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Honokiol ameliorates
radiation-induced brain
injury via the activation
of SIRT3
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Abstract

Objective: Sirtuin 3 (SIRT3) plays a vital role in regulating oxidative stress in tissue injury.

The aim of this study was to evaluate the radioprotective effects of honokiol (HKL) in a zebrafish

model of radiation-induced brain injury and in HT22 cells.

Methods: The levels of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-a), and
interleukin-1 beta (IL-1b) were evaluated in the zebrafish brain and HT22 cells. The expression

levels of SIRT3 and cyclooxygenase-2 (COX-2) were measured using western blot assays and

real-time polymerase chain reaction (RT-PCR).

Results: HKL treatment attenuated the levels of ROS, TNF-a, and IL-1b in both the in vivo and

in vitro models of irradiation injury. Furthermore, HKL treatment increased the expression of

SIRT3 and decreased the expression of COX-2. The radioprotective effects of HKL were

achieved via SIRT3 activation.

Conclusions: HKL attenuated oxidative stress and pro-inflammatory responses in a

SIRT3-dependent manner in radiation-induced brain injury.
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Introduction

An increasing number of central nervous
system (CNS) and brain tumor cases have
been reported, with the majority of patients
receiving radiation therapy.1,2 However,
radiotherapy may cause injury to tissue
near the CNS. Radiation-induced brain
injury may result in organ dysfunction and
affect learning, memory, and cognition.3–5

There are limited effective strategies avail-
able for attenuating such injuries, and reac-
tive oxygen species (ROS) and inflammation
may play a vital role in causing radiation-
induced brain injury. Accordingly, the pres-
ervation of mitochondrial function can
attenuate radiation injury.6–8

The NADþ-dependent deacetylase sirtuin
3 (SIRT3) is localized in the mitochondria
and regulates cell metabolic homeostasis.9,10

SIRT3 is involved in mediating oxidative
stress and inflammatory responses after
organ injury.9,10 However, the role of
SIRT3 in radiation-induced brain injury is
largely unknown. Previous reports have indi-
cated that SIRT3 activation has antioxida-
tive and anti-inflammatory effects.11,12 In
this study, we therefore used the SIRT3-
activating compound honokiol (HKL) to
explore the role of SIRT3 in radioprotection.
HKL, also known as 2-(4-hydroxy-3-prop-2-
enyl-phenyl)-4-prop-2-enyl-phenol, is a phe-
nolic compound isolated from Magnolia
grandiflora that has various properties,13

including neuroprotective effects. We used
a zebrafish model of radiation-induced
brain injury because zebrafish are widely
used in biomedical research.14

In this study, we aimed to clarify the

effects of HKL and the role of SIRT3 in

radiation-induced brain injury in HT22

cells and a zebrafish model, which had

been established previously.15

Materials and methods

Cell culture and radiation equipment

We maintained immortalized mouse

hippocampal neuronal (HT22) cells in

Dulbecco’s modified Eagle medium con-

taining 10% fetal bovine serum in a humid-

ified incubator at 37�C and 5% CO2, as

described previously.16 The radiation equip-

ment that was used was a 6-MV linear

accelerator (Clinac 2300 EX; Varian, Palo

Alto, CA, USA).

Cell viability assay and irradiation

HT22 cells were cultured in 96-well plates at

a density of 5� 103 cells/well in 200 lL
complete medium. The cells were treated

with or without 50 lM HKL in DMSO,

3 hours prior to exposure to 4 Gy of radi-

ation at a dose rate of 5.0 Gy/minute.

The HT22 cells were divided into four

groups: control, HKL, irradiation (IR),

and IRþHKL. Cell viability was evaluated

24 hours after irradiation using the

3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-

2H-tetrazolium bromide (MTT) assay

(Sigma-Aldrich, St. Louis, MO, USA) as

previously described.17
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Animal experiments

Adult (3- to 6-month-old) wild-type (AB

strain) zebrafish were housed in a recirculat-

ing tank system at Key Laboratory of

Zebrafish Modeling and Drug Screening

for Human Diseases Institute (Guangzhou,

China), and were fed as previously

described.15 The protocol was approved by

the Institutional Animal Care and Use

Committee at Jinan University (no. LL-

KY-2019029). Zebrafish were divided into

four groups (n¼ 40 per group): the control

group, HKL group, IR group, and

IRþHKL group. Zebrafish were adminis-

tered 0.15 g/L HKL in DMSO.

Antibodies and chemicals

The HKL, ethyl 3-aminobenzoate methane-

sulfonate (MS-222), and antibodies against

SIRT3 and cyclooxygenase-2 (COX-2) were

obtained from Sigma-Aldrich. The antibody

against b-actin was purchased from Cell

Signaling Technology (Beverly, MA, USA).

The kits for evaluating ROS, interleukin-1

beta (IL-1b), and tumor necrosis factor-

alpha (TNF-a) were obtained from Nanjing

Bioengineering Institute (Nanjing, China).

Zebrafish irradiation

Irradiation of zebrafish brains was per-

formed as previously described.15 Briefly,

zebrafish were administered HKL 3 hours

prior to the radiation exposure. They were

anesthetized by immersion in 0.02% MS-

222, and were then exposed to a single

dose (20 Gy) of cranial radiation, which is

a sublethal dose for an adult zebrafish.

Irradiation was delivered at a dose rate of

5.0 Gy/minute at a distance of 100 cm from

the source to the axis.

Dissection of the zebrafish hippocampus

Before dissection, the zebrafish were anesthe-

tized using 0.02% MS-222. Subsequently,

the zebrafish were euthanized by immersion

in an ice-water bath for 5 minutes.

Hippocampus dissection was performed as

previously described.18

Biochemical assays

HT22 cells and zebrafish hippocampi

were homogenized in Tris-HCl buffer (pH

7.4) and centrifuged. The supernatants were

collected for biochemical analysis. ROS

were measured using 20,70-dichlorodihydro-
fluorescein diacetate (DCFH-DA) staining,

24 hours after irradiation. Staining was

performed according to the manufacturer’s

instructions and as previously

described.19,20

The TNF-a and IL-1b levels were

detected using an enzyme-linked immuno-

sorbent assay (ELISA) at 24 hours after

HT22 cell and zebrafish hippocampal

tissue irradiation. Hippocampal tissue and

HT22 cells were homogenized in 1 mL of

ice-cold phosphate-buffered saline. After

three freeze–thaw cycles, the homogenates

were centrifuged for 5 minutes at

10,000� g at 4�C. Protein concentrations

were measured using a bicinchoninic acid

reagent. The IL-1b and TNF-a levels were

measured using commercial ELISA kits as

per the manufacturer’s instructions.21

RNA isolation, cDNA synthesis, and

real-time quantitative polymerase chain

reaction (PCR) amplification

Total RNA was extracted from zebrafish

hippocampi and HT22 cells using TRIzol

reagent (Takara, Dalian, China) according

to the manufacturer’s instructions. RNA

concentrations were measured, and cDNA

synthesis and quantitative real-time PCR

were performed as previously described.22

The primer sequences are shown in Table 1.
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Transfection with short interfering RNA

(siRNA)

The SIRT3 siRNA was designed and man-

ufactured by RiboBio Co. (Guangzhou,

China). HT22 cells were transfected using

Lipofectamine 2000 (Invitrogen Corp.,

Carlsbad, CA, USA) according to the man-

ufacturer’s instructions. Experiments using

transfected cells were performed 48 hours

after transfection. Scrambled siRNA was

used as a control.

Western blot assays

Proteins were extracted from zebrafish hip-

pocampi and HT22 cells using radioimmu-

noprecipitation assay buffer (Cell Signaling

Technology) containing a phosphatase

inhibitor cocktail and proteinase inhibitor

cocktail (Sigma-Aldrich), according to pre-

viously described methods.23 The protein

concentrations were detected and western

blot assays were performed as previously

described.22 Each experiment was indepen-

dently performed at least three times.

Statistical analysis

The data analyses were conducted using

SPSS for Windows, version 13.0 (SPSS,

Inc., Chicago, IL, USA). One-way analysis

of variance and the least significant differ-

ence test were used. A P-value less than 0.05

was considered statistically significant.

Results

HKL increases HT22 cell viability after

radiotherapy and decreases pro-

inflammatory cytokine and ROS levels

The MTT assay, performed 24 hours after

cell irradiation, revealed that HKL signifi-

cantly increased cell viability in the

IRþHKL group compared with the IR

group (P< 0.05) (Figure 1(a)). Conversely,

HKL treatment significantly decreased

levels of the pro-inflammatory factors TNF-

a, IL-1b (Figure 1(b,c)), and ROS (Figure 1

(d)) compared with the RT group (P< 0.05).

HKL decreases COX-2 expression and

increases SIRT3 expression in HT22 cells

The COX-2 and SIRT3 levels were measured

in HT22 cells 24 hours after irradiation. As

shown in Figure 2(a,b), HKL treatment sig-

nificantly decreased COX-2 mRNA levels

and increased SIRT3 mRNA levels in HT22

cells in the IRþHKL group compared with

the IR group (P< 0.05). Moreover, HKL

treatment significantly decreased COX-2 pro-

tein levels and increased SIRT3 protein levels

in the IRþHKL group compared with the IR

group (P< 0.05; Figure 2(c)).

HKL attenuates radiation-induced injury

via SIRT3 activation in HT22 cells

The HT22 cells were transiently transfected

with SIRT3 siRNA. The effects of this

Table 1. The primer sequences used to amplify genes in the zebrafish and in HT22 cells.

Gene Zebrafish HT22 cells

b-actin F: GTGCCCATCTACGAGGGTTA

R: TCTCAGCTGTGGTGGTGAAG

F: AGCCATGTACGTAGCCATCC

R: CTCTCAGCTGTGGTGGTG

SIRT3 F: CATTAAATGTGGTGGAACAAGAGGCCTG

R: AGTTCCTCTCCTTTGTAATCCCTCCGAC

F: ATCCCGGACTTCAGATCCCC

R: CAACATGAAAAAGGGCTTGGG

COX-2 F: TATGGAGAGACGCTGGAGGTTCA

R: CAAATTTCTGCTCTTCCGGGAT

F: ATCTGGCTTCGGGAGCACAA

R: GTGGTAACCGCTCAGGTGTT

COX-2, cyclooxygenase-2; F, forward; R, reverse; SIRT3, sirtuin 3.
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siRNA were assessed using western blot. As
presented in Figure 3(a), SIRT3 siRNA
effectively inhibited the expression of
SIRT3. The role of SIRT3 signaling in the
radioprotective effects of HKL was evalu-
ated in HT22 cells after irradiation. Cell
survival was evaluated using the MTT
assay. As shown in Figure 3(b), radiation
led to reduced cell viability in SIRT3-
deficient cells compared with control cells.
Furthermore, HKL did not significantly
increase the survival of SIRT3-deficient
cells (Figure 3(b)). The levels of ROS were
significantly increased in the SIRT3-
deficient cells compared with the control

cells (Figure 3(c)). Furthermore, HKL

treatment did not reduce the levels of

ROS in irradiated SIRT3-deficient cells.

HKL decreases pro-inflammatory

responses and ROS levels in the zebrafish

hippocampus

As presented in Figure 4(a,b), the TNF-a
and IL-1b levels were significantly

decreased in the IRþHKL group compared

with the IR group (P< 0.05). Similarly, the

levels of ROS were decreased in the

IRþHKL group compared with the IR

group (P< 0.05; Figure 4(c)).

Figure 1. HKL has radioprotective roles in irradiated HT22 cells. (a) HKL increased cell survival; (b) HKL
reduced TNF-a; (c) HKL reduced IL-1b; (d) HKL decreased ROS. *P< 0.05 compared with the control
group; #P< 0.05 compared with the IR group.
HKL, honokiol; IL-1b, interleukin-1 beta; IR, irradiation; TNF-a, tumor necrosis factor-alpha.
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HKL increases SIRT3 expression and

decreases COX-2 expression in the

zebrafish hippocampus

Both the mRNA and protein levels of

SIRT3 and COX-2 were measured in the

zebrafish hippocampus. HKL significantly

reduced the mRNA and protein expression

of COX-2 in the IRþHKL group compared

with the IR group (P< 0.05; Figure 4(d,f)).

Furthermore, the mRNA and protein

expression of SIRT3 was significantly

increased in the IRþHKL group compared

with the IR group (P< 0.05; Figure 4(e,f)).

Discussion

Radiation-induced brain injury is a

common occurrence in patients who have

received radiotherapy for head, neck, or

brain tumors.24 Inflammation and oxidative

stress are the major mechanisms involved in

radiation-induced brain injury.15,24

However, the exact mechanisms are not

yet fully known. Radiation-induced ROS

production contributes to tissue damage

and oxidative DNA damage. Moreover,

the generation of free radicals may also

activate TNF-a and IL-1b and upregulate

pro-inflammatory pathways.25,26

Some antioxidants have radioprotective

roles.27,28 For example, HKL has been dem-

onstrated to have antioxidative activity and

neuroprotective effects in several CNS dis-

eases.15,29–31 In the present study, increased

ROS production was observed in the hippo-

campus of zebrafish after irradiation, which

corroborated the results of previous reports.

Figure 2. HKL decreased the expression of COX-2 and increased the expression of SIRT3 in HT22 cells.
(a) HKL decreased the expression of COX-2 mRNA; (b) HKL decreased the expression of SIRT3 mRNA; (c)
HKL reduced COX-2 protein levels and increased SIRT3 protein levels. *P< 0.05 compared with the control
group; #P< 0.05 compared with the IR group.
COX-2, cyclooxygenase-2; HKL, honokiol; IR, irradiation; SIRT3, sirtuin 3.
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Persistent ROS generation contributes to
brain damage and dysfunction.32

HKL is a major bioactive constituent of

the Chinese medicinal plant M. officinalis.
In HKL, the hydroxyl group of the second

phenol possesses good chemical reactivity

with peroxyl radicals.33 HKL suppresses

mitochondrial complex I-dependent respi-
ration, stimulates the formation of mito-

chondrial ROS, induces 50 adenosine

monophosphate-activated protein kinase
activation, and inhibits mitochondrial

signal transducer and activator of transcrip-

tion phosphorylation. Notably, the inhibi-

tion of mitochondrial complex I activity
and subsequent increase in ROS formation

has been proposed as a key factor in the

chemoprevention and antitumor mecha-
nisms of HKL.34

The present study indicated that HKL

treatment significantly inhibits ROS gener-
ation in irradiated HT22 cells as well as the

zebrafish brain. HKL typically ameliorates
oxidative stress and inflammation in brain

cells.35–37 Our study also demonstrated that
HKL can attenuate not only ROS levels,

but also TNF-a and IL-1b levels.
SIRT3 is involved in the antioxidant

pathway and is associated with several
human diseases.38 Our results indicated

that HKL treatment activates SIRT3
expression at both the mRNA and protein

levels, and that it also reduces the expres-
sion of COX-2 and pro-inflammatory cyto-

kines, thus mitigating radiation-induced
brain injury. These findings are in line

with previous studies that revealed an inhi-
bition of inflammatory responses upon

SIRT3 activation. In HT22 cells, we also
observed that HKL treatment attenuated

radiation-induced injury via SIRT3 activa-
tion. Moreover, SIRT3 activation may have

protective roles in other cell types.39 For
example, Cao et al. reported that SIRT3

Figure 3. HKL did not have a neuroprotective role in SIRT3-deficient cells. (a) The effects of SIRT3 siRNA
on SIRT3 protein were evaluated by western blot. (b) HKL did not increase cell survival in SIRT3-deficient
cells. (c) HKL did not attenuate ROS in SIRT3-deficient cells. *P< 0.05.
HKL, honokiol; NS, not significant; ROS, reactive oxygen species; SIRT3, sirtuin 3.

Liao et al. 7



activation can alleviate radiation-induced

lung injury.40

HKL did not have a radioprotective role

in SIRT3-deficient cells, suggesting that

SIRT3 is involved in oxidative damage.

Moreover, studies have reported that

SIRT3 deficiency abrogates the radiopro-

tective effects of SIRT3 activator11,29.

Additionally, SIRT3-knockout mice have

exaggerated cardiac dysfunction during

ischemia–reperfusion.41 A SIRT3 activator

compound also failed to demonstrate a

protective role in SIRT3-knockout mice

with acute lung injury.12

In conclusion, our study indicates that

HKL treatment has radioprotective effects

via the activation of SIRT3, which in turn

attenuates oxidative stress injury and pro-

inflammatory responses.
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