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Abstract

In vitro generation of dendritic cells (DCs) is advantageous for overcoming the low fre-

quency of primary DCs and the difficulty of applying isolation techniques for studying DC

immunobiology. The culture of bone marrow cells with granulocyte-macrophage colony-

stimulating factor (GM-CSF) has been used extensively to generate bone marrow-derived

dendritic cells (BMDCs). Studies have reported the heterogeneity of cells grown in murine

GM-CSF culture based on the levels of MHCII expression. Although porcine DCs are gener-

ated by this classical method, the exact characteristics of the BMDC population have not yet

been defined. In this study, we discriminated GM-CSF-grown BMDCs from gnotobiotic mini-

ature pigs according to several criteria including morphology, phenotype, gene expression

pattern and function. We showed that porcine BMDCs were heterogeneous cells that differ-

entially expressed MHCII. MHCIIhigh cells displayed more representative of DC-like mor-

phology and phenotype, including costimulatory molecules, as well as they showed a

superior T cell priming capacity as compared to MHCIIlow cell. Our data showed that the dif-

ference in MHCIIhigh and MHCIIlow cell populations involved distinct maturation states rather

than the presence of different cell types. Overall, characterization of porcine BMDC cultures

provides important information about this widely used cellular model.

Introduction

Dendritic cells (DCs) are components of the immune system that can present antigens to T

cells [1]. Conventional DCs (cDCs) provide signals for T cell activation and differentiation,

and are therefore regarded as professional antigen-presenting cells (APCs) of the immune sys-

tem [2]. However, study of these essential cells has been complicated by the low frequency of

DC populations in blood and tissue. For this reason, the biology of DCs has been studied in

cells grown in vitro from hematopoietic precursors, in the presence of growth factors [3].

Besides, in vitro generated DCs have been designated as cell-based vaccines for immunother-

apy [4]. Bone marrow cells (BMCs) have been cultured with granulocyte-macrophage colony-

stimulating factor (GM-CSF), a cytokine involved in the development and homeostasis of
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mononuclear phagocytes, to generate bone marrow-derived dendritic cells (BMDCs) that

resemble tissue DC [5, 6].

In bone marrow cultures induced by GM-CSF, CD11c+ MHCII+ cells have been assumed

to be the source of pure BMDCs, whereas macrophages are thought to be adherent cells [3, 7].

However, the studies reported that this classical method produces heterogeneous populations

of murine myeloid cells in non-adherent populations and loosely adherent populations [8–10].

The study suggested that MHCIIhigh cells, which were previously shown to be DCs and

MHCIIlow cells, closely resemble macrophages in the murine GM-CSF-derived heterogeneous

population. Other studies suggested that MHCIIlow cells contain immature DCs, which further

upregulate MHCII on their surface, indicating maturation in mice [11, 12].

The porcine immune system is similar to the human immune system with respect to DC

biology [13, 14]. The gnotobiotic miniature pig is the best model to study immunology, includ-

ing immune cell ontogeny, microbial infection, and xenotransplantation [15–18]. To study

porcine DC biology, in vitro differentiated DCs have been widely used [19], especially BMCs

are cultured with GM-CSF for generation of BMDCs likewise other species [20]. The non-

adherent cells have been considered as pure BMDCs and are characterized by expression of

the surface molecules, CD1, CD16, CD80/86, CD172a, and MHC class II [21]. However, it is

unclear whether porcine BMDCs are heterogeneous like murine BMDCs.

In this study, BMCs were isolated from gnotobiotic miniature pigs and cultured with

GM-CSF to generate DCs. We classified GM-CSF-grown porcine BMDCs into MHCIIhigh

cells and MHCIIlow cells, in a similar manner as murine BMDCs. These two populations from

non-adherent cells were characterized according to their morphology, phenotype, gene expres-

sion profile, and function. On the basis of these characteristics, we showed that non-adherent

cells isolated from GM-CSF-grown BMC cultures were heterogeneous in terms of their levels

of MHCII expression. Therefore, these findings of GM-CSF-derived porcine BMDCs could

lead to improvements in our understanding of the porcine immune system.

Materials and methods

Animals

Gnotobiotic miniature pigs were kept under absolute barrier contained facility at the Bio-

organ Research Center of Konkuk University, Seoul, Republic of Korea [22]. Animal experi-

ments were carried out based on the National Institutes of Health guidelines for the care and

use of laboratory animals. The study was conducted after obtaining approval from the Institu-

tional Animal Care and Use Committee (IACUC) of Konkuk University (KU16168). In this

study, three, 3-week-old piglets were used: K8082-1, K8082-2, and K8083-4. The animals were

sacrificed using CO2 according to IACUC guidelines, and then the humerus, tibia, and femur

were collected to isolate BMCs.

Cell preparation

The BMDCs were generated using a previously described method with some modifications

[20]. The BMCs were cultured for 10 days at a density of 5 × 105 cells/mL in RPMI-1640

medium (Gibco, Gaithersburg, MD, USA) supplemented with 10% heat-inactivated fetal

bovine serum (FBS; Gibco), 100 U/mL penicillin, 100 μg/mL streptomycin, 1 mM minimal

essential medium, non-essential amino acids (Gibco), and 100 ng/mL of porcine GM-CSF

(R&D Systems, Madrid, Spain). GM-CSF was additionally supplemented on days 2, 4, and 6.

Differentiated cells were obtained from the non-adherent cell population after day 10. The

cells were incubated at 37˚C in a humidified atmosphere of 5% CO2 in air.
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Flow cytometry analysis

The cells were incubated with monoclonal antibody from hybridoma culture supernatants for

30 min, and then washed twice with Dulbecco’s phosphate-buffered saline (DPBS; Welgene,

Seoul, Republic of Korea). The cells were incubated with secondary antibody and washed

twice with DPBS. Fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG (Biole-

gend, San Diego, CA, USA) and allophycocyanin (APC)-conjugated goat anti-mouse IgG (Bio-

legend) were used as secondary antibodies. The cells were resuspended in 500 μL fluorescence-

activated cell sorter buffer (5% FBS in DPBS) and flow cytometry analysis was performed on a

BD Accuri™ C6 flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). The following

antibodies were used: anti-porcine CD1 (HB140), anti-porcine CD172a (HB142), anti-porcine

CD16 (G7), anti-porcine CD11b/CD18 (PM3-15), and anti-porcine MHCII (MSA3) from

hybridoma culture supernatants. Anti-porcine CD14 ascites, APC-conjugated anti-human

CD86 (IT2.2; Biolegend), APC-conjugated anti-human CD163 (GHI/61; Biolegend), and anti-

porcine CD117 (2B8/BM; Bio-Rad, Hercules, CA, USA) were also used.

To isolate MHCIIhigh and MHCIIlow populations from BMDCs and c-kit+ hematopoietic

stem cells (HSCs) from BMCs, the cells were sorted by a FACSAria™ instrument (Becton Dick-

inson). Flow cytometry analysis was conducted using FlowJo software (https://www.flowjo.

com/).

RNA sequencing

Total RNA was extracted from sorted cell subsets including c-kit+ HSC, MHCIIhigh, and

MHCIIlow cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). In order to construct

cDNA libraries with the TruSeq RNA library kit (illumine, San Diego, CA, USA), 1ug of total

RNA was used. The protocol consisted of polyA-selected RNA extraction, RNA fragmentation,

random hexamer primed reverse transcription and 100nt paired-end sequencing by Illumina

HiSeq2500 (illumine, San Diego, CA, USA). The libraries were quantified using qPCR accord-

ing to the qPCR Quantification Protocol Guide and qualified using an Agilent Technologies

2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). We processed reads from the sequencer

and aligned them to the Sus scrofa using Tophat v2.0.13 [23]. Transcript assembly and abun-

dance estimation using Cufflinks v2.2.1 [24].

The transcript-level relative transcript abundances were measured in FPKM (Fragments

Per Kilobase of exon per Million fragments mapped) using Cufflinks. We performed the statis-

tical analysis to find differentially expressed genes (DEG). Filtered data were log2-transformed

and subjected to quantile normalization. For DEG set, Hierarchical clustering analysis was per-

formed using complete linkage and Euclidean distance as a measure of similarity. Gene-

enrichment and functional annotation analysis for significant gene list was performed using

Gene Ontology (http://geneontology.org/). We used multidimensional scaling (MDS) method

to visualize the similarities among samples. We applied to the Euclidean distance as the mea-

sure of the dissimilarity.

Real-time polymerase chain reaction

The cDNA was reverse-transcribed from total RNA using a High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s

instructions. Synthesized cDNA was denatured at 95˚C for 10 min and amplified using SYBR

Premix Ex Taq II (Takara, Kusatsu, Japan) on an Applied Biosystems 7500 Real-Time PCR

System cycler, with 40 cycles of 95˚C for 15 s and 60˚C for 1 min. All data were acquired as

ΔCt values and automatically converted to double delta Ct (ΔΔCt) values by 7500 software

(Applied Biosystems). The value of 2−ΔΔCt was calculated to obtain expression fold-change
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data. Primers specific for CD86, CD40, IFR4, CCR7, FcεR1α, CSF1R, CD163, and CD117 (S1

Table) were used.

Mixed lymphocyte reaction

For the preparation of allogeneic T cells, splenocytes were isolated and incubated for 2 h to

remove attached cells. Floating splenocytes were harvested and labelled with carboxyfluores-

cein succinimidyl ester (CFSE; Invitrogen). CFSE-labelled allogenic splenocytes were co-cul-

tured with APCs (MHCIIhigh and MHCIIlow cells) for 5 days. Then, 105 splenocytes were

mixed with APCs according to the desired APC:splenocyte ratio (1:2, 1:6, 1:18, 1:54 and 1:162)

in 96-well U-bottom plates. For gating proliferating population, CFSE-stained splenocytes was

checked their proliferation at 24h and confirmed without proliferation (data not shown). T

cell proliferation was examined using flow cytometry and analyzed by FlowJo software.

Phagocytosis assay

The cells were seeded at 2 × 105 cells and incubated with latex beads coated with FITC-labelled

rabbit IgG (Cayman Chemical, Ann Arbor, MI, USA) for 30 min, 1 h, 2 h, 3 h, and 4 h in

96-well U-bottom plates. To distinguish cells that were phagocytosed from those simply bind-

ing to the beads at the surface, a short (1–2 min) incubation with Trypan Blue dye quenching

solution, followed by a wash with assay buffer, was used to quench the surface FITC fluores-

cence. Phagocytosed cells were detected using flow cytometry and analyzed by FlowJo

software.

Results

Heterogeneity of the GM-CSF-derived BMDCs

To generate BMDCs in vitro, BMCs were obtained from 3-week-old gnotobiotic miniature

pigs and cultured with GM-CSF supplementation. To enrich BMDCs, we harvested non-

adherent cells from the GM-CSF culture and confirmed the MHCII expression of these

cells. The non-adherent cells were comprised of two distinct populations (MHCIIhigh and

MHCIIlow) based on the MHCII expression (Fig 1A). Adherent cells were mainly composed

of MHCIIlow population (S1 Fig). We employed FACS sorting to purify MHCIIhigh and

MHCIIlow populations that could not be distinguished by adhesion properties. In the two pop-

ulations, differences in morphology were observed; the MHCIIhigh cells had a more dendritic

morphology, and showed cluster formation, relative to the MHCIIlow cells (Fig 1B). Thus,

MHCIIhigh cells were more representative of DC-like morphology than MHCIIlow cells. From

these results, two populations were isolated from non-adherent cells from porcine BMDC cul-

tures, based on different expression levels of MHCII, in a similar manner to murine cells.

Surface marker expression levels of MHCIIhigh and MHCIIlow cells

Because there were differences in MHCII expression and morphology, MHCIIhigh and

MHCIIlow cells were sorted to confirm their different phenotypes (Fig 2). We examined CD86,

CD1, CD16, CD11b/CD18, CD172a, CD14, and CD163 to clearly define distinct populations.

The MHCIIhigh and MHCIIlow cells expressed CD172a and CD14, indicating that they both

differentiated into myeloid lineages. We observed high expression of the porcine DC markers,

CD86, CD1, and CD16, in MHCIIhigh cells, and low expression in MHCIIlow cells. Comple-

ment receptor CD11b/CD18 and scavenger receptor CD163, which are highly expressed on

activated myeloid cells, were found to be highly expressed on MHCIIhigh cells, but they showed

very low expression on MHCIIlow cells. The immature DC phenotype involved intermediate
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or low expression of MHCII and costimulatory molecules such as CD86, together with high

expression of CD14. These results suggested that MHCIIlow cells resembled immature DCs,

and MHCIIhigh cells underwent spontaneous maturation and expressed higher amounts of the

same markers.

Fig 1. Two distinct populations developing in GM-CSF culture. For in vitro generation of dendritic cells, bone

marrow cells from gnotobiotic miniature pigs were cultured with GM-CSF for 10 days. (A) After GM-CSF culturing,

MHCII expression was confirmed using flow cytometry, and two distinct populations were sorted based on differential

expression of MHCII (MHCIIhigh and MHCIIlow). Allophycocyanin (APC)-conjugated goat anti-mouse IgG was used

as secondary antibody. (B) The morphology of MHCIIhigh and MHCIIlow cells was observed using an AxioVert200

inverted microscope at 10×, 20×, and 40× magnification. The blue arrow heads denote cluster formation.

https://doi.org/10.1371/journal.pone.0223590.g001

Fig 2. The phenotype of MHCIIhigh and MHCIIlow cells in GM-CSF culture. The phenotype of cells was analyzed for

the expression of the markers of interest by flow cytometry. MHCIIhigh and MHCIIlow cells were sorted by flow

cytometry using fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG as secondary antibodies. The blue-

filled histogram shows the MHCIIhigh population and the green-filled histogram shows the MHCIIlow population. The

control represents cells stained only with allophycocyanin (APC)-conjugated goat anti-mouse IgG as secondary

antibodies.

https://doi.org/10.1371/journal.pone.0223590.g002
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Gene expression patterns of MHCIIhigh and MHCIIlow cells

For gene expression analysis, we sorted c-kit+ HSCs from BMCs and the two populations

(MHCIIhigh and MHCIIlow cells) described in Fig 1A, followed by mRNA sequencing. Using

gene hierarchical cluster mapping and MDS analysis, each cell type from the three different

piglets clustered together, confirming that the transcription profiles of each cell type were simi-

lar (Fig 3A and 3B). We then confirmed that 368 genes were differentially expressed between

MHCIIhigh and MHCIIlow cells. However, the MHCIIhigh and MHCIIlow cell populations were

close together, suggest that these they are not the completely separated as distinct cell type

unlike what has been described for mice and humans [8, 9]. We therefore hypothesized that

MHCIIhigh and MHCIIlow cell populations were comprised of BMDCs in distinct maturation

states, as opposed to different cell types being present.

To further explore this possibility, DC-related gene expression patterns were investigated in

each cell type. Transcriptome analysis revealed that MHCII (SLA-DR) and costimulatory

Fig 3. Transcriptional profiling of MHCIIhigh and MHCIIlow cells in GM-CSF culture. (A) A heat map of

hierarchical clustering shows significant transcripts in three independent samples of hematopoietic stem cells (HSCs),

MHCIIhigh cells, and MHCIIlow cells, based on the Euclidian distance with the complete linkage method. (B) A

multidimensional scaling plot shows the relationships of HSCs, MHCIIhigh, and MHCIIlow cells in the total gene

expression map shown in (A). Each dot represents data from one animal. (C) Heat map of selected transcripts in three

independent samples of MHCIIhigh and MHCIIlow cells. (D) The expression levels of the indicated DC signature genes

were analyzed by qPCR. Data are expressed as the mean ± SEM, derived from multiple tests (n = 3). �P< 0.05;
��P< 0.005; ���P< 0.0005.

https://doi.org/10.1371/journal.pone.0223590.g003
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molecules (CD40, CD80, CD83, and CD86) were highly expressed in MHCIIhigh cells that

were induced during BMDC differentiation (Fig 3C). In addition, receptors (CD163, MRC1,

FCER1A, FCGR2B, and TLRs) involved in the DC innate immune response were also highly

expressed in MHCIIhigh cells. MHCIIlow cells expressed more CD34, CD59, CD177, Sox4, and

Foxo1, which showed the highest expression levels in HSCs. These data showed that MHCII-
high cells highly expressed genes related to the DC signature and innate immune response,

whereas, genes enriched in HSCs were found to be expressed more in MHCIIlow cells than

MHCIIhigh cells.

To determine the difference between MHCIIhigh and MHCIIlow cells, DC-related gene

expression patterns were validated by qPCR. As expected, the CD86 and CD40 costimulatory

molecules were expressed at high levels by MHCIIhigh cells, and to a lesser extent by MHCIIlow

cells (Fig 3D). In addition, the IRF4 transcription factor, which controls the development of

BMDCs falling within the mature gate, was highly expressed on MHCIIhigh cells compared to

MHCIIlow cells. MHCIIhigh cells also expressed higher amounts of CCR7, FcεR1α, CD163, and

CSF1R, whereas MHCIIlow cells showed higher expression of CD117. Consistent with these

results, activated DC-related genes were highly expressed on MHCIIhigh cells compared to

MHCIIlow cells. Therefore, we assumed that the two populations (MHCIIhigh and MHCIIlow

cells) had cell-to-cell variations that were the result of different states of BMDC maturation.

Functions of MHCIIhigh and MHCIIlow cells

To examine the ability of DCs that can stimulate T cells as professional APCs, the mixed

lymphocyte reaction was conducted using allogeneic splenocytes co-cultured with sorted

MHCIIhigh and MHCIIlow cells (Fig 4). When sufficient APCs were supplied to expand spleno-

cytes (the APC:splenocyte ratio was 1:2 ~ 1:18), the MHCIIhigh and MHCIIlow cells displayed

comparable ability to stimulate T cells. There was no significant difference in the T cell prolif-

eration ability of MHCIIhigh and MHCIIlow cells. In contrast, when given a lower number of

Fig 4. Mixed lymphocytes reaction of MHCIIhigh and MHCIIlow cells. (A) Splenocytes stained with

carboxyfluorescein succinimidyl ester (CFSE) cultured alone for 5 days and analyzed their proliferation. (B, C) CFSE-

labelled allogeneic splenocytes were cultured with MHCIIhigh and MHCIIlow cells at the indicated ratios for 5 days. (B)

The blue histogram denotes allogenic splenocytes cultured with MHCIIhigh cells, and the green histogram shows

splenocytes cultured with MHCIIlow cells. The gate indicates the percentage of proliferated T cells.

https://doi.org/10.1371/journal.pone.0223590.g004
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APCs to stimulate T cells (APC:splenocyte ratio, 1:54 ~ 1:162), MHCIIlow cells were inferior in

terms of proliferating T cells compared to MHCIIhigh cells. Accordingly, MHCIIhigh cells

showed superior T cell priming capacity compared to MHCIIlow cells.

DCs are mononuclear phagocytes; therefore, to analyze phagocytic abilities, MHCIIhigh

cells and MHCIIlow cells were cultured with phagocytic beads (Fig 5). MHCIIhigh cells had

more uptake of phagocytic beads during 3 h (Fig 5A; 50% of MHCIIhigh cells and 37% of

MHCIIlow cells). When cells were incubated with phagocytic beads, MHCIIlow cells were sig-

nificantly less efficient at phagocytosis, as expected (Fig 5B). Together, these results indicated

that MHCIIhigh cells are more functionally activated DCs than MHCIIlow cells, because they

had superior T cell-priming ability and phagocytic ability.

Discussion

The in vitro generation of DCs in culture is advantageous for studying DC biology. In particu-

lar, GM-CSF, a hematopoietic growth factor, has been used to supplement BM cultures to gen-

erate CD11c+ MHCII+ cells, which are often termed BMDCs [5]. From the GM-CSF BM

culture, DCs have been enriched from non-adherent cells, whereas adherent cells are thought

to be macrophages. In addition, the studies of the discrimination of murine BM cultures

showed the heterogeneity of GM-CSF-derived non-adherent cells and loosely adherent cells

[8, 9]. They suggested that the MHCIIhigh cell population, considered as a DC and MHCIIlow

cell population, actually corresponded to macrophages from murine BM cultures. However,

another study showed that GM-CSF culture induced differentiation towards immature and

mature cDC2s, which were shown to be efficient at promoting Th17, as well as Th2 immune

responses, in a non-adherent population [11].

The pig has been considered an important large animal model, and gnotobiotic miniature

pigs are probably the best model for studying immunology [18]. The porcine immune system

resembles the human immune system with respect to DC biology, because their gene expres-

sion signature for cDC2 is close to the human counterpart [14, 25, 26]. The classical protocols

for generating in vitro DCs in humans and mice are similar to the porcine method. Although

Fig 5. Phagocytosis by MHCIIhigh and MHCIIlow cells. (A) For analysis of phagocytic bead uptake, MHCIIhigh and

MHCIIlow cells were incubated with fluorescein isothiocyanate (FITC)-tagged latex beads for 3 h. Internalized beads

were analyzed by flow cytometry. (B, C) FITC-tagged latex beads were incubated with phagocytes for the indicated

times. (B) The blue histogram represents MHCIIhigh cells and the green histogram represents MHCIIlow cells.

https://doi.org/10.1371/journal.pone.0223590.g005

Heterogeneity of porcine bone marrow-derived dendritic cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0223590 November 5, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0223590.g005
https://doi.org/10.1371/journal.pone.0223590


GM-CSF-generated porcine BMDCs have been widely used, the heterogeneity of the cells has

not been defined. Considering that murine GM-CSF cultures often provide two populations

based on MHCII expression level, we discriminated GM-CSF-grown BMDCs from gnotobi-

otic miniature pigs based on several criteria.

In this study, we noted heterogeneity in the non-adherent cells from gnotobiotic miniature

pigs according to their MHCII expression levels (MHCIIhigh and MHCIIlow cells). It has been

reported that cells developing in porcine GM-CSF culture were also heterogeneous, as in

murine cultures. Although both populations showed DC-like morphology, MHCIIhigh cells

had a more dendritic morphology, and showed cluster formation, relative to MHCIIlow cells.

The phenotype analysis showed that MHCIIhigh cells displayed a DC-like phenotype that

involved CD86+, CD1+, CD16+, CD11b/CD18+, CD172a+, CD14low, and CD163+. MHCIIlow

cells also expressed these DC markers; however, they had low expression levels of CD86, CD1,

CD16, CD11b/CD18, and CD163, and higher CD14 expression which is downregulated dur-

ing DC maturation [27]. According to our results, MHCIIlow cells appear to represent an

immature DC phenotype with low expression of MHCII and costimulatory molecules, such as

CD86.

In accordance with morphology and phenotype analysis, transcriptome analysis confirmed

heterogeneity in BMDC maturation: DC-related genes were highly expressed in MHCIIhigh

cells, including costimulatory molecules and innate immune receptors, whereas MHCIIlow

cells showed higher levels of genes mainly expressed on HSCs. The higher expression levels of

IRF4 and CCR7 in MHCIIhigh cells supported BMDCs being within the mature gate, as well as

the development of subsets into cDC2s [28, 29]. In accordance with, BMDCs under the influ-

ence of GM-CSF appeared closer to cDC2s [27]. The MDS analysis revealed the differences

between MHCIIhigh and MHCIIlow cells. It also showed that the few difference between the

two cell populations involved the maturation state rather than being due to the presence of dis-

tinct cell types. One sample from the MHCIIlow cell population (MHCIIlow_3) was more close

to the MHCIIhigh population in the MDS analysis. It is possible that variations were due to dif-

ferences between individual samples, or to factors such as variable culture conditions. In fur-

ther studies, it should be possible to identify their closest relatives in vivo by transcriptome

analysis of in vitro-generated BMDCs from gnotobiotic miniature pigs. Furthermore, our

RNA-sequencing data may provide information relevant to the investigation of porcine HSCs

and BMDCs.

In addition, MHCIIhigh cells expanded into T cells and phagocytized beads more efficiently

than MHCIIlow cells, with similar gene ontology enrichment of antigen presentation and

innate immune receptors. Accordingly, porcine GM-CSF culture preferentially differentiated

BMCs into immature (MHCIIlow cells) and mature (MHCIIhigh cells) DCs.

On the basis of morphological, phenotypical, and gene expression criteria, we classified cell

two populations based on MHCII expression; we suggest that the MHCIIhigh and MHCIIlow

populations can be best-classified by their maturation stage. Therefore, this study might lead

to a better understanding of the function of DCs and provides useful information for future

studies using porcine BMDCs.
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S1 Fig. Adherent cells developing in bone marrow GM-CSF culture. In bone marrow culture

induced by GM-CSF, adhrent cells were obtained and confirmed MHCII expression by flow
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