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A B S T R A C T   

COVID-19 is an airway disease that has affected ~125 million people worldwide, caused by a novel coronavirus 
termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), spread through respiratory droplets, 
direct contact, and aerosol transmission. Although most patients presenting with absent or mild symptoms 
recover completely, the highest morbidity and mortality rates are seen in the elderly, and patients with 
comorbidities such as cardiovascular diseases, cancer, immunosuppressive diseases, diabetes, and pre-existing 
respiratory illnesses. Several therapeutic strategies have been examined, but a wide-ranging therapeutic op-
tion for particularly severe cases of COVID-19 remains to be elucidated. Considering the indications presented by 
COVID-19 patients who present similarly with inflammatory conditions, intravenous immunoglobulin (IVIG) 
administration has been examined as a possible route to reduce proinflammatory markers such as ESR, CRP and 
ferritin by reducing inflammation, based on its anti-inflammatory effects as indicated by utilisation of IVIG for 
numerous other inflammatory conditions. Herein, summarising the recent key clinical evaluations of IVIG 
administration, we present our hypothesis that administration of IVIG within a specific dosage would be 
extremely beneficial towards reducing mortality and perhaps even the length of hospitalisation of patients 
exhibiting severe COVID-19 symptoms.   

Introduction 

COVID-19 is an airway disease that has ravaged the medical, social, 
and economic fabric of the world as we know it, having affected ~125 
million people worldwide and resulted in ~2.75 million casualties as of 
9:54 am CET, March 27, 2021. The causative underlying factor is a novel 
coronavirus, termed severe acute respiratory syndrome coronavirus 2 
(SARS-CoV2), spread through respiratory droplets, direct contact, and 
aerosol transmission [1,80]. As the seventh member of coronaviruses 
known to infect humans, SARS-CoV2 is an enveloped positive sense 
ssRNA virus causing respiratory, gastrointestinal, and neurological 
symptoms in humans, mammals, and birds. Four coronaviruses cause 
symptoms in immunocompromised patients, while the other two -SARS- 
CoV, and the middle east respiratory syndrome (MERS)-CoV- had caused 
epidemics in 2002–2003 in China and 2012 in the Middle East, 
respectively [2]. Although most patients presenting with absent or mild 
symptoms recover completely, some patients further deteriorate into 

life-threatening conditions including acute respiratory distress syn-
drome (ARDS), multiple organ dysfunction (MODS), and heart failure, 
all of which suggest a cytokine storm syndrome (CSS) in such patients 
[3]. The highest morbidity and mortality rates are seen in the elderly, 
and patients with comorbidities such as cardiovascular diseases, cancer, 
immunosuppressive diseases, diabetes, and respiratory illnesses [4]. 

Pathophysiology of COVID-19 

COVID-19 attaches to the respiratory epithelium through spike 
proteins (S), facilitating viral entry into host cells [2,5]. The incubation 
period ranges from 2 to 14 days, during which SARS-CoV2 transmission 
can occur [4]. Early symptoms of fever and cough may be followed by 
viremia which can target organs including the heart, renal, and gastro-
intestinal tract. Common clinical symptoms include flu-like indications 
such as fever, cough, fatigue, headache, dysgeusia, pleuritic chest pain, 
conjunctivitis, sore throat, diarrhea, vomiting and myalgia [6,7]. High 
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resolution CT (HRCT) is the gold standard for radiological diagnosis in 
COVID-19, while reverse transcription-PCR (RT-PCR) is used as a diag-
nostic tool using nasal swabs, bronchoalveolar lavage, or tracheal as-
pirates, as is serology [8,9]. 

Patients may recover from any time throughout the course of the 
disease, or may progress to the next stage, even descending into acute 
respiratory distress syndrome (ARDS) with or without multiple organ 
dysfunction syndrome (MODS). In asymptomatic patients, symptoms 
presented include anosmia, ageusia, asthenia and conjunctivitis, 
alongside mild lymphopenia. Lung ultrasounds may also show localized 
B-lines, while HRCT will show localized subpleural ground glass 
appearance. In patients with mild symptoms, indications such as 
arthralgia, myalgia, dry cough and fever present with increased lym-
phopenia, and/or ferritin, LDH and D-Dimer. There is also mild hypoxia 
(>92, while B-lines are diffuse and lead to pleural line thickening). The 
CT shows a “ground glass” appearance at this stage [2,7–9]. 

In moderate stages, patients may present with dyspnea, hypoxia, and 
arrhythmia. Lab tests show progressive increases in D-dimer and ferritin, 
with worsening hypoxia and hypercapnia, increased transaminases and 
triglycerides, and increased IL-6 and CRP. There is also a mild increase 
in NT-pro BNP and troponin, and reduction in platelets. Lung ultra-
sounds indicate subpleural consolidation, localized pleural effusion and 
diffuse B-lines, while CTs indicate a “crazy paving” sign. These symp-
toms necessitate hospital admission. In severe cases of COVID-19, pa-
tients show the worst prognosis. ARDS, SIRS, MODS, shock, heart 
failure, high fever and DIC are some of the clinical symptoms that 
require urgent care, while blood work show increased pro-inflammatory 
markers, ferritin, cytopenias, increased NT-proBNT, troponin, and signs 
of renal failure. Lung US has pleural line thickening due to diffuse B lines 
and subpleural and alveolar consolidation with air bronchograms 
[2,7–10]. It is no surprise that CT scan shows “white lung” in alignment 
with the clinical symptoms and lung US [11]. The ARDS seen in the last 
stage suggests occurrence of a cytokine storm syndrome (CSS) in COVID- 
19 patients. Some patients may develop secondary hemophagocytic 
lymphohistiocytosis (sHLH), usually triggered through viral infections, 
and culminating in CSS or a macrophage activation syndrome (MAS), 
resulting in increased mortality of up to 60%. 

Use of corticosteroids and other treatments in COVID-19 

Several strategies and therapeutic options have been tried and tested 
since the start of COVID-19 outbreak. The use of short courses of cor-
ticosteroids at low-to-moderate dose, for critically ill patients with 
COVID-19 pneumonia, signs of an exaggerated immune response or in 
patients with symptoms of myocardial involvement has been recom-
mended [12,13]. A systematic review of 771 publications has concluded 
that there are no beneficial effects of the use of inhaled corticosteroids in 
patients with COVID-19. However, withdrawal of ICS in patients with 
asthma and COPD is not recommended [14]. Dexamethasone is a syn-
thetic corticosteroid approved by the FDA in 1958 for broad-spectrum 
immunosuppression. The limitations of dexamethasone mainly lies in 
the fact that although it is helpful in reducing pro-inflammatory cyto-
kines, which is beneficial for the hyper-inflammatory stage in COVID-19 
patients, it also suppresses T- and B-cell functions, leading to a loss of 
immune clearance of the SARS-CoV2 viral load [15]. 

Antiviral agents such as lopinavir/ritonavir (LPV/RTV) are benefi-
cial for severe or critical cases, especially if used within 12 days of 
symptom onset as retrieved from retrospective studies from the SARS 
epidemic, leading to shorter recovery time [16,17]. Another antiviral 
added to the treatment regimen recently is remdesivir, which is a broad- 
spectrum antiviral drug for a wide array of RNA viruses, including 
SARS/MERS-CoV5 and Ebola [18,19] The use of antimalarials such as 
chloroquine and hydroxychloroquine for their antiviral activity and 
their immunomodulatory effects on 1L-6 and TNF-α have shown some 
benefit for early stages and mild symptoms [20,21]. Convalescent 
plasma containing high-titer neutralizing SARS-CoV2 specific antibody 

decreases the viral load significantly [22]. Anticoagulant use is indi-
cated through use of heparin considering frequently reported cases of 
disseminated intravascular coagulation (DIC) and prevalence of 
abnormal coagulation results, especially markedly elevated D-dimer and 
FDP in COVID-19 deaths, suggesting an association of DIC with 
increased mortality rate [23,24]. 

Hypothesis: Intravenous immunoglobulins (IVIG) could prove 
beneficial for severe COVID-19 patients 

COVID-19 is currently divided into four stages: asymptomatic; mild 
to moderate symptoms including a fever or flu-like symptoms with dry 
cough; shortness of breath requiring admission; and finally, acute res-
piratory distress syndrome (ARDS) needing positive pressure oxygen 
therapy with intensive care therapy. The most severe stage of COVID-19 
also presents with disseminated intravascular coagulation (DIC), sys-
temic inflammatory response syndrome (SIRS), multi-organ dysfunction 
syndrome (MODS), shock, hepatosplenomegaly, among other serious 
morbidities [11]. The clinical picture of ARDS shows an increase in 
erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), and 
serum ferritin, which are markers of inflammation. While limited at 
present, specific studies show significant promise for the use of IVIG in 
treating cases of COVID-19, particularly in cases of severe symptoms 
(Table 1) [25–30]. We can infer from these that the ARDS is driven by 
proinflammatory markers, for which IVIG may provide symptomatic 
relief and cure through its immunomodulatory and anti-inflammatory 
properties [31]. Indeed, considering the indications presented by 
COVID-19 patients, we posit that perhaps the administration of high- 
dose IVIG for such patients who present similarly with inflammatory 
conditions can reduce proinflammatory markers such as ESR, CRP and 
ferritin by reducing inflammation. The rationale behind use of IVIG for 
late-stage COVID-19 is based on its biochemical properties, which has 
anti-inflammatory effects and is utilized for other inflammatory condi-
tions and infectious diseases as well [3,32]. 

Evaluation of the hypothesis 

The history of IVIG use dates to the 1880s when German Physician E. 
von Behring first studied the effects of passive immunity through the 
transfer of serum from sensitized guinea pigs and rabbits to non-immune 
animals, thus passing on the antitoxins from neutralised tetanus or 
diphtheria broth to the non-immune animals [33]. The biochemical 
essence of serotherapy lies in the formation of antigen–antibody com-
plexes, and the specificity and diversity of the binding sites for antigens 
on these antibodies. The use of immunoglobulins (Ig) was first utilized in 
intramuscular form, but due to painful injections and other side effects, 
led to the rise of its intravenous form, IVIG [33,34]. IVIG went through 
several modifications in preparation and stabilization techniques to in-
crease its biological half-life, reduce anaphylactoid reactions, increasing 
efficacy and ensuring safety procedures to reduce viral hepatitis trans-
mission [33]. 

IVIG mechanism of action 

The mechanism of action of IVIG seems to vary amongst differing 
conditions of autoimmunity but seem to contain a common thread of 
action (Fig. 1; Table 2) [35–37]. Anti-idiotypic antibodies bind to anti-
bodies and neutralize them, while Fc receptors on macrophages are 
blocked following IVIG. Fcγ receptors on immune cells are saturated at 
high doses, resulting in their inhibition. FcRn, a protective receptor 
crucial for regulating IgG half-life, normally binds to IgGs, and is pro-
tected from catabolism after being internalised in the endosome. IVIG 
saturates these receptors, accelerating endogenous IgG breakdown, thus 
mitigating autoimmune responses [38,39]. IVIG may also inhibit FcγRI 
or FcγRIII receptors, and perhaps also upregulate FcγRII receptors [40]. 

IVIG can also block adhesion molecules on leukocytes, leading to 
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Table 1 
Summary of conditions applied and relevant findings from key clinical studies examining the efficacy of intravenous immunoglobulin (IVIG) administration in treating 
various symptoms of COVID-19.  

Study Number 
of 
patients 

Severity Patient treatment Intravenous Immunoglobulin 
dosage 

Considerations Outcome 

Xie et al,  
[25] 

58 Severe/ 
Critical 

Oxygen 
Therapy, 
Abidor antiviral 
treatment, 
Moxifloxacin, 
Heparin 

20 g/day 
administered either < 48 h or > 48 h 
following patient 
admission 

>48 h group required higher dosage 
of IVIG 

IVIG treatment within 48 h 
resulted in lower morbidity 
compared to treatment > 48 h 
after admission.  

Length of treatment and ICU 
stay was shorter if treated <
48 h after admission  

Proportion of patients 
requiring mechanical 
ventilation was lower when 
treated within 48 h of 
admission 

Mohtadi et 
al., [26] 

5 Severe  
Combinations of: 
Hydroxychloroquine, 
Kaletra, 
Oseltamivir, 
Vancomycin, 
Levofloxacin, 
Tavanx, 
Azithromycin, 
Ceftriaxone, 
Meropenem, 
Imipenem  

25–30 g/day for 5 days  

9–14 days after admission 

All patients had been intubated Clinical and respiratory 
conditions improved  

Saturated oxygen levels 
increased resulting in 
quicker extubating of patients.  

Obvious improvements in 
pulmonary 
Lesions on CT scans.  

All patients discharged with 
good 
general condition and 
stabilized vital signs. 

Cao et al.,  
[27] 

3 Severe Combinations of: 
Supportive care and 
empirical Moxifloxacin, 
Methylprednisolone, 
Lopinavir/ritonavir 

25 g/day for 5 days  

1–7 days after admission 

All patients exhibited decreased 
oxygen saturation 

Saturated oxygen levels 
increased resulting in 
quicker extubating of patients.  

All patients discharged with 
good 
general condition and 
stabilized vital signs. 

Shao et al., 
[28] 

325 Severe/ 
Critical 

N/A <15 g or > 15 g per day  

<7 days or > 7 days 

IVIG-treated patients had higher 
Acute Physiology and Chronic 
Health Evaluation and Sequential 
Organ Failure Assessment scores, 
higher plasma levels of IL-6 and 
lactate, and lower lymphocyte 
count and oxygenation index 

IVIG significantly reduced the 
28-day mortality, the 
inflammatory response, and 
improved some organ 
functions, but only in critical 
patients  

>15 g/day IVIG reduced 28- 
day and 60-day mortality and 
increased survival time, 
particularly in critical patients  

Early administration of IVIG 
(≤7d) reduced 60-day 
mortality, total in-hospital 
stay, and total course of 
disease,  

Early administration of IVIG 
(≤7d) significantly increased 
survival time and improved 
inflammatory response and 
some organ functions.  

28-day and 60-day mortality 
were not improved with IVIG 
in severe patients  

in-hospital stay and the total 
duration of disease were 
longer in IVIG group in severe 
patients 

Aljaberi 
and 

1 Severe/ 
Critical 

Ceftriaxone, 
Doxycycline, 

40 g every 2 weeks Leukopenia (lymphopenia), normal 
coagulation profile, electrolytes, 

Extubated on Day 13 and 
discharged on Day 14 

(continued on next page) 
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anti-inflammatory effects, while also inhibiting C3a and C5a anaphy-
latoxins and others, preventing the formation of membrane attack 
complex (MAC). IVIG administration can also inhibit T cell, dendritic 
cell, monocytes, and macrophage proliferation and differentiation, 
while also downregulating Th17 responses and upregulating regulatory 
T cells (Treg) differentiation [37,41–43]. IVIG also exerts cytotoxicity on 
neutrophils and eosinophils, a process termed antibody-dependent cell- 
mediated toxicity, or ADCC [35–37]. 

In animal models, IVIG reduces IL-2 and interferon-γ production by 
T-cells [44,45], while IVIG preparations contain antibodies against CD4 
cells, soluble HLA I and II molecules, chemokine receptor, CCR-5, and T- 

cell receptor β chain [45–48]. Furthermore, perhaps therapeutic IVIG 
dosages may restore the balance between Th1 and Th2 cells [49]. IVIG 
exhibits inhibitory B-cell mediated effects including inhibition of anti-
body production [50], inhibition of B-cell differentiation [51], and in-
hibition of production of interleukin-6 and tumour necrosis factor-α 
[52]. However, IVIG also conversely induces B-cell apoptosis [53], 
specific B-cells downregulation [54], and regulation of CD5 [55]. 

IVIG reduces levels of circulating IL-1β, in autoimmune conditions 
such as Kawasaki syndrome [56,57], while up to a 1000-fold increase in 
levels of IL-1 receptor antagonist was observed following IVIG therapy 
[58]. However, IVIG remains functionally active in mice strains 

Table 1 (continued ) 

Study Number 
of 
patients 

Severity Patient treatment Intravenous Immunoglobulin 
dosage 

Considerations Outcome 

Wishah,  
[29] 

Hydroxychloroquine 
2 L/minute oxygen by 
nasal cannula 

and liver 17 function. Flu/RSV 
panels were negative  

intubation and mechanical 
ventilation by day 7 

Lanza et 
al., [30] 

1 Severe/ 
Critical 

Hydroxychloroquine 
Azithromycin  450 mL (5 mL/kg) at 36 mL/h × 3 

days with premedication with 
antihistamine and rehydration, 
followed by a decrease in infusion to 
28 mL/h and subsequently extended 
total administration to 4 days 

Deteriorating respiration and 
bloodwork 

Improvement in clinical and 
pulmonary function  

CT scan showed a massive 
reduction in parenchymal 
consolidations,  

Patient discharged with good 
general condition and 
stabilized vital signs.  

Fig. 1. Schematic representation summarising the mechanisms of action of intravenous immunoglobulin (IVIG) administration.  
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deficient in IL-1R, IL-4, IL-10, IFN-γR, IL-12β and TNF-α [59], indicating 
that perhaps cytokine modulation is unlikely the major mechanism of 
action. TNF-α mediated cytotoxicity is also inhibited by IVIG [60], 
which is also thought to modulate endothelial cell function by inter-
acting with intercellular adhesion molecules (ICAM) [38,61]. Other 
possible IVIG mechanisms can also modulate cell migration due to the 
presence of antibodies against integrins [62] and the argine-glycine- 
aspargine (RGD) cell adhesion motifs [54]. Infusion of IVIG may also 
restore levels of sialic acid-rich IgG, inducing an anti-inflammatory ac-
tion [63–65]. 

Structure 

Immunoglobulins (Ig) are glycoproteins produced by activated 
plasma cells in response to antigens and modulate adaptive immune 
functions in the human body. IgGs are the most abundant immuno-
globulin in the human body, with a plasma concentration of 700–1600 
mg/dL [35]. The high half-life of IgG (21–25 days) is due to its binding 
on Fcγ receptors, which in turn protects IgG from lysosomal degrada-
tion. One theory on IVIG effect in auto-immune conditions is that IVIG 
supersaturates these Fcγ receptors leading to marked decrease of auto- 
IgG antibody half-life. It is the same Fcγ blockade that caused an in-
crease in platelets in immune thrombocytopenic purpura (ITP) through 

IVIG use [39]. 
IgG consists of two heavy chains and two light chains, which can be 

broken down into two regions through the action of proteases: an Fab 
region, responsible for reversible and noncovalent antigen binding; and 
an Fc region of IgG which binds to macrophages, monocytes, neutrophils 
and dendritic cells [66]. The Fab region of IgG works through neutral-
ization of the pathogens, preventing attachment to host cells and 
opsonization or binding of IgG to a pathogen, leading to macrophagic 
phagocytosis. The Fc region binds to Fcγ receptors on various immune 
cells leading to either activation or inhibition of immune response. It can 
induce phagocytosis in macrophages, for example [67]. Other functions 
include regulation of apoptosis, release of proinflammatory cytokines, 
upregulation of Fcγ receptors in B cells, maturation and differentiation 
of immune cells, modulation of antigen-presenting cells, and regulatory 
T cell function. The IVIG is a highly purified preparation that can also 
function as the regular Ig in neutralizing exogenous antigens on path-
ogens as in the case of SARS-CoV2 or endogenous pathogens [10], 
usually prepared by pooling serum from three thousand to ten thousand 
donors, which are processed and stabilized for use in autoimmune, in-
flammatory and degenerative disorders and refractory bacterial and 
viral infections [49]. The risk of infectious disease transmission is 
reduced through screening donors, effectively evaluating donor prod-
ucts for infectious products and usage of virus inactivation methods 
[68,69]. 

Clinical use 

IVIG is a standard of care in many primary and secondary immu-
nodeficiency syndromes. Indeed, higher doses of IVIG reduced the 
occurrence of pneumonia in primary immunodeficiency syndromes. 
However, this was not the case for chronic airway infections such as 
chronic sinusitis. IVIG is thought to mount a humoral immune response, 
which is most commonly deficient in the primary immunodeficiency 
population. In secondary immunodeficiency syndromes such as AIDS, 
where patients present with low CD4+ T cell counts, IVIG exhibited 
protective effects against bacterial, viral and fungal infections [70–72]. 
Secondary humoral immunodeficiencies are also seen in malnutrition 
and cancers for which low-dose IVIG is used to reduce life-threatening 
infections [73]. 

IVIG can also exert immunomodulating effects on autoimmune dis-
orders such as immune thrombocytopenic purpura (ITP), whereby a 
high-dose IVIG increased the platelet count and decreased a patient’s 
need for frequent platelet transfusions [74]. IVIG is also employed in 
other autoimmune conditions such as idiopathic juvenile arthritis, der-
matomyositis, polymyositis, catastrophic antiphospholipid syndrome 
(CAS), ANCA-related vasculitis and myasthenia gravis. COVID-19 has 
shown to resemble inflammatory syndromes in its most serious ICU 
settings, and this is substantiated not only from the clinical picture, but 
also through serum inflammatory markers such as ESR and CRP [75]. 

Dosage 

A low-dose of 400 mg/kg IVIG is given once every three to four 
weeks for most immunodeficiency syndromes, as a typical part of 
replacement therapy. However, for inflammatory, auto-immune and 
infectious etiologies, the dosage used can reach of 2000 mg/kg given 
across a period of two to five days, often referred to as high dosage. This 
is because IVIG has a paradoxical effect at high-doses; leading to more 
immunomodulatory and anti-inflammatory effects [10,35]. A hyperim-
mune therapy consists of a single intramuscular dose after suspected 
exposure of a pathogen. Sometimes a hyperimmune therapy is also given 
as IVIG, such as the respiratory syncytial virus (RSV) IVIG [76]. 

Adverse reactions 

Collectively, while the overall safety profile of IVIG is high, certain 

Table 2 
Summary of the effects of intravenous immunoglobulin (IVIG) treatment upon 
components of both innate and acquired immunity.  

Innate Immunity 
Component 

Effect of IVIG on component 

Natural Killer (NK) cells - Increased activation 
- Increased cytokine production and degranulation 
- Increased anti-tumor effect 
- Migration from blood to tissue 

Dendritic cells (DCs) - Decreased endocytosis 
- Decreased pro-inflammatory cytokine production 
- Increased anti-inflammatory cytokine production 
- Decreased differentiation 
- Increased NK cell-mediated ADCC 
- Decreased expression of MHC class II and co- 
stimulatory molecules 
- Decreased DC-mediated T cell activation 
- Decreased expression of activating FcγR 
- Increased expression of CD1d 

Macrophages - Increased production of IL-1Ra 
- Decreased activation 
- Decreased production of pro-inflammatory 
cytokines 
- Decreased expression of IFN-γR2 
- Decreased expression of activating FcγR 
- Blockade of activating FcγR 
- Increased expression of inhibitory FcγRIIB 

Neutrophils - Decreased activation due to IgG monomers 
inhibiting FcγR 
- Increased activation by IgG dimers binding FcγR or 
by ANCA 
- Decreased adhesion to endothelium 
- Increased death by Siglec  

Acquired Immunity 
Component 

Effect of IVIG on component 

T cells - Increased apoptosis 
- Decreased IL-2 production 
- Decreased differentiation 
- Decreased activation and proliferation 

Treg cells - Increased production 
- Increased suppressive action 

B cells - Increased apoptosis 
- Decreased proliferation 
- Regulation of antibody production 
- Increase in inhibitory FcγRIIB 
- Neutralization of survival factors 
- Inhibition of activating FcγR  
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risks are also associated with IVIG. For example, IVIG potentially could 
result in the deposition of antigen–antibody complexes by intradermal 
injection of antigen into a person who is already sensitized, forming 
from type-three hypersensitivity reaction, a phenomenon termed the 
arthus reaction [77]. Most immediate adverse reactions occur within an 
hour, and range from mild symptoms of headache, fatigue, fever and 
chills to severe adverse reactions such as myalgia, erythema, flushing, 
hyper- or hypotension and fluid overload. Transfusion-related acute 
lung injury (TRALI), acute renal failure, anaphylactic shock, arrhyth-
mias, aseptic meningitis are lesser common immediate adverse re-
actions. A small percentage of patients have delayed presentation which 
appear as infections at the transfusion site or renal impairment [78]. 
Mild to moderate reactions are treated with ceasing the treatment, 
changing the infusion rate, or applying supportive treatment for the 
various symptoms. Switching to subcutaneous immunoglobulin (SCIG) 
is also an option. A non-sugar IVIG preparation may be used to prevent 
osmotic renal injury in patients with renal failure [79]. 

Conclusions 

Collectively, several strategies and therapeutic options have been 
examined for efficacy in treatment since the start of COVID-19 outbreak 
with very mixed results. While promising candidates for treatment have 
emerged such as Dexamethasone, others have not quite lived up to ex-
pectations such as Remdesivir. Even in the case of current success 
stories, however, modes of treatment that would be able to benefit most 
COVID-19 patients has yet to be established. To this degree, while a not 
extensively examined in the context of COVID-19, IVIG presents with a 
promising avenue of investigation to potentially treat at least those 
exhibiting severe symptoms. Indeed, the rationale underlying IVIG are 
its anti-inflammatory effects, being utilized for other inflammatory 
conditions and infectious diseases, which is a category of disease that 
COVID-19 seems to increasingly occupy. Perhaps an area which is not 
yet entirely clear, would be the efficacy of IVIG on addressing/treating 
novel variants of SARS-CoV-2, as such aspects have thus far generated 
numerous obstacles to suppressing the spread of the virus. While the 
proposed mechanisms of IVIG action involve bolstering various aspects 
of both the innate and acquired immune systems in the body and should 
thus remain effective against various variants. However, such aspects 
are purely hypothetical and would need focussed studies to ascertain 
efficacy rates. 
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