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A B S T R A C T   

Background and Purpose: Chronic active multiple sclerosis (MS) lesions are characterized by a paramagnetic rim 
at the edge of the lesion and are associated with increased disability in patients. Quantitative susceptibility 
mapping (QSM) is an MRI technique that is sensitive to chronic active lesions, termed rim + lesions on the QSM. 
We present QSMRim-Net, a data imbalance-aware deep neural network that fuses lesion-level radiomic and 
convolutional image features for automated identification of rim + lesions on QSM. 
Methods: QSM and T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI of the brain were collected 
at 3 T for 172 MS patients. Rim + lesions were manually annotated by two human experts, followed by consensus 
from a third expert, for a total of 177 rim + and 3986 rim negative (rim− ) lesions. Our automated rim +
detection algorithm, QSMRim-Net, consists of a two-branch feature extraction network and a synthetic minority 
oversampling network to classify rim + lesions. The first network branch is for image feature extraction from the 
QSM and T2-FLAIR, and the second network branch is a fully connected network for QSM lesion-level radiomic 
feature extraction. The oversampling network is designed to increase classification performance with imbalanced 
data. 
Results: On a lesion-level, in a five-fold cross validation framework, the proposed QSMRim-Net detected rim +
lesions with a partial area under the receiver operating characteristic curve (pROC AUC) of 0.760, where clin
ically relevant false positive rates of less than 0.1 were considered. The method attained an area under the 
precision recall curve (PR AUC) of 0.704. QSMRim-Net out-performed other state-of-the-art methods applied to 
the QSM on both pROC AUC and PR AUC. On a subject-level, comparing the predicted rim + lesion count and the 
human expert annotated count, QSMRim-Net achieved the lowest mean square error of 0.98 and the highest 
correlation of 0.89 (95% CI: 0.86, 0.92). 
Conclusion: This study develops a novel automated deep neural network for rim + MS lesion identification using 
T2-FLAIR and QSM images.   

1. Introduction 

Multiple sclerosis (MS) is an inflammatory disease of the central 
nervous system, characterized by lesions in the brain and spinal cord 
(Sahraian et al., 2008). A particular type of MS lesion, called a chronic 
active lesion, is characterized by an iron-enriched rim of activated 

macrophages and microglia in histopathology studies (Dal-Bianco et al., 
2017; Absinta et al., 2016; Kaunzner et al., 2019; Gillen et al., 2021). 
Chronic active lesions are visible with in-vivo susceptibility magnetic 
resonance imaging (MRI) techniques, where these lesions show a para
magnetic rim (Dal-Bianco et al., 2017; Kaunzner et al., 2019; Absinta 
et al., 2013; Pitt et al., 2010; Hammond et al., 2008; Absinta et al., 2018; 
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Bagnato et al., 2011; Hagemeier et al., 2012; Yao et al., 2012; Walsh 
et al., 2013; Harrison et al., 2016; Bian et al., 2013) on the edge. The 
presence of chronic active MS lesions is associated with a more severe 
disease course (Harrison et al., 2016; Absinta et al., 2019; Marcille et al., 
2021; Frischer et al., 2015; Luchetti et al., 2018) and there is currently 
much interest in using these lesions as an imaging biomarker. 

In studies of chronic active MS lesions on MRI, lesions are typically 
identified on the T2-weighted-Fluid-Attenuated Inversion Recovery (T2- 
FLAIR) image and then are determined to be chronic active through 
visual inspection on susceptibility imaging. This process is time 
consuming, as all lesions must be reviewed for a rim, and prone to inter- 
and intra-rater variability (Carass et al., 2017; Zhang et al., 2021a). For 
these lesions to be further studied at a large scale and translated into 
clinical practice, there is a great need for automated methods to identify 
chronic active MS lesions. 

Quantitative susceptibility mapping (QSM) is an MRI technique that 
provides in vivo quantification of magnetic susceptibility changes 
related to iron deposition (Wang and Liu, 2015; Wang et al., 2017; de 
Rochefort et al., 2010). QSM identifies chronic active MS lesions 
(Langkammer et al., 2013; Stüber et al., 2016; Wisnieff et al., 2015), 
which are termed QSM rim positive (rim+) lesions. We propose an 
automated method to identify QSM rim + lesions, QSMRim-Net, using 
QSM and T2-FLAIR images of the brain. Our method is a deep con
volutional neural network which consists of a two-branch network that 
fuses QSM and T2-FLAIR imaging features derived from a deep residual 
network (He et al., 2016) with lesion-level radiomic features from the 
QSM (Lambin et al., 2012), In addition, a Synthetic Minority Over
sampling TEchnique (SMOTE)-based oversampling network (Deep
SMOTE) is developed to alleviate data imbalance issue caused by the 
small number of rim + lesions. This is the first deep learning method to 
fuse convolutional imaging features with radiomic features. Further
more, QSMRim-Net with DeepSMOTE is the first end-to-end deep neural 
network that can be trained with online minority oversampling for rim 
+ lesion classification. 

Two previous methods have been developed to identify chronic 
active MS lesions on phase imaging (Barquero et al., 2020; Lou et al., 
2020). RimNet (Barquero et al., 2020) uses convolutional features, while 
Automatic Paramagnetic Rim Lesions (APRL) (Lou et al., 2021) uses 
radiomic features. To put the performance of QSMRim-Net into context, 
we compare it to these two methods applied to the QSM using both 
lesion-level and patient-level performance metrics. 

2. Materials and methods 

2.1. Dataset 

2.1.1. MRI image acquisition and preprocessing 
QSMRim-Net was evaluated on an MS imaging dataset collected at 

Weill Cornell (Table 1). The dataset consists of 172 MS patients enrolled 
in an ongoing prospective database for MS research. The database was 
approved by the local Institutional Review Board and written informed 

consent was obtained from all patients prior to their entry into the 
database. 

The imaging was performed on a 3 T Magnetom Skyra scanner 
(Siemens Medical Solutions, Malvern, PA, USA). The Siemens scanning 
protocol consisted of the following sequences: 1) 3D sagittal T1- 
weighted (T1w) MPRAGE: Repetition Time (TR)/Echo Time (TE)/ 
Inversion Time (TI) = 2300/2.3/900 ms, flip angle (FA) = 8◦, GRAPPA 
parallel imaging factor (R) = 2, voxel size = 1.0 × 1.0 × 1.0 mm3; 2) 2D 
axial T2-weighted (T2w) turbo spin echo: TR/TE = 5840/93 ms, FA =
90◦, turbo factor = 18, R = 2, number of signal averages (NSA) = 2, 
voxel size = 0.5 × 0.5 × 3 mm3; 3) 3D sagittal fat-saturated T2w fluid 
attenuated inversion recovery (T2-FLAIR) SPACE: TR/TE/TI = 8500/ 
391/2500 ms, FA = 90◦, turbo factor = 278, R = 4, voxel size = 1.0 ×
1.0 × 1.0 mm3. For axial 3D multi-echo GRE sequence for QSM: axial 
field of view (FOV) = 24 cm, TR/TE1/ΔTE = 48.0/6.3/4.1 ms, number 
of TEs = 10, FA = 15◦, R = 2, voxel size = 0.75 × 0.93 × 3 mm3, scan 
time = 4.2 min. QSM images were reconstructed by MEDI-0 (Liu et al., 
2018) algorithm from multi-echo GRE data. T2-FLAIR images were then 
preprocessed using the FSL toolbox (Smith et al., 2004). We applied N4 
inhomogeneity correction algorithm to the acquired images and linearly 
co-registered T2-FLAIR images to the magnitude space of QSM. 

2.1.2. Lesion segmentation and rim + lesion annotation 
T2-FLAIR lesion masks were created for all patients in the dataset. 

These masks were obtained by segmenting the T2-FLAIR image using the 
LST-LPA algorithm in the LST toolbox version 3.0.0 (www.statisticalmo 
delling.de/lst.html) (Schmidt et al., 2012), followed by manual editing, 
and finalized by the consensus of two expert raters. Confluent lesions 
may occur when pathologically distinct lesions grow close to each other 
and form a large spatially connected lesion. These confluent lesions in 
the dataset were identified, then broken up and labeled by a human 
expert. After lesion segmentation and confluent lesion separation, a total 
of 4163 individual lesions were identified. Masks were further edited on 
the QSM image to ensure that these masks matched the lesion on QSM. 
Examples of a rim + and rim− lesion on QSM and T2-FLAIR are shown in 
Fig. 1. and an overview of the annotation process is shown in Fig. 2. 

Rim + and rim− lesions were manually annotated by two human 
experts, who reviewed each of the 4,163 T2-FLAIR lesions for rim status 
on the QSM. The two reviewers had moderate agreement, with a kappa 
of 0.59. For lesions with disagreement, a final consensus was obtained 
from a third human expert. After the rim lesion annotation, 177 lesions 
were identified as rim + lesions and 3,986 lesions were identified as 
rim− lesions. An overview of the annotation process is shown in Fig. 2. 
and the distribution of rim + lesions per patient is shown in Fig. 3. 

2.2. Methodology 

2.2.1. Network architecture 
QSMRim-Net is a two-branch network consisting of four parts: a 

convolutional network for image feature extraction, a fully connected 
network for radiomic feature extraction, a SMOTE-based oversampling 
network for synthesizing rim + features in the latent feature space, and a 
final classifier that outputs the probability that a lesion is rim+ (see 
Fig. 4). QSMRim-Net takes as input the QSM, T2-FLAIR, and a lesion 
segmentation mask (described in the section above). For image feature 
extraction over the lesion segmentation mask, we use a deep residual 
network (ResNet) (He et al., 2016) with 18 layers as our backbone 
network. We modified the convolutional kernels from 2D to 3D, used 
two input channels to accommodate the QSM and T2-FLAIR images, and 
used two categories (rim + and rim− ) for the last linear layer. For 
radiomic feature extraction over the lesion segmentation mask, radiomic 
features (Kolossváry et al., 2018; Kolossváry et al., 2017) were calcu
lated on the QSM (described in detail in the section below). The multi- 
layer perceptron (MLP) for radiomic feature extraction consists of two 
fully connected layers. The first layer is a linear layer followed by a one- 
dimensional batch normalization (Ioffe and Szegedy, 2015), a Swish 

Table 1 
Demographics information for the study cohort.  

Demographics  

Number of Subjects 172 
Gender (count (%))  

Female 124 (72.09%) 
Male 48 (27.91%) 

Disease Subtypes (count (%))  
RRMS 159 (92.44%) 
SPMS 8 (4.65%) 
CIS 5 (2.91%) 

Disease Durations (mean ± STD) 10.68 ± 7.37 
Age (mean ± STD) 42.82 ± 10.27 
Expanded Disability Status Score (mean ± STD) 1.38 ± 1.64 
Treatment Durations (mean ± STD) 8.05 ± 5.79  
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activation function (Ramachandran et al., 2017), and a dropout layer. 
The second layer has the same structure as the first layer, except that it 
does not include a dropout layer. To fuse the convolutional and radiomic 
features, we performed vector concatenation on the second dimension 
for feature vectors from both the output of the residual network and the 
MLP and processed the new feature vector with another fully connected 
layer (see Figs. 4 and 5). To alleviate the data class imbalance issue, we 
further applied the DeepSMOTE network (described in detail in the 
Section 2.2.3) to oversample these latent features of rim + lesions during 
the training phase. The result of the model is a probability that a lesion is 
a rim + lesion. This probability can be thresholded to create a binary 
indicator of a lesion being rim+. 

2.2.2. Radiomic feature analysis 
Radiomic features have been shown to be effective in many appli

cations of medical image analysis (Coroller et al., 2016; Liu et al., 2016; 
Bakas et al., 2017; Sweeney et al., 2021). For QSMRim-Net, radiomic 
features were calculated over each lesion using the pyradiomics package 
(Van Griethuysen et al., 2017). Specifically, we calculated four different 

types of radiomic features on the input image: 1) first-order statistics 
such as harmonic mean and geometric mean, 2) gray-level co-occur
rence matrix (GLCM) statistics such as interquartile range and energy 
sum, 3) gray-level run-length matrix (GLRLM) statistics such as run- 
percentage, and 4) geometric-based parameters such as ratio of lesion 
surface to volume. In addition, Coiflet wavelet filters were applied to 
yield the 8 decompositions of the input image and radiomic features 
were calculated on the wavelet images. Wavelet filters were imple
mented with the PyWavelet package (Lee et al., 2019). In total, 527 
radiomic features were calculated over each lesion on the QSM for our 
model. 

2.2.3. SMOTE-based oversampling network 
Rim + lesions are rare, with a prevalence of 4.25% in our dataset. 

This poses a great challenge to training any learning model. To over
come this challenge, we propose DeepSMOTE, a novel oversampling 
network that leverages the latent features extracted from deep neural 
network. Intuitively, DeepSMOTE can be thought of as finding the two 
nearest neighbors of each rim + lesion and taking a linear combination 

Fig. 1. Example of MS lesions on an axial slice of the QSM (left) and corresponding axial slice of the T2-FLAIR (right). The digit 1 marked with red indicates a rim +
lesion and the digit 2 marked with green indicates a rim- lesion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 2. Schematic of the rim + and rim- lesion annotation process. First, we use LST (Schmidt, 2012) to obtain an initial lesion segmentation mask. Second, a human 
expert performs manual correction and confluent lesion separation, followed by mask edits based on QSM. Third, rim + lesions are manually annotated by two 
human experts, followed by consensus from a third expert. 
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of the lesion’s features with each of the neighbors’ features to produce 
synthetic observations. DeepSMOTE consists of a multi-layer perceptron 
(MLP) for feature transformation followed by the synthetic sample 

generation. The MLP is designed in a similar style as the network branch 
for radiomic feature extraction, where there are two consecutive fully 
connected networks, each having a linear layer, a 1-dimensional batch 
normalization, and a Swish activation function. The MLP is used to fuse 
features from the two network branches and reduces the feature 
dimension from 1024 to 512 for efficient computation (Figs. 4 and 5). 
Next, the two nearest neighbors for each rim + lesion in the mini-batch 
are determined using Euclidean distance. To train QSMrim-Net on a 
modern GPU, a small portion (mini-batch) of size N (64 samples in a 
mini-batch in our implementation) from the entire training dataset was 
randomly sampled during one forward–backward pass. Suppose there 
are n rim + lesions in a particular mini-batch. Let xp (p ∈ {1,2,3⋯n}) be 
the latent feature vector of a rim + lesion in the mini-batch. Let xp1 and 
xp2 be the two nearest rim + lesions to this lesion in the mini-batch, with 
respect to Euclidean distance. We generate two synthetic samples: 

xp1 = αp1 xp +
(
1 − αp1

)
xp1 (1)  

xp2 = αp2 xp +
(
1 − αp2

)
xp2 (2)  

where αp1 and αp2 are randomly generated numbers in (0,1) to form a 
linear combination of the observation xp with xp1 and xp2 respectively. 
The result, xp1 and xp2 , are then the linear combinations of the rim +
lesion and its nearest neighbors. This results in N+2n observations on 
which to train the network, the N samples in the mini-batch and the and 
the 2n synthetic samples. DeepSMOTE differs from the original SMOTE 

Fig. 3. Distribution of the number of paramagnetic rim lesions (rim + lesions) 
per subject in the Weill Cornell dataset. The plot is colored by the groups used 
for the stratified five-fold cross validation. 

Fig. 4. Schematic of the proposed QSMRim-Net for paramagnetic rim lesion identification. (Top Row) The deep residual network takes in both QSM and FLAIR 
images to extract convolutional features. (Bottom Row) The QSM image and the lesion mask are used to extract radiomic features, followed by feature extraction of 
an MLP. A tensor concatenation operation is performed to fuse convolutional and radiomic features, and a DeepSMOTE layer is used to perform synthetic minority 
feature over-sampling during the training phase. 

Fig. 5. Schematic of the DeepSMOTE network layer. N is the number of samples in a training mini-batch, and n is the number of rim + samples in the mini-batch. The 
input features go through an MLP for feature transformation, followed by selecting rim + samples from the mini-batch. The transformed rim + features are used to 
generate a Euclidean distance-based similarity followed by latent feature interpolation. The original features and the oversampled features are concatenated, 
resulting in a total of N+2n samples in the output of DeepSMOTE. 
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algorithm, which oversamples the minority class by the reciprocal of the 
percentage of the minority class present in the dataset. DeepSMOTE 
instead samples 2n synthetic samples for each mini-batch during 
training, as each forward–backward pass of the deep neural network is 
done in a mini-batch of the entire dataset and oversampling too many 
rim + lesions in a single mini-batch may result in overfitting of the 
network. 

2.3. Training details 

We applied a stratified five-fold cross-validation procedure to train 
and validate the performance of QSMRim-Net and the other methods. 
The stratified procedure was performed to balance the number of rim +
lesions in each of the five folds. As seen in Fig. 3, we first grouped 
subjects into four groups, where the first group contained subjects with 
no rim + lesion, the second subjects with 1–3 rim + lesions, the third 
subjects with 4–6 rim + lesions, and the fourth subjects with more than 6 
rim + lesions. The data was then randomly split into the five folds within 
each of these groups. All experiments were conducted with this stratified 
five-fold cross validation setting. 

Input images were cropped into image patches with a fixed size 32 ×
32 × 16 voxels, followed by a masking out of non-lesion area. The 
largest rim + lesion had a size of 15 × 20 × 5 voxels and only 7 rim−

lesions were above the size of 32 × 32 × 16. As many lesions are 
confluent and may overlap in the patch, we only left the target lesion 
area in the patch. We then performed data augmentation to improve the 
performance of the model, providing better model generalizability. For 
augmentation in the training set, lesions were moved to align their 
center of mass to the geometric center of the image patch. We then used 
random flipping, random affine transformations, and random blurring to 
augment our data. Flipping was performed on an orthogonal direction 
randomly chosen from the axial, coronal, or sagittal direction. Affine 
transformations were performed with a random scale ranging from 0.95 
to 1.05 and a random rotation degree between − 5 and 5◦. The final 
transformed patch was obtained after a trilinear interpolation. The 
blurring was performed using a random-sized Gaussian filter where the 
kernel radius was determined by4σ + 0.5. The voxel size of our QSM 
image was 0.75× 0.75× 3, thus for the coronal and sagittal direction, 
we randomly sampled σ ∼ U (0.1,0.95), and for the axial direction we 
randomly sampled σ ∼ U (0.03,0.3). 

Version 3.7 of Python was used for all analysis. We implemented our 
network using the PyTorch library (Paszke, et al., 1912) on a computer 
equipped with a single Nvidia 1080Ti GPU. The Adam algorithm 
(Kingma and Ba, 2014); with an initial learning rate of 0.0001 and multi- 
step learning rate scheduler with milestones at 50%; 70%, and 90% of 
the total epochs, was used to train the network weights. A mini-batch 
size of 64 was used for training, and training was stopped after 40 
epochs. We used three random seeds to train three models for each fold 
and the final prediction result was determined by majority voting. We 
performed a sensitivity analysis and found that three random seeds 
performed well in terms of computational cost versus performance in
crease as a balance of all performance metrics. 

2.4. Comparator methods 

Two automated methods have been developed to identify chronic 
active lesions on phase images (Barquero et al. , 2020; Lou et al., 2020). 
RimNet (Barquero et al., 2020) develops a multi-modal VGGNet 
(Simonyan, 2014) to extract rim information from image patches of the 
phase and T2-FLAIR images. APRL (Lou et al., 2021) applies a SMOTE 
and a random forest model to first-order radiomic features derived from 
individual lesions on the phase images. To evaluate QSMRim-Net, we 
compared the performance of the proposed algorithm with these two 
methods. Both methods were originally implemented on the phase, 
therefore we adapted these methods to a QSM implementation for use 
with our data. For RimNet, we used the QSM image along with the T2- 

FLAIR image as the network inputs. For APRL, we used the QSM image 
to extract the first order radiomic features as done in the original 
implementation. We applied SMOTE as done in the original APRL 
method to oversample the rim + lesion features by the reciprocal of its 
percentage present in our dataset. In addition to APRL, we also evalu
ated a neural network with the radiomic features, which is denoted as 
APRL (NN). The APRL (NN) uses the same network architecture as the 
radiomic branch of our QSMRim-Net and uses all 527 radiomic features 
instead of only the first order radiomic features. In the remainder of the 
manuscript, we refer to the implementation of APRL with the random 
forest as APRL (RF). 

2.5. Statistical evaluation 

To evaluate the performance of each method, partial receiver oper
ating characteristic (pROC) curves with false positive rates up to 0.1 and 
precision-recall (PR) curves of the different validation folds were 
interpolated using piecewise constant interpolation and averaged to 
show the overall performance at the lesion-level. For each curve, the 
area under the curve (AUC) was computed directly from the interpolated 
and averaged curves. As rim + lesions are rare and a small subset of the 
total number of lesions (4.25% of the lesions), allowing a high false 
positive rate threshold would produce results that are not clinically 
relevant. We therefore examine the pROC for false positive rates be
tween 0 and 0.1. In addition, to create binary indicators of rim + versus 
rim− lesions, we thresholded the model probabilities to maximize the F1 
score. The F1 score is the harmonic mean of precision (positive predic
tive value) and sensitivity, where F1 = 2⋅ Precision∙Sensitivity

Precision+Sensitivity. We selected the 
F1 score as it a balance of two metrics (positive predictive value and 
sensitivity) as opposed to optimizing on a single metric. The thresholds 
for different folds of the cross-validation were chosen separately, and all 
results were obtained by a concatenation of the results for the five folds. 
For the lesion-wise analysis, accuracy, F1 score, sensitivity, specificity, 
and positive predicted value (PPV) were used to characterize the per
formance of each automated method. The results for accuracy, speci
ficity, and PPV were non-parametrically bootstrapped 500 times on 
subject to test for statistically significant differences between the 
methods. 

We also assessed performance at the subject-level. We used the F1 
score criteria for thresholding and compared the number of predicted 
rim + lesions and the expert count number of rim + lesions for each 
subject. Pearson’s correlation coefficient was used to measure the cor
relation between the two values. Mean Squared Error (MSE) was also 
used to measure the averaged accuracy for the model predicted count. 

2.6. Ablation study 

We conducted an ablation study to evaluate the effects of changing 
components of the QSMRim-Net network using ResNet as the backbone 
network. First, we examined two different fusion methods for the image- 
level features. In RimNet, a multi-modal architecture was used to fuse 
image-level features. In QSMRim-Net we concatenated images in the 
channel dimension of the tensor for input into the network. Second, we 
investigated the effects of incorporating the radiomic feature as a 
separate network branch. Third, we studied how the DeepSMOTE layer 
affects the network performance. The following four schemes were 
evaluated based on the method for fusing the QSM and T2-FLAIR im
aging features and whether we adopt radiomic feature or DeepSMOTE 
layer: 1) images were fused as in QSMRim-Net with no radiomic fea
tures, 2) images were fused as in RimNet with no radiomic features, 3) 
images were fused as in QSMRim-Net with radiomic features, 4) images 
were fused as in QSMRim-Net with radiomic feature and DeepSMOTE 
network was adopted. 
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3. Results 

3.1. Lesion-wise analysis 

Table 2 shows the lesion-wise performance metrics of the proposed 
QSMRim-Net and the other methods, using the F1-score as a threshold. 
QSMRim-Net outperformed the competitors in all metrics used for 
evaluation. With a slightly higher overall accuracy and specificity with 
other methods, QSMRim-Net resulted in a 9.8% and 23.3% improve
ment in F1 score, 3.5% and 14.3% improvement in sensitivity and 16.8% 
and 33.1% improvement in PPV compared to Rim-Net (Barquero et al., 
2020) and APRL (RF) (Lou et al., 2021), respectively. The increase in 
accuracy and specificity were very moderate for QSMRim-Net compared 
to the other methods. This is due to the fact that there are many rim−

lesions, so the accuracy and specificity for all methods is very high. From 
the non-parametric bootstrap, no significant differences were found 
between the methods for accuracy, sensitivity, specificity, and positive 
predictive value. 

Fig. 6 shows the pROC curves and the PR curves for the different 
methods. The proposed QSMRim-Net obtained 4.68% and 21.01% 
higher pROC AUC (0.760) than Rim-Net (0.726) and APRL (RF) (0.628), 
meaning that for more clinically relevant false positive rates of less than 
0.1, QSMRim-Net has higher performance than the other methods. The 
proposed QSMRim-Net out-performed both Rim-Net and APRL (RF) by 
9.8% and 60.0% respectively in PR AUC, indicating the effectiveness of 
the proposed DeepSMOTE network and fusion of information from both 
convolutional image and radiomic features. Interestingly, APRL (NN) 
that uses our neural network architecture outperformed APRL (RF) 
significantly in both pROC AUC and PR AUC, indicating the potential for 
the neural network to exploit high-dimensional non-linear relationships 
from the radiomic features. 

3.2. Subject-wise analysis 

We calculated the predicted count of rim + lesions from each of the 
models and compared this to consensus expert count for each subject. 
The consensus expert count of rim + lesions ranged from 0 to 17 among 
the 172 subjects, with a median of 2 rim + lesions among subjects with 
at least one rim (IQR 1–4). The predicted count of rim + lesions from 
QSMRim-Net ranged from 0 to 14, with a median of 1 rim + lesion 
among the subjects with at least one rim (IQR 1–4). 

The Pearson’s correlation between the predicted count and the gold 
standard count was 0.89 (95% CI: 0.86, 0.92). Fig. 7 shows the scat
terplot for the predicted count versus the gold standard count, along 
with the identity line. The Pearson’s correlations for the other methods 
were found to be lower than QSMRim-Net: 0.88 (95% CI: 0.85, 0.91) for 
APRL (NN), 0.77 (95% CI: 0.70, 0.82) for APRL (RF), and 0.75 (95% CI: 
0.67, 0.81) for Rim-Net. The performance of QSMRim-Net on the 
patient-level is statistically significantly higher than that of APRL (RF) 
and Rim-Net, but not APRL (NN). The MSE for the predicted count of the 
QSMRim-Net was 0.98. The MSE for the other methods were found to be 
higher: 1.02 for APRL (NN), 2.26 for APRL (RF), and 2.47 for Rim-Net. 

3.3. Ablation study 

Table 3 shows the results from the ablation study. For image fusion, 
the fusion technique in QSMRim-Net outperformed the fusion technique 
for RimNet. For radiomic feature fusion, we can see that the network 
with radiomic feature fusion performs better than the networks without 
radiomic feature fusion. The network with Deep SMOTE oversampling 
outperforms the other variants in all metrics. 

3.4. Prediction time and software 

After fitting the QSMRim-Net model, creating rim + lesion proba
bilities for a subject took on average 4.6 s (sd = 4.1 s). A software 
implementation of the fitted QSMRim-Net model can be found on 
GitHub at https://github.com/tinymilky/QSMRim-Net 

4. Discussion 

In this paper, we propose QSMRim-Net, a deep convolutional neural 
network for identifying rim + lesions on QSM MRI. This is the first study 
to introduce an end-to-end two-branch network enabled with the 
DeepSMOTE oversampling technique that can effectively fuse both 
convolutional image and radiomic features. 

Our QSMRim-Net achieved better performance than two previously 
developed methods when applied to the QSM, APRL (RF) (Lou et al., 
2021) and Rim-Net (Barquero et al., 2020). The results on a lesion-level 
were not found to be statistically significant, and this can be attributed 
to the small number of rim + lesions in the dataset. It is also important to 
interpret these results considering that APRL (RF) and Rim-Net were 
originally designed for phase imaging and were applied to the QSM for 
this study. The accuracy of QSMRim-Net also outperformed the accuracy 
of the original APRL and Rim-Net on phase imaging, with accuracies of 
0.8 and 0.946, respectively, compared to QSMRim-Net’s accuracy of 
0.976. The increase in performance can be attributed to our carefully 
designed convolutional neural network architecture (Fig. 4). Rim-Net 
used VGG-Net (Simonyan, 2014) and APRL (RF) used a random forest. 
Our QSMRim-Net adopted a ResNet (He et al., 2016) architecture that 
uses identity shortcut connections to prevent gradient vanishing, which 
reduces computational complexity and allows for the training of deeper 
networks than VGG-Net. We also observed that a neural network with 
MLP (APRL (NN)) achieved better performance than a random forest 
model (APRL (RF)) on radiomic features. This shows that a properly 
designed neural network can extract discriminative information from 
highly non-linear radiomic feature data. Another contributor to 
QSMRim-Net’s performance is that it effectively fuses the complemen
tary information from the convolutional image and radiomic features. 
We also showed in the ablation study that the neural network archi
tecture design choices for fusing features from different sources is 
important for improving rim + lesion identification performance. 

In addition to the deep neural network model, our result may also 
benefit from the utilization of QSM. Compared to the phase images used 
in the original implementation of Rim-Net and APRL (RF), QSM can 
measure the underlying tissue apparent magnetic susceptibility, 
enabling the quantification of specific biomarkers, such as iron, that are 
independent of imaging parameters. Rim + lesions are characterized by 

Table 2 
Lesion-wise results of the QSMRim-Net and other methods using a stratified five-fold cross-validation scheme. PPV denotes positive predictive value, TP# denotes the 
number of true positives, FP# denotes the number of false positives, FN# denotes the number of false negatives, and TN# denotes the number of true negatives. For 
TP#, FP#, FN#, and TN# the percentage of lesions in each designation is also provided. The best performing method for each of metrics is bolded.  

Lesion-wise results Accuracy F1 Sensitivity Specificity PPV TP # FP # FN # TN # 

APRL (NN)  0.969  0.614  0.588  0.985  0.642 104 (2.5%) 58 (1.4%) 73 (1.8%) 3928 (94.4%) 
APRL (RF)  0.962  0.571  0.593  0.978  0.550 105 (2.5%) 86 (2.1%) 72 (1.7%) 3900 (93.7%) 
Rim-Net  0.969  0.641  0.655  0.983  0.627 116 (2.8%) 69 (1.7%) 61(1.5%) 3917 (94.1%) 
QSMRim-Net  0.976  0.703  0.680  0.989  0.732 120 (2.9%) 44 (1.1%) 57 (1.4%) 3942 (94.7%)  
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a paramagnetic rim with iron deposited at the edge of the lesion. QSM is 
sensitive to such magnetic susceptibility changes and provides consis
tent measurements of the susceptibility value of the rim across patients 
and scanners, which is beneficial for a machine learning model such as 
deep neural network to learn patterns of rim + and rim− lesions. While 
our QSMRim-Net is inspired by Rim-Net and APRL (RF), we found that 
implementing these two methods on our dataset using QSM resulted in 
10.2% and 25.0% improvement of PPV, 7.8% and 26.5% reduction in 
sensitivity respectively, compared to its original implementation of Rim- 
Net and APRL (RF) on phase images. 

The APRL algorithm used only first-order radiomic features for 
identifying chronic active MS lesions. For QSMRim-Net, we expanded 
upon this set of features, using the radiomic features of first-order sta
tistics, GLCM statistics, GLRLM statistics and geometric-based parame
ters combined with wavelet filters (Rizzo et al., 2018). There are other 
radiomic features, such as gray level size zone matrix (GLSZM) statistics, 
neighboring gray tone difference matrix (NGTDM) statistics, and gray 
level dependence matrix (GLDM) statistics that would be interesting to 
explore in the QSMRim-Net model. Other filters, such as a Laplacian 
filter, could also be used with the radiomic features. Due to the limited 
sample size available for this analysis, we limited the number of radio
mic features and filter combinations. Future work exploring if there are 
performance gains from the addition of other radiomic features and 
filters is warranted. 

The high imbalance of rim + and rim− lesions is a challenge for 
machine learning models. We found that APRL (RF) with SMOTE 
oversampling outperforms its counterpart without SMOTE by 2.9% in F1 
score, indicating the importance of oversampling of the minority class. 
While it is feasible to synthesize radiomic features by linear interpola
tion using SMOTE, it is not possible to synthesize meaningful images by 
pixel-level linear interpolation. It has been shown empirically that deep 
neural networks can linearize the manifold of images into Euclidean 
subspace (Bengio, et al., 2013; Zhang et al., 2021b; Upchurch et al., 

Fig. 6. The partial receiver operating characteristic (pROC) curve and precision-recall (PR) curves for the proposed (QSMRim-Net) and comparator methods. AUC 
denotes the area under the curve. We use clinically relevant false positive rates of less than 0.1 to compute the pROC AUC, in order to account for the rare nature of 
rim + lesions. Our QSMRim-Net algorithm outperformed all other algorithms on pROC AUC (FPR < 0.1) and PR AUC. 

Fig. 7. The predicted count of rim + lesions from QSMRim-Net versus the 
expert human count (ρ = 0.89(95%CI : 0.86,0.92),MSE = 0.98). Points in the 
plot have been jittered for better visualization. The linear regression line for the 
predicted count versus the gold standard count with 95% CI is also shown (solid 
blue) along with the identity line (dashed blue). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Ablation study on QSMRim-Net and its variants. PPV denotes positive predictive value, TP# denotes the number of true positives, FP# denotes the number of false 
positives, FN# denotes the number of false negatives, and TN# denotes the number of true negatives. Image Fusion indicates whether the model performed image-level 
feature fusion, Radiomic Fusion indicates whether the model performed feature fusion between image and radiomic features, and Deep SMOTE indicates whether the 
model applied the DeepSMOTE network for rim + feature oversampling. The best performing method for each of metrics is bolded.  

Image Fusion Radiomic Fusion Deep SMOTE Accuracy F1 Sensitivity Specificity PPV TP# FP# FN# TN# 

✓ × × 0.969  0.639  0.644  0.983  0.633 114 66 63 3920 
× × × 0.971  0.645  0.610  0.987  0.684 108 50 69 3936 
× ✓ × 0.975  0.685  0.650  0.989  0.723 115 44 62 3942 
× ✓ ✓  0.976  0.703  0.680  0.989  0.732 120 44 57 3942  
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2017), enabling the possibility of linear interpolation using latent fea
tures from deep layers from the network. Inspired by the SMOTE results 
from APRL (RF) and the deep feature interpolation, we propose Deep
SMOTE network to alleviate the data imbalance issue, and the results in 
Table 3 shows the effectiveness of applying DeepSMOTE for data 
oversampling. 

For the QSMRim-Net performance results, we thresholded the output 
probabilities from the algorithm using the optimized F1 score, resulting 
in a sensitivity of 0.678 for detecting rim + lesions. However, in a 
research scenario or in clinical practice, missing any rim + lesions may 
not be acceptable. Thus, to demonstrate the performance of QSMRim- 
Net in these settings, we also applied a high sensitivity threshold, 
using the largest sensitivity below 0.95. In practice, experts can use this 
high sensitivity threshold to reduce the number of lesions that need to be 
manually reviewed for rim + status. QSMRim-Net performed with a 
false positive number of 538 lesions, a reduction of 14.2% and 19.1% 
compared to Rim-Net and APRL (RF). With QSMRim-Net, in this dataset, 
only 715 lesions would need to be reviewed by an expert instead of all 
4163 lesions, saving 82.8% of review time. 

We also obtained results for all rim + lesion identification algorithms 
on a patient-level, showing that QSMRim-NET outperformed the other 
methods. In a previous study, as the overall total lesion burden 
increased, patients with at least one rim + lesion on QSM performed 
worse on both physical disability and cognitive assessments (Marcille 
et al., 2021). Having four or more chronic active lesions on phase im
aging has also been shown to correlate with disability (Absinta et al., 
2019). In addition, these lesions have been used diagnostically to 
differentiate patients with MS from other neurological conditions 
(Maggi et al., 2020). If rim + lesions are to be used prognostically or 
diagnostically, then the patient-level results may be more important 
than identifying individual rim + lesions for clinical translation. 

To further understand the limitations of the QSMRim-Net algo
rithm’s performance, we also examined the false positive and false 
negative results. The false positive and negative results tended to be 
lesions that the two human experts did not agree upon. Using the F1 

score threshold, 40.9% of the false positive lesions and 35.1% of false 
negatives lesions were lesions with human expert disagreement. This 
contrasts with 22.5% of the true positives and 2.4% of the true nega
tives. Visual examination (Fig. 8) of the lesions showed that veins were 
challenging for the algorithm, resulting in false positives. On QSM the 
vein is hyperintense. In cases where the vein formed a rim-like shape in a 
rim- lesion, this often resulted in a false positive (Fig. 8B). When a rim +
lesion was found heterogeneously hyperintense, this often resulted in a 
false negative (Fig. 8C). Rim- lesions with a higher intensity value on the 
QSM tended to cause false positives, while rim + lesions with a lower 
intensity value tended to cause false negatives. Our future work involves 
further understanding of these patterns to reduce FPs and FNs from the 
algorithm in order to improve research and clinical translation. 

One limitation of this work is that it relies on manual lesion seg
mentations that have been edited further on the QSM (Fig. 2). Future 
work involves pairing QSMRim-Net with an automated T2-FLAIR lesion 
segmentation algorithm, such as All-Net (Zhang et al., 2021a) with 
geometric loss (Zhang et al., 2021c) and attention-based approaches 
(Zhang et al., 2019; Zhang et al., 2021d), followed by an automated 
method to separate confluents lesions (Zhang et al., 2021e). It is 
important to acknowledge that pairing the algorithm with an automated 
lesion segmentation algorithm may increase the error of QSMRim-Net, 
as there may be false positive and false negative lesions in the auto
mated segmentation. Future work will examine a full pipeline for 
automated segmentation followed by rim + lesion identification. We 
plan to adapt and train the algorithm to work directly on T2-FLAIR 
lesion segmentations. 

A limitation of our study was the number of rim + lesions available to 
train and validate the model. We had a total of 177 rim + lesions 
available for this analysis. Future work will involve larger datasets to 
validate the QSMRim-Net model. An additional challenge for the algo
rithm is the rare nature of rim + lesions. Only 4.25% of the lesions in this 
study were identified as rim + lesions, posing a great challenge to 
learning based methods. We proposed DeepSMOTE for data over
sampling to alleviate the data class imbalance, but as future work we 

Fig. 8. Visual examples of a true positive, a false positive, a false negative and a true negative produced by QSMRim-Net. The QSM is shown on the left and the T2- 
FLAIR on the right. The lesion of interest indicated with a red arrow. (A) A rim + lesion that is correctly identified. (B) A rim- lesion with a vein forming a rim-like 
shape that was falsely identified as rim + by QSMRim-Net. (C) A rim + lesion with that was missed by QSMRim-Net. (D) A rim- lesion that is correctly identified. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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plan to develop techniques on imbalance-aware loss functions, such as 
geometric loss (Zhang et al., 2021c). 

Another limitation of this study is the lack of an independent cohort 
to support the generalizability of the method. Future work will be to 
validate the findings of this study to additional data acquired on 
different scanners and at other imaging centers. One challenge of 
generalizing this work to different scanners and centers is that there may 
be site and scanner specific effects in the data. While QSM has been 
shown to be reproducible across scanners (Deh et al., 2015), there may 
still be some effects. Future work will use intensity normalization (Shi
nohara et al., 2014) and image harmonization methods (Fortin et al., 
2017; Fortin et al., 2018; Johnson et al., 2007) directly on the images 
themselves as well as on the radiomic features. 

A further limitation is inter-rater variability in identifying rim +
lesions. To reduce the impact of this, we had two raters evaluate lesions 
for rim + status and any disagreements were adjudicated by a third 
reviewer. In this work, we used a binary classification of whether a 
lesion had a rim. As discussed in (Lou et al., 2021) there are many factors 
that influence the strength of the rim + lesion signature on QSM and a 
more nuanced approach to classify these lesions may be beneficial. 

In conclusion, QSMRim-Net is the first deep learning-based method 
that integrates DeepSMOTE for data oversampling and fuses modern 
convolutional imaging features with traditional radiomic features to 
automatically identify rim + MS lesions on QSM. QSMRim-Net out- 
performed other state of the art methods on rim + lesion identification 
on QSM and has the potential to aid in the clinical translation for the rim 
+ lesion biomarker. 
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