentioned
rules C1, C2, C3 and C4. In this graph, both NC and PR patients are
displayed in black whereas pCR patients are coloured in grey. The
lattice shows that in fact, both populations share common areas
but NC and PR patients with no positive answer to drug treatment
distribute downwards to regions not covered by lattices of healthy
patients. In any case, this is only a technical-note illustrative
example on how to carry out the construction of mRNA
microarrays lattices and we need to perform further research with
larger databases in order to draw more convincing conclusions.
3.8. Lattices for research trends, copyright and patent protection in

biological research

In the previous sections, we have introduced 2D lattice graphs
for different molecular experiments. However, the applications in
proteome research of these lattices may have further implications.
For instance, we can use these graphs to analyze the scientific
production and copyright or patent protection of this scientific
production. It may help proteome research scientists, development
managers, and/or politicians to decide which directions on
proteome I+D are promising for further investment in order to
introduce final protected products in the market. It may help also to
detect relevant communities, groups, and/or research networks in
their respective areas of interest. The use of Graph theory to analyze
scientific production trends is not new (Malin and Carley, 2007;
Rosvall and Bergstrom, 2008). Thus, in this example we report for
the first time the construction of 2D lattice graphs with this aim.

In this example, we get outputs of patent search including the
last 500 inputs containing the word protein in the field title from
the European Patent Office (EPO) web (http://ep.espacenet.com/).
Now, we report the generation of the 2D lattice graphs for this
dataset as a sort of illustrative example, more detailed research is
expected to be used in other fields. The starting point has
coordinates r2 ¼ (0,0) placed at the centre of a Cartesian 2D space.
The coordinates of the successive data points were calculated as
follows. First, we assign to each patent a vector s ¼ [s0, s1,
s2,y,sj,y,s20] that lists the labels for different search terms sj (s0

is the word method+20 additional terms). We also used two
weighting vectors; the first 1w ¼ [1fj] ¼ [1f0, 1f2,y,1fj,y,1f20] lists
the frequency of each term sj in the 500 patents studied. The other
vector: 1w ¼ [1dj] ¼ [1d0, 1d2,y,1dj,y,1d20] lists the values 1dj ¼ 1 if
the term sj is present in the field of the patent; 1dj ¼ 0 otherwise.
We also used the sets of conditions C1, C2, C3 and C4.

C1: Increases in +1 the y axe if 1d0 ¼ 1 and 1dj ¼ 1 and 1fj 4
�fj

(upwards-step) or:

C2: Increases in +1 the x axe if 1d0 ¼ 0 and 1dj ¼ 1 and 1fj 4
�fj

(rightwards-step) or:

C3: Decreases in �1 the y axe if 1d0 ¼ 1 and 1dj ¼ 1 and 1fjo�fj

(downwards-step).
C4: Decreases in �1 the x axe if otherwise (leftwards-step).

http://ep.espacenet.com/
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In Fig. 4C we depict the alignment of the 500 protein-research

related patents studied here using these rules. For instance, in this
case, we can note which areas are common to US, WO, or other
patents and which are not, in order to profile patenting strategies
in US.
4. Conclusions

The construction of 2D-generalized lattice graphs constrained
into a Cartesian coordinate system is a useful technique for
biological data visualization not necessarily limited to DNA
sequences. For instance, we demonstrated how to extend it in
order to depict protein sequences, SNPs, parasite enzyme poly-
morfirms, peptide MD, protein MS, PSP-MS, mRNA microarray
outcomes and protein-research patent information. The present
results break new ground in applying the Graph theory for
knowledge discovery in proteome research as well as other areas
of biological sciences.
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