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Osteoarthritis (OA) is the most common joint disease. With the increasing aging
population, the associated socio-economic costs are also increasing. Analgesia and
surgery are the primary treatment options in late-stage OA, with drug treatment only
possible in early prevention to improve patients’ quality of life. The most important
structural component of the joint is cartilage, consisting solely of chondrocytes.
Instability in chondrocyte balance results in phenotypic changes and cell death.
Therefore, cartilage degradation is a direct consequence of chondrocyte imbalance,
resulting in the degradation of the extracellular matrix and the release of pro-
inflammatory factors. These factors affect the occurrence and development of OA. The
P2X7 receptor (P2X7R) belongs to the purinergic receptor family and is a non-selective
cation channel gated by adenosine triphosphate. It mediates Na+, Ca2+ influx, and K+

efflux, participates in several inflammatory reactions, and plays an important role in the
different mechanisms of cell death. However, the relationship between P2X7R-mediated
cell death and the progression of OA requires investigation. In this review, we correlate
potential links between P2X7R, cartilage degradation, and inflammatory factor release
in OA. We specifically focus on inflammation, apoptosis, pyroptosis, and autophagy.
Lastly, we discuss the therapeutic potential of P2X7R as a potential drug target for OA.
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INTRODUCTION

Osteoarthritis (OA), as an age-related degenerative joint disease, presents with physical pain and
disability in patients. Finding effective therapies for OA remains a pertinent health problem (Carr
et al., 2012). The occurrence and development of OA can be attributed to multifaceted factors, such
as age, obesity, exercise, and trauma (Uthman et al., 2013). From a clinical perspective, its features
include articular cartilage loss, synovitis, subchondral bone sclerosis, and osteophyte formation.
From a cellular perspective, it is attributed to morphological, biochemical, and biomechanical
changes affecting the extracellular matrix (ECM).

The most important structural part of the joint is the cartilage, and its condition directly affects
the occurrence and development of OA. Cartilage consists of structural proteins, such as collagen
(primarily type II collagen), non-collagen proteins, proteoglycan, elastin, and aminoglycan, which
form a stable network structure providing elasticity and compression resistance to joints. In
OA tissues, this network structure loses its integrity with a resulting loss of tensile strength
(Speziali et al., 2015). The composition and integrity of the cartilage matrix can be maintained
by chondrocytes—which account for a small proportion of the total cartilage volume—to provide
mechanical support and joint lubrication (Archer and Francis-West, 2003). In response to certain
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chemical and mechanical factors, chondrocytes produce
and release inflammatory factors (IL-1β, IL-6, and TNF-α)
and secrete matrix-degrading enzymes [metalloproteinases
(MMPs)] and proteoglycan-degrading enzymes (ADAMTS),
to regulate the shape and structure of cartilage. Unfortunately,
these inflammatory factors and enzymes are the primary
contributors to cartilage degradation. Therefore, the occurrence
and development of OA can be ascribed to the state and the
catabolism balance of chondrocytes and cartilage. In OA, the
changes in the chondrocytes can be categorized into three
groups, namely: (i) cell proliferation (early stage)/cell death (late
stage); (ii) anabolic and catabolic balance disorder (production
of matrix-degrading enzymes); and (iii) phenotypic change
(Sandell and Aigner, 2001). The influence of the cell phenotypic
changes in the development of OA is particularly critical. In
this article, we focus on chondrocyte inflammation, apoptosis,
pyroptosis, and autophagy, and analyze the correlation between
these phenotypes and cartilage degradation in OA.

The P2X7 purinergic receptor (P2X7R) is a trimeric adenosine
triphosphate (ATP)-gated cation channel, which is expressed
in several eukaryotic cells, such as immune cells and bone
cells. As a key inflammatory switch, the activation of P2X7R
mediates several downstream reactions, including the release of
inflammatory factors, cell proliferation, death, and phenotypic
changes (North, 2002). Owing to the important role of P2X7R
in various immune, inflammatory, musculoskeletal, and nervous
system diseases, it could be a potential drug treatment target
for OA. In this article, we review the association between
P2X7R and OA. We explain the structure and function and
the inhibitory effect of P2X7R and emphasize the correlation
and intersection between P2X7R, inflammation, and OA.
From the perspective of apoptosis, pyroptosis, and autophagy,
we discuss the possible association between P2X7R, cartilage
degradation, and inflammatory factor release in OA. Further, we
summarize the possible treatment methods, including the use
of P2X7R as a drug target, and highlight the potential future
mechanistic research.

ELUCIDATION OF OA AND ITS
TREATMENT

Focus on Preventing Inflammation
Most studies on OA focus on the synovium-mediated
development of inflammation. Synoviocytes identify the
foreign fragments that fall into the joint cavity as byproducts
of cartilage degradation. This results in synovial angiogenesis,
an increase in the release of auto-inflammatory factors, and the
stimulation of chondrocytes to synthesize and secrete MMPs.
Through this mechanism, synovitis can promote cartilage
degradation and aggravate OA (van Lent et al., 2004). Synovial
fluid factors are increased in the damaged cartilage of OA
patients (Kim et al., 2006), including toll-like receptor (TLR)-2
and TLR-4 ligands, such as alarm proteins [S100 protein and high
mobility group protein B1 (HMGB1)], low molecular weight
hyaluronic acid, tenascin C, and fibronectin (Scanzello et al.,
2008; García-Arnandis et al., 2010; van Lent et al., 2012). These

mediators, together with low-grade inflammation present in the
compromised joints, induce inflammation of the synoviocytes
and affect the catabolism balance of the chondrocytes (Wang
et al., 2011). Therefore, the innate immunity may be a key
factor driving the development of OA. As for mild systemic
inflammation, plasma and peripheral white blood cells can
reflect the level of inflammation in the joint tissues. Adipokines
secreted from visceral fat, such as leptin, resistin, and adiponectin
also play an important role (Gomez et al., 2011), having both
pro- or anti-inflammatory effects on OA development (Distel
et al., 2009). The release of inflammatory factors into the
blood can cause diseases in other parts as well, such as the
inflammation of the nervous system and Alzheimer’s disease
(Kyrkanides et al., 2011).

Clinical Treatment Options
Although our understanding of the mechanism underlining OA
has improved, limited progress has been made with respect to
its treatment. Currently, analgesia and joint replacement are
primarily used to treat end-stage OA (Bijlsma et al., 2011; Carr
et al., 2012; Pivec et al., 2012) which neglects the problem of early
disease incidence. Fortunately, the continuous advancement in
our understanding of OA pathogenesis and the improvement in
detection methods have shifted the focus toward the prevention
and treatment of early OA. Lifestyle adjustments, such as weight
loss and exercise for obese individuals, can enhance muscle
strength and joint stability, improve cardiovascular function, and
reduce the risk of OA (Felson et al., 1992; Gudbergsen et al., 2012;
Uthman et al., 2013).

Drug treatment often goes hand-in-hand with prevention,
with commonly used drugs in clinical practice, such as
paracetamol (acetaminophen) and non-steroidal anti-
inflammatory drugs (NSAIDs) also being able to effectively
relieve pain symptoms (Palmer et al., 2013). Furthermore, the
anti-inflammatory and anti-catabolism properties of chondroitin
and glucosamine have been proven in clinical trials to alleviate
the occurrence and development of OA (Henrotin and Lambert,
2013). Hyaluronic acid, a glycosaminoglycan, can also act
as a lubricant in the synovial fluid. In patients with OA, the
concentration of hyaluronic acid in the joint cavity is low,
and the friction experienced by the joint surfaces during limb
movement increases pain. It must be noted, however, the
clinical efficacy and safety of injecting hyaluronic acid into
the joint cavity remains controversial (Rutjes et al., 2012).
Another lubricating element, lubricin, has been shown to work
synergistically with hyaluronic acid with limited effects (Schmidt
et al., 2007). Several targeted drugs have also been developed to
treat OA, such as MMP inhibitors (doxycycline) (da Costa et al.,
2012), osteoclast inhibitors (bisphosphonates and strontium
ranelate) (Henrotin et al., 2001), IL-1R inhibitors (anakinra)
(Chevalier et al., 2009), immunoglobulins (AMG 108) (Cohen
et al., 2011), TNF-α inhibitors (adalimumab) (Verbruggen et al.,
2012), cartilage repair factors [recombinant osteogenic protein-1
(Nishida et al., 2004) and kartogenin (Johnson et al., 2012)]. The
application of these drugs still needs improvement as there is
still a gap between the desired therapeutic effect and the clinical
outcomes. This implies that more effective and targeted drugs are
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required in the prevention and treatment of OA. Therefore, an
in-depth exploration of the particular etiology and pathogenesis
of OA is critical.

THE P2X7 RECEPTOR

P2X7R Structure and Function
Purine receptors can be divided into two categories: adenosine
(ADO) activated P1 receptors and purine and pyrimidine
nucleotides (ATP and ADP) activated P2 receptors. P2 receptors
can further be divided into P2X ion channel receptors and
P2Y metabotropic receptors. There are seven different members
of the P2X family (P2X1-7), of which the P2X7 receptor
(P2X7R, encoded by the P2RX7 gene) is most closely related to
inflammation and immunity, and belongs to the trimeric ligand-
gated cation channel. Compared with other P2X receptors,
P2X7R requires a higher concentration of ATP for activation
and has a higher affinity for the selective agonist BzATP,
with 10–30 times more potency than ATP (North, 2002). In
addition, natural splice variants (P2X7A-J) and (P2X7a, P2X7k,
P2X713b, and P2X713c) were found in human and rodent tissues,
respectively, with P2X7R sharing 77–85% sequence identity.
Therefore, several experiments have used rodent models to study
the function of P2X7R.

Structurally, P2X7R contains relatively short intracellular
amino- (N) and long carboxyl- (C) termini, and two hydrophobic
transmembrane fragments separated by glycosylated extracellular
ATP binding domains (transmembrane domains); its topology is
similar to that of other ionic P2X receptors (Khakh and North,
2006; Karasawa and Kawate, 2016). The functional channel
toward the plasma membrane is composed of stable trimers
(Nicke, 2008; Jiang et al., 2013). Moderate activation occurs when
the receptor is bound to ATP. The gated state of P2X7R is opened,
mediating non-inactivated Na+ and Ca2+ influx and K+ efflux,
resulting in rapid depolarization (Surprenant et al., 1996). When
the activation time is prolonged, P2X7R can induce the formation
of membrane pores, allowing molecules up to hundreds of Da to
pass (Pelegrin and Surprenant, 2006).

P2X7R Activation and Regulation
The transcription and expression of P2X7R can be regulated
by microRNAs [e.g., miR-373 (Zhang et al., 2018)], long-coding
RNAs (e.g., lncRNA NONRATT021972), and transcription
factors [e.g., specific protein 1 (Sp1)], and P2X7R will also
undergo post-translational modifications, including N-linked
glycosylation, palmitoylation, and ADP-ribosylation (Sluyter,
2017). The most important mediator for the activation of
receptors is ATP and its role in inflammation and immunity has
been proven. Cell death in inflammatory tissues releases large
amounts of ATP, increasing the extracellular ATP concentration
to hundreds of µM, which is enough to activate P2X7R. In
contrast, the extracellular ATP concentration in healthy tissues
is very low (Pellegatti et al., 2008; Wilhelm et al., 2010; Barbera-
Cremades et al., 2012). In addition to passive release, ATP can
also cross incomplete cell membranes through specific membrane
protein channels, or can be stored in cytoplasmic vesicles and

secreted outside the cell (Burnstock, 2006). Other mechanisms,
such as the one mediated by the gap junction protein pannexin-
1, control the release of ATP from living or apoptotic cells. Under
certain conditions, such as hypoxia, increased extracellular K+
concentration, and mechanical stress stimulation, pannexin-1 has
high ATP permeability (Wang and Dahl, 2018). In undamaged
tissues, a small amount of ATP in the extracellular environment
will be rapidly degraded by enzymes (Plesner, 1995). Therefore, to
activate P2X7R, the ATP release channel and the receptor should
be in close proximity, which explains the closely related protein
functions and structures of pannexin-1 and P2X7R (Bao et al.,
2004; Pelegrin and Surprenant, 2006; Locovei et al., 2007).

The P2X7 receptor activation mediates numerous signaling
pathways and cellular responses, such as the activation of the
NLRP3 inflammasome via K+ efflux, which induces IL-1β release;
the formation of mitochondrial reactive oxygen species (mtROS)
via ATP signaling, which can also regulate the activity of P2X7
ion channels; the regulation of caspase, cathepsin, and MMP
release; and the regulation of the pro-inflammatory mediator
prostaglandin E2 (PGE-2). PGE-2 is an important downstream
inflammatory pathway of P2X7R, which may make P2X7R a
potential anti-inflammatory target to replace cyclo-oxygenase
that regulates the activation of transcription factors, such as NF-
κB p65, HIF-1α, and PI3K-AKT; glutamate efflux; endocytosis;
cell proliferation; and cell death. Briefly, P2X7R regulates ion
flow, protease activation, and various secretory responses, which
constitute the most common signaling pathways in inflammation
(Bartlett et al., 2014). Therefore, P2X7R is also known as an
inflammatory switch.

P2X7R AND OSTEOARTHRITIS

The importance of P2X7R in inflammation has recently attracted
attention in the field of bone-related diseases. It has critical
influence on OA, synovitis, and rheumatoid arthritis. This
has opened a way for P2X7R inhibitors (as a specific target-
directed approach) to serve as potential new therapeutics
for these diseases.

P2X7R as an Inflammatory Switch
When OA occurs, the most significant cellular response
is inflammation, which can be triggered by external and
internal mechanisms. External factors include mechanical stress
(compression, stretching, hydrostatic pressure, and shear stress),
while the mechanoreceptors (ion channels and integrins) present
on the surface of joint cells convert abnormal mechanical stress
into activated intracellular signals (Guilak, 2011). Accordingly,
the activation of the NF-κB and mitogen-activated protein
kinase (MAPK) signaling pathways is commonly observed
(Signaling, 2004).

Exercise as an Anti-inflammatory Mechanism
In daily life, physical exercise causes mechanical stress on
joints that can be beneficial. Studies have shown that regular
exercise can alleviate low-intensity inflammatory conditions, as
are observed in OA, cancer, and cardiovascular disease, and
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reduce the risks associated with a high-fat diet. P2X7R is one
of the factors that determine the level of IL-1β in the plasma
after exercise. Furthermore, P2X7R, NF-κB, NLRP3, and caspase-
1 levels have been shown to progressively increase between
sedentary individuals, trained athletes, and endurance athletes
(Comassi et al., 2017). Post-exercise, NLRP3 and caspase-1
levels increased in sedentary individuals (pro-inflammatory),
while they decreased in endurance athletes (anti-inflammatory).
Regardless of the degree of fitness, acute exercise increased
P2X7R expression and function. In another study, exercise
reduced the expression levels of P2X7R, NLRP3, caspase-1, and
IL-1β in plasma caused by a high-fat diet in Sprague Dawley rats,
inhibiting inflammation and apoptosis, enhancing autophagy,
and reducing myocardial damage (Chen et al., 2019). It is thus
evident that P2X7R plays an important role during exercise to
relieve inflammation and other risk factors.

Cytokine Secretion During Inflammation
The P2X7 receptor regulates the intensity and duration of
several inflammatory reactions (Ferrari et al., 2006; Khakh
and North, 2006; Dubyak, 2012). In macrophages, monocytes,
and microglia, P2X7R mediates Ca2+ influx and K+ efflux
inducing the activation and release of cytokines (Kahlenberg and
Dubyak, 2004; Ferrari et al., 2006). This initiates inflammasome
assembly, while caspase-1 pro-IL-1β cleavage releases a large
amount of mature IL-1β (MacKenzie et al., 2001; Pelegrin
et al., 2008; Dubyak, 2012). IL-1β can induce reactive oxygen
species (ROS) and the expression of protein-degrading enzymes,
leading to the loss of type II collagen and proteoglycans,
thereby destroying cartilage structure and affecting joint function
and stability (Sitia and Rubartelli, 2020). IL-1β is an atypical
cytokine lacking secreted fragments which does not follow the
standard endoplasmic reticulum-Golgi pathway for extracellular
release (Dinarello, 2002). Instead, it functions via an ATP-
dependent P2X7R-inflammasome pathway by TLR stimulation-
induced accumulation of pro-IL-1β in the cytoplasm followed
by its subsequent release (Perregaux et al., 2000; Ferrari
et al., 2006). Other mechanisms of cytokine release occur
through passive release after cell death, and secretion by
modified lysosomes, exosomes, or plasma membrane-derived
microvesicles (MacKenzie et al., 2001; Lopez-Castejon and
Brough, 2011; Piccioli and Rubartelli, 2013). In all these instances,
P2X7R is the main driver (Bianco et al., 2005; Pizzirani et al.,
2007; Qu et al., 2007), further emphasizing its key role in the
release of biologically active IL-1β.

Oxidative Stress in Inflammation
Among the internal factors contributing to the development of
OA, ROS play a pivotal role. ROS comprise molecules containing
free radicals, including oxygen free radicals (OH−), hypochlorite
ions (OCl−), superoxide anions (O2

−), nitric oxide (NO), and
hydrogen peroxide (H2O2). ROS is mainly produced through
the following pathways: mitochondrial (through oxidative
phosphorylation) and non-mitochondrial membrane-bound
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
and xanthine oxidase (XO) pathways (Turrens, 2003). When
the catabolic cell balance is disturbed, the accumulation of

ROS leads to an increase in the production of inflammatory
mediators, and an ineffective elimination of the oxidized proteins.
This ultimately triggers oxidative damage that exacerbates
inflammation (Licastro et al., 2005). Oxidative stress can promote
cell senescence, especially affecting chondrocytes (Loeser, 2011).
Chondrocytes have a low ability to divide and proliferate with
high ability to synthesize and secrete, a circumstance called
the senescence-associated secretory phenotype (SASP) (Coppe
et al., 2010). ROS normally occurs at low levels in chondrocytes
but can still regulate gene expression, affect ECM synthesis
and catabolism balance, drive the production of cytokines,
such as IL-1β (Forsyth et al., 2005), and induce cell apoptosis.
The exacerbated oxidative stress in chondrocytes inhibits the
PI3K/Akt pathway; activates the NF-κB pathway to promote
the transcription of MMPs; activates the extracellular signal-
regulated kinase (ERK)/MAPK pathway to reduce the expression
of type II collagen, proteoglycans, and Sox-9; reduces ECM
synthesis (Yin et al., 2009; Yu and Kim, 2015); and acts as a
signal transduction intermediate for IL-1β and TNF-α in the
c-Jun N-terminal kinase (JNK) pathway activation (Lo et al.,
1996). Therefore, ROS plays an important role in the intracellular
signal transduction mechanisms and is closely related to cartilage
homeostasis (Rathakrishnan et al., 1992; Henrotin et al., 1993;
Henrotin et al., 2003).

Significance of P2X7R in Inflammation
Summarily, the ion flow mediated by P2X7R activation is closely
related to the homeostasis of the intracellular environment.
Mitochondrial dysfunction caused by Ca2+ overload can induce
the production of ROS. Activation of inflammasomes triggered
by K+ efflux can induce the production of IL-1β and the
activation of inflammation-related pathways. This indicates the
important role of P2X7R in inflammation and its potential
influence on the occurrence and development of OA. In terms
of preventive treatment and cytokine treatments were not
found to significantly improve the symptoms of OA or relieve
the deterioration of bone structure. The results of pilot and
controlled studies using anti-IL-1 and anti-TNF molecules lack
credibility (Chevalier et al., 2009; Verbruggen et al., 2012). In this
context, P2X7R-targeted therapy could present as a new direction
for the prevention and treatment of OA.

P2X7R Induces Apoptosis in OA
When a cell undergoes apoptosis, the chromatin condenses
around the nucleus, the cell membrane shrinks and bubbles, and
apoptotic bodies with intact membranes form around organelles
(Kerr et al., 1972). Upon recognition by the immune system,
inflammation is induced. This can be prevented, however, by the
phagocytic engulfment of these vesicles (Kurosaka et al., 2003).
Apoptosis is a programmed cell death, which differs from passive
necrosis (or cell membrane disintegration) caused by pyroptosis.
At the molecular level, initiation, execution, degradation, and
clearance are the established sequential steps of apoptosis.

Apoptotic Pathways
Apoptosis can be induced via extrinsic mediation by death
receptors and via intrinsic mediation by mitochondria
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(Elmore, 2007). The extrinsic pathways include damage or
pathogen-related molecular patterns (DAMPs or PAMPs)
and cytokines that activate the TNF superfamily (e.g., death
receptors). The death receptor Fas and its ligand FasL combine
to drive the assembly of the death-inducing signaling complex
(DISC). Thereafter, the recruitment and activation of caspase-8
are mediated by Fas-related proteins and death domain (FADD)
adaptor molecules, which leads to caspase-3 activation, and
finally apoptosis (Fuentes-Prior and Salvesen, 2004). P2X7R
is closely related to apoptosis. IL-1β, mediated by P2X7R, can
further induce the production of TNF-α, both having pro-
apoptotic effects (Lee et al., 2016). The membrane pores formed
by P2X7R (Donnelly-Roberts et al., 2004), together with its
mediated K+ efflux (Delarasse et al., 2009; Aguirre et al., 2013),
can induce the activation of caspase-8 and subsequently cleave
caspase-3, the key executor of apoptosis.

Intrinsic pathways include those mediated by DNA damage,
cytoplasmic Ca2+ overload, oxidative or endoplasmic reticulum
stress (ERS), decreased cytokine levels, and the response
to intracellular damage (Vanden Berghe et al., 2015). Bcl-2
family members respond by changing the permeability of the
mitochondrial outer membrane (Kroemer and Reed, 2000). The
activation of its priming members (e.g., Bid) not only inhibit
survival supervisory members (e.g., Bcl-2), but also oligomerize
pro-apoptotic members (e.g., Bax), thereby destroying the
mitochondrial outer membrane. A large number of proteins
are released into the cytoplasm, such as cytochrome c (Cyt
c) (Qiu et al., 2000), activating a key component of apoptotic
bodies, namely the apoptotic protease activator factor-1 (APAF-
1) (Green, 2003). Cyt c combines with oligomeric APAF-1 to
form a multimeric structure, recruiting and activating caspase-9
in the mitochondrial pathway (Bao and Shi, 2007). Caspase-
9 directly activates downstream caspase-3, 6, and 7, ultimately
leading to substrate cleavage and apoptosis. In addition to
the inflammasome assembly caused by the intracellular K+
consumption, K+ efflux can also induce apoptosis by promoting
APAF-1 (Bortner et al., 1997; Karki et al., 2007). Furthermore,
Ca2+ influx can lead to mitochondrial dysfunction and caspase-
3 activation. As P2X7R plays a crucial role ion transport,
P2X7R inhibitors have shown promise in preventing cell death
dependent on these mechanisms (Nishida et al., 2012).

Oxidative Stress in Apoptosis
Reactive oxygen species (e.g., H2O2) damages mitochondria as
part of the apoptotic intrinsic pathway, destroying its DNA
integrity and repair ability (Grishko et al., 2009). This can induce
chondrocyte apoptosis through PI3K/Akt, p38 MAPK, and JNK
signaling pathways (Yu and Kim, 2014; Li and Dong, 2016;
Rao et al., 2017). As mentioned earlier, P2X7R can induce the
generation of ROS, and the activation of P2X7 will increase the
phosphorylation of tyrosine protein, activating MAPK (Panenka
et al., 2001; Papp et al., 2007), including ERK, JNK, and p38
MAPK. ERK is essential for cell survival, while JNK and p38
MAPK can be activated under stress stimulation (Wada and
Penninger, 2004; Yang et al., 2012). JNK phosphorylates Bcl-
2 to reduce its anti-apoptotic activity (Cui et al., 2007), and
p38 MAPK reduces the expression of Bcl-2 and induces the

production of caspase-3, leading to apoptosis (Nishida et al.,
2012). The NF-κB signaling pathway closely relates to P2X7R
involvement in chondrocyte apoptosis, since it can affect the
expression of apoptosis-related proteins (Bcl-2, Bax, Cyt c, and
caspase-3) (Pan et al., 2018).

Chondrocyte Apoptosis
Unregulated apoptosis can lead to pathological changes, such
as tumors and inflammation. Apoptosis is both the initiator
(Hashimoto et al., 1998) and feedback in the development of OA
(Blanco et al., 1998; Heraud et al., 2000). Specifically, chondrocyte
apoptosis is considered a prerequisite for the development of OA.
Compared with the normal cartilage, the number of apoptotic
chondrocytes is increased in the cartilage of OA patients
(Hashimoto et al., 1998), while that of normal chondrocytes
is decreased (Aigner et al., 2006), and a dysregulation of
apoptosis-related genes occurs (Bobinac et al., 2003). In addition,
animal studies showed that low levels of mechanical stress
stimulation can induce chondrocyte apoptosis, with high levels
of mechanical stress stimulation leading to the degradation
of the cartilage matrix (Loening et al., 2000). This indicates
that chondrocyte apoptosis occurs first, followed by tissue
damage, reflecting early features of OA. Therefore, chondrocyte
apoptosis also represents the feedback of the outcome of OA
(Zamli et al., 2013). In transgenic mice with type II collagen
gene knockout, chondrocytes undergo increased apoptosis, have
lower survival, and no longer interact with the surrounding
matrix, and there is presentation of severe cartilage degradation,
compared to the wild-type mice (Zemmyo et al., 2003). Several
studies have confirmed the positive relationship between the
severity of cartilage degradation and the rate of chondrocyte
apoptosis (Blanco et al., 1998; Hashimoto et al., 1998; Thomas
et al., 2007). Some studies used collagenase to destroy the
matrix, increasing cell permeability to expose the chondrocytes
to apoptosis inducers (NO and cytokines) secreted by either
synoviocytes or other chondrocytes, ultimately leading to cell
apoptosis (Zamli and Sharif, 2011). Taken together, although
the sequence of cartilage degradation and chondrocyte death
is still controversial, they are undeniably closely related in OA
(Zamli and Sharif, 2011).

Interplay With Pyroptosis
Apoptosis does not always occur in isolation and often
accompanies other phenotypes. In the early stage of OA,
autophagy plays a protective role to prevent cell death on the
surface and middle layers of cartilage (Almonte-Becerril et al.,
2010; Carames et al., 2010); while in the late stage of OA,
autophagy induces apoptosis and accelerates cell death (Almonte-
Becerril et al., 2010). In the cartilage of patients with OA, the
apoptotic bodies that have not been engulfed in time, together
with increasing cartilage calcification, aggravate OA through
secondary pyroptosis (Roach et al., 2004). The cell death caused
by apoptosis and pyroptosis have also been confirmed in a
model of OA induced by mechanical stress (Chen et al., 2001;
Stolberg-Stolberg et al., 2013). In vivo and in vitro experiments
showed that the application of mechanical stress to the
chondrocytes of human cartilage explants (D’Lima et al., 2001),
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end plates (Kong et al., 2013), or growth plates (Sun et al., 2017)
can lead to the loss of type II collagen, proteoglycans, and
glycosaminoglycans, accompanied by cell death. The protective
role of antioxidants must briefly be mentioned as they can reduce
cell death caused by shear stress (Martin and Buckwalter, 2006)
and abnormal cyclic loading (Beecher et al., 2007).

Significance of P2X7R in Apoptosis
In summary, P2X7R-mediated ion flow, oxidative stress, and
related signaling pathways are closely related to apoptosis.
Apoptosis is complemented by OA under the action of autophagy
and pyroptosis. Thus, P2X7R plays an important role in
the interaction between apoptosis and OA. It participates in
cartilage degradation and inflammatory factor release, aiding the
progression to OA.

P2X7R Drives Pyroptosis in OA
Apoptosis and pyroptosis can occur independently, sequentially,
and simultaneously (Zeiss, 2003). Both have common triggers
and biochemical networks. The intensity and duration of
different stimuli, the amount of ATP that can be consumed in
the cell, and the potency of caspases can convert the ongoing
process of apoptosis into pyroptosis (Leist et al., 1997; Denecker
et al., 2001; Zeiss, 2003). The process of accidental and passive
cell death caused by harmful stimuli (ultraviolet radiation, heat,
hypoxia, and cytotoxic drugs), accompanied by cytoplasmic
granulation, mitochondrial swelling, cell swelling, rupture of
the plasma membrane, and uncontrolled release of intracellular
substances (including pro-inflammatory cytokines, DAMPs, and
lysosomal enzymes), causes an inflammatory response called
pyroptosis (Festjens et al., 2006; Kaczmarek et al., 2013).

NLRP3 as the Initiator of Pyroptosis
NLRP3, as one of the components of the inflammasome (the
core component of pyroptosis) exists in the cytoplasm and can
recognize PAMPs (such as pore-forming toxins and microbial
cell wall components) or DAMPs (such as ATP derived from
endogenous stress and uric acid crystals) (McGilligan et al.,
2013; Guo et al., 2015; Sharma and Kanneganti, 2016). NLRP3
activates caspase-1, promoting the secretion of IL-1β and IL-
18 to exacerbate inflammation (Shao et al., 2015), resulting in
rapid cell death (Latz et al., 2013). There are two main ways
to activate inflammasomes. The first is through the recognition
of PAMPs or DAMPs by TLRs to activate the NF-κB signaling
pathway, increasing the synthesis of NLRP3, pro-IL-1β, and
pro-IL-18; the second is by initiating oligomerization, leading
to the assembly of inflammasomes (Shao et al., 2015). Both
kinase activity and autophagy can regulate the activity of the
NLRP3 inflammasome (Yang et al., 2017). Autophagy relieves
pyroptosis by degrading pro-IL-1β, inflammasome components,
and damaged mitochondria (Zhou et al., 2011; Shi et al., 2012).

As a key activator of inflammasomes, P2X7R participates
in both the classical pathway (e.g., NLRP3) and non-classical
pathway (e.g., caspase-11). The latter induces cell death similar
to pyroptosis (Vigano and Mortellaro, 2013; de Gassart and
Martinon, 2015). The C-terminal part of pannexin-1 can be
cleaved by caspase-11, leading to ATP release and K+ efflux

(Yang et al., 2015). Hypoxia-induced caspase-11 expression and
activation (Kim et al., 2003) are involved in ERS-dependent
cell death (Fradejas et al., 2010). P2X7R and NLRP3 can
also interact physically. Immunoprecipitation and confocal
microscopy studies have found that changes in the local
ionic microenvironment in cells caused by P2X7R or by a
membrane pore opening can result in inflammasome assembly
(Franceschini et al., 2015).

Under normal circumstances, inflammasomes activate the
innate immune system, producing IL-1β, IL-18, and other pro-
inflammatory cytokines to protect cells from infection and
reduce damage (Man and Kanneganti, 2015). However, excessive
activation of inflammasomes overproduce cytokines, causing
inflammation and metabolic disorders (Strowig et al., 2012).
NLRP3 is an established potential target for diseases, such
as atherosclerosis, rheumatoid arthritis, and gout. NLRP3 is
also activated in the synovial tissue contributing to cartilage
degradation (Bougault et al., 2012). In patients with OA, high
NLRP3 expression in tissue has been linked to high XO levels
(an enzyme producing ROS and uric acid), further confirming
the association between OA and NLRP3 inflammasomes
(Clavijo-Cornejo et al., 2016).

As stated before, cartilage degradation in OA can result from
disrupted anabolic and catabolic chondrocyte balance (Bijlsma
et al., 2011). Once initiated, the primary cartilage-degrading
enzymes, IL-1β and TNF-α, are produced by the NLRP3
inflammasome (Mueller and Tuan, 2011; Haseeb and Haqqi,
2013). IL-1β both induces cell apoptosis (Haseeb and Haqqi,
2013) and stimulates the secretion of other cartilage-degrading
enzymes, such as MMP3/13 and ADAMTS-4/5 (Mueller and
Tuan, 2011), leading to the degradation of the type II collagen
and the proteoglycans of the ECM (Haseeb and Haqqi, 2013).
The released collagen and proteoglycan particles stimulate the
production of IL-18 (Olee et al., 1999; Man and Mologhianu,
2014), which inhibits proteoglycan synthesis and chondrocyte
proliferation, promotes prostaglandin production, and further
induces apoptosis (Jin et al., 2011).

Significance of P2X7R in Pyroptosis
Targeting the components of inflammasomes and upstream and
downstream pathways, such as K+ efflux, ROS, mitochondrial-,
and lysosome dysfunction, is an important approach in the
treatment of OA (Di Virgilio, 2013; He et al., 2016). The
small molecule inhibitor MCC950 inhibits the oligomerization of
inflammasomes and IL-1β release (Coll et al., 2015). Drugs that
target IL-1R, such as rilonacept, anakinra, and canakinumab, can
also reduce cartilage destruction (Dinarello et al., 2012). As an
important driving force of the inflammasome pathway, P2X7R
has potential as a drug target treatment to alleviate cartilage
damage caused by pyroptosis.

P2X7R Regulates Autophagy in OA
Cells degrade excess or damaged lipids, proteins, and organelles,
to maintain cell viability through autophagy. Autophagy also
plays a role in maintaining mitochondrial function (Lo Verso
et al., 2014), as the downregulation of autophagy will induce the
accumulation of damaged mitochondria, increase the levels of
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ROS, and lead to tissue degeneration (Mizushima and Komatsu,
2011). Autophagic flux can be divided into five stages: (i)
induction, (ii) nucleation, (iii) extension, (iv) maturation, and
(v) lysis. A complex is formed in each of the first three stages.
In the induction phase, the Atg1 complex (including Atg1/Ulk1,
Atg13, and Atg17/FIP200) and the activity of mammalian
target of rapamycin complex 1 (mTORC1) is inhibited, Atg13
phosphorylation level is reduced, and the complex is formed
(Ganley et al., 2009). The Vps34 (PI3K)-Atg6 (Beclin-1) complex
acts on the nucleation of the membrane vesicles and mediates the
formation of the pre-autophagosome structure. The extension of
autophagosomes mainly depends on two ubiquitin-like systems:
the binding process of Atg12-Atg5 and the modification process
of LC3. LC3-II is a multi-signal transduction regulatory protein
that is located on the autophagy vesicle membrane and is often
used as a marker for autophagy formation.

Chondrocyte Autophagy
Cartilage lacks blood vessels to supply oxygen, thus cells
exist in a somewhat hypoxic environment. Hypoxia promotes
autophagy (e.g., through an increase in Ulk1 and Atg5 mRNA
levels), maintains the chondrocyte phenotype (e.g., increased
Sox9 and type II collagen mRNA levels, decreased MMP13
and ADAMTS-5 mRNA levels), and further induces hypoxia
factors (HIFs) (Coimbra et al., 2004), which play important
roles as key regulators of autophagy in chondrocytes. HIF-1
is a heterodimer composed of two different subunits, HIF-1α

and HIF-1β. Under hypoxic conditions, HIF-1α degradation is
prevented and transferred to the nucleus, where it combines
with β subunits to form an active HIF-1 transcription factor.
HIF-1α is essential for cell survival, and its knockout induces
mass chondrocyte death in the cartilage growth plate (Schipani
et al., 2001). Bcl-2 plays a role in HIF-1α-mediated autophagy
(Zhang F. et al., 2015), while HIF-1α modulates the Beclin-
1/Bcl-2 complex (Bohensky et al., 2007), activates AMPK,
inhibits mTOR (Bohensky et al., 2010), induces chondrocyte
autophagy, and prevents apoptosis. P2X7R is also closely related
to HIF-1α and autophagy (Mascanfroni et al., 2015). The ATP-
P2X7R signal axis driven by oxidative metabolism participates
in the differentiation of bone marrow-derived macrophages
into their M2 type (Barbera-Cremades et al., 2016). HIF-
1α also plays a key role in this process. For example, HIF-
1α promotes lactic acid-dependent M2 polarization in the
tumor microenvironment (Colegio et al., 2014). Interestingly,
P2X7R is a strong stimulator of aerobic glycolysis and lactic
acid production (Amoroso et al., 2012). P2X7R receives ATP
signals to stimulate the alkalinization of lysosomes (Guha
et al., 2013), which leads to an increase in the lysosomal
pH. The accumulated autophagosomes cannot be fused with
lysosomes for degradation and release outside the cell, thereby
reducing autophagy flux (Takenouchi et al., 2009a,b). P2X7R
activation downregulates the expression of glutamate transporter
and promotes neuro-autophagy, which increases excitatory
amino acids (Zhang et al., 2008; Działo et al., 2013; Kulbe
et al., 2014) caused by an abnormal stimulation of glutamate
receptors, ultimately resulting in cognitive impairment (Sun
et al., 2015). P2X7R activates PI3K/Akt/GSK3β/β-catenin and/or

mTOR/HIF1α/VEGF pathways to promote the proliferation
and metastasis of osteosarcoma and increase bone destruction
(Zhang et al., 2019).

Significance of P2X7R in Autophagy
Whether P2X7R promotes or inhibits autophagy is still
controversial (Sluyter, 2017). For instance, one study showed
ATP-activated P2X7R to inhibit the PI3K/AKT pathway, activate
the AMPK-PRAS40-mTOR pathway, promote autophagy, inhibit
cell proliferation, and exert anti-tumor effects (Bian et al., 2013).
In another study, LL-37 activated AMPK and PI3K through
P2X7R-mediated Ca2+ influx, promoted autophagy, and aided
in inducing resistence against Mycobacterium tuberculosis in
macrophages (Rekha et al., 2015). In another case, P2X7R-
mediated Ca2+ influx activated mTOR and inhibited Treg cell
conversion (Bohensky et al., 2010). However, to the contrary,
in memory CD8+ T cells, P2X7R receives extracellular ATP
signals to activate AMPK through Ca2+ influx and increase
the AMP/ATP ratio, inhibit mTOR, and enhance mitochondrial
function (Borges da Silva et al., 2018).

The level of autophagy is also related to the activation state
of P2X7R. In the early stage of activation, P2X7R-mediated
K+ efflux and Ca2+ influx activate mtROS, and Ca2+ activates
CaMK, which in turn activates the AMPK pathway, inhibits
mTOR, and promotes mitophagy and lysosome biogenesis. In
the late stage of activation, lysosome stability decreases and
cell death occurs (Sekar et al., 2018). Energy receptor AMPK
(Garcia and Shaw, 2017) is also regulated by exercise (Garber,
2012). High-intensity exercise activates AMPKα to increase
autophagic flux (Schwalm et al., 2015). In skeletal muscle, exercise
induces mitophagy to degrade damaged mitochondria through
the AMPK-Ulk1 signaling pathway (Laker et al., 2017). When
energy is severely lacking, exercise inhibits AMPK/Ulk1/Beclin-
1 phosphorylation, and the accumulated p62/SQATM1 inhibits
autophagy to reduce muscle loss (Martin-Rincon et al., 2019).
As an important downstream signaling molecule of P2X7R,
AMPK is involved in the regulation of several physiological and
pathological functions (Jeon, 2016), including autophagy in OA.

AUTOPHAGY IS A DOUBLE-EDGED
SWORD IN OA

Compared with microautophagy and chaperone-mediated
autophagy, macroautophagy is most studied and understood
(Parzych and Klionsky, 2014). However, the relationship between
cartilage damage, the degree of autophagy, and cell death remains
unclear (Caramés et al., 2015).

The Positive Side of Autophagy
The consensus is that autophagy exerts a protective effect on
chondrocytes in OA. In mice, as cartilage damage increases, and
resulting cell death ensues, the expression levels of autophagy-
related genes decrease (Caramés et al., 2015). In cell lines and
primary chondrocytes, decreased autophagy leads to cartilage
degradation (Ribeiro et al., 2016a). Rapamycin (an autophagy
inducer) promotes the degradation and clearance of damaged
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mitochondria, reduces IL-1β-induced ROS generation, and
reduces the OA-like phenotype of chondrocytes (Sasaki et al.,
2012). Decreased levels of autophagy are often accompanied
by increased levels of apoptosis [e.g., presentation of activated
PARP (the caspase-3 substrate)], further exacerbating OA
characteristics (Caramés et al., 2015). Moreover, Beclin-1
silencing which reduces autophagy exacerbates cell death
(Bohensky et al., 2007). mTOR overexpression also inhibits
chondrocyte autophagy and promotes apoptosis, leading to
increased cartilage degeneration (Zhang Y. et al., 2015).
Autophagy promoted through oligomycin stimulation can
effectively eliminate dysfunctional mitochondria, thereby
protecting cells from apoptosis (Lopez de Figueroa et al., 2015).

Exercise promotes autophagy which relieves inflammation
(Deretic et al., 2013). During exercise, the innate immune
molecule TLR-9 interacts with Beclin-1 to strengthen and
regulate AMPK activation in muscles (Liu Y. et al., 2020).
AMPK interacts with sestrins to participate in exercise-induced
autophagy to maintain skeletal muscle glucose metabolism (Liu
et al., 2015), and relieve aging-related muscle atrophy (Fan
et al., 2017). Exercise-induced AMPK activation can also inhibit
mTOR, thereby alleviating other diseases as well by promoting
autophagy, reducing the transformation of fatty liver to hepatitis
and tumors (Guarino et al., 2020), and alleviating heart damage
caused by exhaustive exercise (Liu and Pan, 2019).

The Negative Side of Autophagy
Excessive autophagy can be a double-edged sword (Carames
et al., 2010; Lopez de Figueroa et al., 2015; Ribeiro et al.,
2016a,b), with no protective effect on cells (Chang et al., 2013),
resulting in cell death (Shapiro et al., 2014) through synergistic
participation in the process of cell apoptosis (e.g., ATP-dependent
apoptosis). Related genes, such as Ulk1, Beclin-1, and LC3,
are highly expressed in the early stage of OA, reflecting the
protective effect of autophagy on chondrocytes; while in the late
stage of OA, they are weakly expressed, as a consequence of
autophagy-induced apoptotic cell death (Almonte-Becerril et al.,
2010; Carames et al., 2010; Sasaki et al., 2012; Caramés et al.,
2015). The opening of membrane pores induced by the ATP-
P2X7R axis in muscle injury mediates autophagic cell death
(Young et al., 2015). P2X7R receives ATP signals induced by
ivermectin to promote autophagy, leading to tumor cell death.
Although the role of P2X7R in infection and inflammation has
been confirmed (Di Virgilio et al., 2017), studies have shown that
inflammation leads to the downregulation of P2X7R expression,
which in turn inhibits the PI3K-AKT-mTOR pathway, and
promotes the osteogenesis of periodontal ligament stem cells
(Xu et al., 2019).

The Consensual Role of Autophagy in
Pyroptosis
Contrary to the uncertain relationship between autophagy
and apoptosis, autophagy usually alleviates pyroptosis
(Gudipaty et al., 2018). This can be verified through various
mechanisms in many studies. First, miR-103 targets BNIP3
(Bcl2/Adenovirus EIB 19 kDa Interacting Protein 3) to

mediate late autophagy and relieve H2O2-induced oxidative
stress and pyroptosis (Wang et al., 2020). Second, electrical
stimulation affects THP-1 macrophages, activates Sirt3,
promotes autophagy, and relieves ROS-induced pyroptosis
(Cong et al., 2020). Third, adrenomedullin promotes autophagy
and inhibits pyroptosis in testicular stromal cells through
the ROS-AMPK-mTOR pathway (Li et al., 2019). Fourth,
resveratrol reduces mitochondrial damage and increases
autophagy, thereby inhibiting NLRP3 activation and reducing
inflammation (Chang et al., 2015). Fifth, baicalein, a Chinese
herbal ingredient, promotes autophagy degradation, and
reduces unfolded protein accumulation and mitochondrial
dysfunction caused by spinal cord ischemia-reperfusion
injury, thereby alleviating pyroptosis (Wu et al., 2020).
Sixth, metformin activates AMPK, inhibits mTOR, relieves
pyroptosis, and treats diabetic heart disease in obese mice
(Yang et al., 2019). And seventh, SP1 transcription increases
the expression of lnc ZFS1, which downregulates miR-590-3p,
inhibits AMPK, activates mTOR, inhibits autophagy, increases
pyroptosis, and aggravates sepsis-induced cardiac dysfunction
(Liu Y. et al., 2020).

In addition to removing harmful components in the
cell, autophagy can also prevent pyroptosis by degrading
inflammasome components. The NLRP3 inhibitor CP-456773
and the NF-κB inhibitor celastrol work together to induce
autophagy through the AMPK-mTOR pathway and inhibit
HSP-90, thereby increasing the autophagic degradation of
NLRP3 to inhibit pyroptosis (Saber et al., 2020). Furthermore,
bone marrow-derived mesenchymal stem cell (BMSC)-derived
exosomes activate AMPK in hypoglycemic/reoxygenation-
induced pheochromocytoma cells, inhibiting mTOR, promoting
autophagic flux, while LC3 results in NLRP3 degradation
to inhibit pyroptosis (Zeng et al., 2020). Also, immunity-
related GTPase M (IRGM) interacts with NLRP3 and ASC
to inhibit inflammasome oligomerization, thereby inhibiting
its assembly and activation, and selectively degrades NLRP3
and ASC by autophagy, alleviating inflammatory cell death
(Mehto et al., 2019).

Sometimes, autophagy is also the trigger point of pyroptosis.
Autophagy mediates the release of IL-1β (Claude-Taupin et al.,
2018). In macrophages, IL-1β is released outside the cell
through a hole in the plasma membrane of N-GSDMD, while
in neutrophils, N-GSDMD is not localized on the plasma
membrane. IL-1β is released through the LC3+ autophagosome
pathway (Karmakar et al., 2020). Arsenic can also promote
autophagy, with lysosome degradation releasing cathepsin,
resulting in NLRP3 activation (Qiu et al., 2018). Autophagy
is often inhibited when pyroptosis occurs. During the resting
state of macrophages, NLRC4 and Beclin-1/Atg6 form a complex
to inhibit autophagy. Under a low degree of infection, NAIP5
recruits NLRC4 and pro-caspase-1 to form a complex to
relieve autophagy inhibition, and induce cell protection. When
autophagy cannot eliminate an intracellular infection, caspase-
1 is activated to initiate pyroptosis (Byrne et al., 2013).
NLRP3 inflammasomes in hepatocellular carcinoma cells inhibit
autophagy through the 17β-estradiol (E2)/ ERβ/AMPK/mTOR
pathway (Wei et al., 2019).
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Autophagy Discordance With Pyroptosis
When the two are activated together, autophagy negatively
regulates pyroptosis. Inflammasome activation can induce
autophagy, but the recruitment of LC3 and p62 induces
the co-localization of inflammasomes with autophagosomes,
thereby degrading them (Shi et al., 2012). Furthermore, when
acrolein induces NLRP3 activation and autophagy through
ROS, autophagy inhibits pyrolysis and mitochondrial damage
(Jiang et al., 2018). Moreover, H2O2 induces nucleus pulposus
cells to produce ROS, inducing autophagy, pyroptosis, and the
upregulation of nuclear factor erythroid 2 like 2 (NFE2L2,
Nrf2). Both Nrf2 and autophagy can alleviate pyroptosis and
intervertebral disc degeneration (Bai et al., 2020). Tumor
necrosis factor receptor-associated factor 3 (TRAF3) mediates
the ubiquitination and degradation of Ulk1 and induces ROS
and pyroptosis, while Ulk1 inhibits ROS and apoptosis inducing
factor (AIF) translocation into the nucleus (Shen et al., 2020).
In another mechanism, zearalenone inhibits the Akt/mTOR
pathway to promote autophagy, while also promoting pyroptosis
through NF-κB, but the upregulation of autophagy inhibits
pyroptosis (Wang et al., 2019). In macrophages, NF-κB mediates
the delayed accumulation of p62, forming the NF-κB-p62-
mitophagy regulatory loop eliminating damaged mitochondria
caused by pyroptosis, and limiting the intracellular pro-
inflammatory activity (Zhong et al., 2016).

Alternative Autophagy Mechanisms in
Pyroptosis
Autophagolysosomes formed by the fusion of autophagosomes
and lysosomes play an important role in pyroptosis. Lysosomes
act as AMPK-mTOR signaling hubs and an instability may
lead to apoptosis and pyroptosis (Zhu et al., 2020). An
impaired autophagy-lysosomal pathway in macular corneal
dystrophic cornea can also lead to pyroptosis (Zheng et al.,
2020). Moreover, BpV(phen) increases the ubiquitination of
p62, affects the binding of p62 and HDAC6, activates the
deacetylation of α-tubulin, and affects the stability of acetylated
microtubules, resulting in hindered autophagosome and
lysosome fusion, while autophagy inhibition leads to apoptosis
and pyroptosis (Chen et al., 2015). Lastly, hypoxia-induced
autophagy/lysosomal dysfunction leads to ERS, leading to
unfolded protein accumulation and impaired autophagy, which
in turn activates NLRP3 inflammasomes and induces pyroptosis
(Cheng et al., 2019).

Significance of P2X7R in Cell Death
Interplay
The interrelationships among phenotypes, such as autophagy,
apoptosis, and pyroptosis, are also reflected in P2X7R-
mediated cell metabolism and nutrition (Orioli et al.,
2017). P2X4/P2X7/pannexin-1 mediates ROS, Ca2+/CaMK
II, mitochondrial membrane potential, and caspase-1 activation
caused by NADPH oxidase to promote cell pyroptosis and
necrosis (Draganov et al., 2015). In ischemic stroke disease,
P2X7R-mediated Ca2+ and K+ flow leads to mitochondrial
dysfunction, caspase-8 and MAPK activation, and induces

apoptosis. Ca2+ influx induces lysosomal dysfunction, which
leads to decreased autophagic flow and apoptosis. K+ efflux
leads to the activation of inflammasomes and induces pyroptosis
(Zhao et al., 2018). Ca2+ overload, caused by P2X7R-mediated
Ca2+ influx under the stimulation by high ATP concentrations
in macrophages, leads to mitochondrial dysfunction, which in
turn causes cell pyroptosis. However, when P2X7R is stimulated
by low ATP concentrations or is positively allosterically regulated
by compound K, the accumulation of mtROS and the activation
of caspase-1 and 3 alter cell death mechanism from pyroptosis to
apoptosis (Bidula et al., 2019).

In summary, autophagy primarily plays the role of a
protector, resisting stimuli that cause damage to cells through
key signaling pathways, such as AMPK-mTOR and HIF-
1α, and supporting homeostasis. When autophagy decreases,
P2X7R-mediated ion flux and damage to organelles, such as
mitochondria and lysosomes, prevent autophagy flux, and the
balance shifts. At this time, autophagy may induce or convert
into apoptosis and pyroptosis. On several occasions, autophagy
is the initiator of apoptosis, pyroptosis, and inflammation.
Therefore, autophagy is a double-edged sword, and the right
balance, together with proper activation of P2X7R, is the
key to its power.

THERAPEUTIC SIGNIFICANCE OF
P2X7R INHIBITORS

The P2X7 receptor inhibition can occur via synthetic
reagents, ions, natural molecular compounds, and Chinese
herbal medicines. However, due to P2X7R’s central role in
inflammation, P2X7R inhibitors are receiving more attention
for the development of targeted receptor therapies (Khakh and
North, 2006; Arulkumaran et al., 2011; North and Jarvis, 2013;
Bartlett et al., 2014; Di Virgilio et al., 2017). Various inhibitors
display differences in chemical structure, species selectivity,
competitive or non-competitive antagonistic methods, and
specificity. The first-generation inhibitors, such as Reactive Blue
2, KN-62, PPADS, brilliant blue G (BBG), and oxidized ATP
(oATP), are not highly selective, inhibiting other purinergic
receptors as well. Second-generation inhibitors have improved
target specificity for P2X7R, such as A438079, A740003, A839977,
AZ10606120, AZ11645373, GSK314181, and JNJ-47965567. To
date, most in vivo experiments have been conducted with
first-generation inhibitors, but a select few studies have been
carried out with specific inhibitors, like A438079, showing good
efficacy in vitro and in vivo. Pretreatment of a DC/CD4+ T cell
co-culture system with A438079, and the ensuing inhibition
of P2X7R, can reduce the levels of pro-inflammatory factors
IL-1β, IL-6, IL-23p19, and TGF-β1, derived from Th17 cells. In
the arthritis mice model, induced by the activation of related
collagen, A438079 relieved the swelling of the hind paw and the
pathological changes in the ankle joint (Fan et al., 2016).

In view of the positive therapeutic effects of P2X7R inhibitors
in rodent studies, drugs targeting human P2X7R are being used
in clinical settings for the treatment of several diseases, such
as pain, arthritis, and multiple sclerosis (Bartlett et al., 2014).
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FIGURE 1 | Schematic for the role of the P2X7 receptor in osteoarthritis.

The therapeutic effects of inhibitors, such as oATP, BBG, KN-
62, and A438079, have been confirmed in preclinical models
of inflammatory diseases, such as contact allergy, inflammatory
pain, endotoxin-induced fever, and antibody-induced nephritis
(Matute et al., 2007; Taylor et al., 2009; Weber et al., 2010;
Barbera-Cremades et al., 2012). Two clinical trials of patients
with rheumatoid arthritis receiving P2X7R-specific inhibitors,
AZD9056 and CE-224, reported on its safety and clinical efficacy.
The dosages were well tolerated, but efficacy was not improved in
patients already resistant to methotrexate or sulfasalazine (used
in the treatment of joint swelling and pain) (Keystone et al., 2012;
Stock et al., 2012). This would point to a need to use P2X7R
inhibitors in conjunction with other targeted therapies capable of
resensitizing mechanistic pathways involved in drug-resistance.

Although rodent models and receptor inhibitors are
regularly encountered in P2X7R research, the selectivity
and specificity of inhibitors still require attention. Recent
development of therapeutic antibodies, such as nanobodies

or single-domain antibodies, can also have the potential to
specifically inhibit membrane proteins. Therefore, we expect
the development of more effective drugs and treatments
targeting P2X7R.

CONCLUSION AND PROSPECTS

This article systematically analyzed and elucidated the association
between P2X7R and OA. The most typical manifestation of OA is
cartilage degradation. As the only cellular component of cartilage,
chondrocytes are in a stable state and balance is crucial. The ECM
degradation of chondrocytes and the release of inflammatory
factors are important events leading to cartilage degradation.
Inflammation is a direct manifestation of OA. To explore whether
P2X7, as a key switch of inflammation, is involved in the
occurrence and development of OA, we considered the network
(Figure 1) of interaction from the perspectives of inflammation,
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apoptosis, pyroptosis, and autophagy, and presented new OA
prevention and treatment strategies.

Currently, there is no treatment method that can completely
prevent the occurrence and development of OA. Delaying and
reducing the death of chondrocytes to prevent the degradation
of the cartilage matrix could be a potential therapeutic focus.
As various factors affect chondrocyte cell death progression,
including the degree of cartilage degradation, pro-inflammatory
cytokines, and ATP availability, we propose the therapeutic
focus to begin with the recognition of ATP as the first
step in activating inflammation to narrow our approach
to anti-inflammatory designs. Caspase-knockout studies have
found that cells require both ATP energy and caspases to
transform pyroptosis into apoptosis, thereby moving toward
programmed death, and away from necrosis (Zeiss, 2003).
zVAD-fmk is often used as a caspase inhibitor in OA
research (Hwang and Kim, 2015), which can significantly
reduce chondrocyte apoptosis and cartilage degradation (D’Lima
et al., 2006). Moreover, when these factors are managed,
mitochondrial integrity remains intact, reducing oxidative stress
levels. Retaining a positive antioxidant balance exerts anti-
inflammatory and anti-apoptotic effects. Oxidative stress can
further be balanced by promoting autophagy, thus promoting
mitochondrial housekeeping. However, autophagy can be a
double-edged sword, and needs careful consideration when
promoted. Excessive autophagy can trigger cell apoptosis, and
the rapid loss of chondrocytes may worsen OA (Shapiro
et al., 2014). Nevertheless, the mainstream view remains
that autophagy stimulation in the early stages of OA can
protect chondrocytes.

Treatment strategies should also focus on the role of
P2X7R. Soon after it was cloned, the P2X7R protein received
widespread attention as a key switch for inflammation with
great therapeutic potential. For some chronic inflammatory
diseases, small molecule (drug-like) inhibitors targeting P2X7R
have been used in phase I and II clinical studies (Gunosewoyo
and Kassiou, 2010; Sluyter and Stokes, 2011; Park and Kim,
2017). To date, more than 30 clinical studies in this regard
have been conducted. Although the safety of inhibitors has
been satisfactory, the clinical efficacy has been disappointing.
In knee OA, rheumatoid arthritis, and chronic obstructive
pulmonary disease, the efficacy is poor, while in Crohn’s disease
fairly positive (Arulkumaran et al., 2011; Keystone et al., 2012;
Stock et al., 2012; Eser et al., 2015). Biopharmaceuticals may

present a new way to replace small drug-like compounds.
Antibodies against non-functional variants of human P2X7R
have been used to treat cancer. The highly purified goat
IgG can effectively reduce pathological changes in basal cell
carcinoma size (Gilbert et al., 2017). In addition, nanobodies
(e.g., 13A7 nanobody, single-domain antibody fragments elicited
in camelids) that can bind to human or mouse P2X7R with
high affinity, after inoculation in mice, effectively relieve the
symptoms of experimental allergic contact dermatitis and
glomerulonephritis. Dano1 nano antibody is selective for human
P2X7R and can effectively reduce the level of IL-1β in the blood
after endotoxin treatment (Danquah et al., 2016). Therefore,
in the case of poor efficacy of anti-P2X7 receptor active
drugs, biologics targeting P2X7R indicate a new direction for
future research.

In conclusion, there remains a need for more specific OA
therapies to be developed. P2X7R of the purinoceptor family,
is closely related to inflammation and a promising drug target
for OA. However, research into P2X7R and its role in the
pathogenesis of OA requires further investigation. For the
benefit of patients and scientific progress, we believe that these
expectations will be realized in the near future.
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