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Abstract

Background: The identification of quantitative trait loci (QTLs) that are stable and consistent across multiple
environments and populations plays an essential role in marker-assisted selection (MAS). In the present study,
we used 28,861 simple sequence repeat (SSR) markers, which included 12,560 Gossypium raimondii (D genome)
sequence-based SSR markers to identify polymorphism between two upland cotton strains 0–153 and sGK9708.
A total of 851 polymorphic primers were finally selected and used to genotype 196 recombinant inbred lines
(RIL) derived from a cross between 0 and 153 and sGK9708 and used to construct a linkage map. The RIL
population was evaluated for fiber quality traits in six locations in China for five years. Stable QTLs identified in
this intraspecific cross could be used in future cotton breeding program and with fewer obstacles.

Results: The map covered a distance of 4,110 cM, which represents about 93.2 % of the upland cotton genome, and
with an average distance of 5.2 cM between adjacent markers. We identified 165 QTLs for fiber quality traits, of which
47 QTLs were determined to be stable across multiple environments. Most of these QTLs aggregated into clusters with
two or more traits. A total of 30 QTL clusters were identified which consisted of 103 QTLs. Sixteen clusters in the At
sub-genome comprised 44 QTLs, whereas 14 clusters in the Dt sub-genome that included 59 QTLs for fiber quality
were identified. Four chromosomes, including chromosome 4 (c4), c7, c14, and c25 were rich in clusters harboring
5, 4, 5, and 6 clusters respectively. A meta-analysis was performed using Biomercator V4.2 to integrate QTLs from 11
environmental datasets on the RIL populations of the above mentioned parents and previous QTL reports. Among the
165 identified QTLs, 90 were identified as common QTLs, whereas the remaining 75 QTLs were determined to be novel
QTLs. The broad sense heritability estimates of fiber quality traits were high for fiber length (0.93), fiber strength (0.92),
fiber micronaire (0.85), and fiber uniformity (0.80), but low for fiber elongation (0.27). Meta-clusters on c4, c7, c14 and
c25 were identified as stable QTL clusters and were considered more valuable in MAS for the improvement of fiber
quality of upland cotton.
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Conclusion: Multiple environmental evaluations of an intraspecific RIL population were conducted to identify stable
QTLs. Meta-QTL analyses identified a common chromosomal region that plays an important role in fiber development.
Therefore, QTLs identified in the present study are an ideal candidate for MAS in cotton breeding programs to improve
fiber quality.
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Background
Cotton (Genus Gossypium) is a well-known and highly
important industrial crop that has been grown in more
than 80 countries located in tropical and subtropical re-
gions [1]. It is used as an important source of natural
fiber, seed oil and proteins [2]. The genus Gossypium
comprises approximately 45 diploid species and five
tetraploid species. Two tetraploid species, G. hirsutum
and G. barbadense, and two diploid species, G. herba-
ceum and G. arboreum have been extensively cultivated
around the world, with G. hirsutum covering >90 % of
the total world production and is generally referred to as
upland cotton [3]. Upland cotton has a high yield poten-
tial, whereas G. barbadense has superior fiber quality
attributes that subsequently gives it a 30–50 % price ad-
vantage over upland cotton [4], whereas the low yield
and poor adaptation of G. barbadense restricts its pro-
duction to specific regions around the world. To fulfill
the global requirements of the growing human popula-
tion and the recent advancement in spinning technology
justify the need for increased cotton fiber yield and im-
proved cotton fiber traits. Fiber quality traits and yield
components are quantitative traits that are negatively
correlated [5]. Therefore, it is very difficult to improve
all these traits simultaneously by using conventional
breeding procedures. Moreover, this would also be labori-
ous and time consuming [6].
Marker-assisted selection (MAS) is prestigious blessing

that breaks the linkage among these traits, as it directly se-
lects genetic markers that are tightly linked to quantitative
trait loci (QTLs) other than the conventional procedure of
indirectly selecting strains with superior phenotypic per-
formance for breeding. Recent developments in field of
molecular markers have allowed plant breeders to identify
and evaluate complex agronomical traits. The construc-
tion of a molecular genetic map is a foundation for the
genetic dissection of important economical and agronomi-
cal traits, MAS, and map-based cloning [7]. The first mo-
lecular linkage map was constructed in 1994 [8]. Since
then, several genetic maps have been constructed includ-
ing interspecific [9–14] and intraspecific crosses [15–20],
to explore the cotton genome and to identify QTLs. How-
ever, most fiber QTLs obtained from interspecific crosses
have limited applications to upland cotton breeding pro-
grams [21, 22] as most of markers used in interspecific

cross do not show polymorphism in intraspecific
crosses [23]. Saturated intraspecific upland cotton maps
are useful but more challenging to construct because of
the markedly low rate of polymorphisms of molecular
markers within G. hirsutum. To overcome this obstacle
scientists have employed different mapping populations
or used whole-genome sequence-based markers. They
used populations involving more than two parents,
which have higher polymorphism rates in intraspecific
crosses, namely, from 6.6 to 13.7 %, thereby ensuring a
surge in genetic diversity and facilitating the identifica-
tion of more QTLs [19, 23, 24].
Recently physical genome drafts of G. raimondii [25, 26]

G. arboreum [27] and G. hirsutum [28, 29] have been
completed which could be utilized in the construction of a
high-density linkage map and investigate complex traits
such as fiber quality. A previous study suggested that the
tetraploid species originated from the hybridization of two
diploid species, G. arboreum (A genome) and G. raimon-
dii (D genome) about 1–2 million years ago [2]. Further-
more, more QTLs for fiber traits have been mapped to the
Dt sub-genome of upland cotton compared to that in the
At sub-genome, thus suggesting that it may play an im-
portant role in fiber developments [30–32]. A high-
coverage genetic map constructed by Tang et al. [33] with
SSR markers developed from G. raimondii BAC-end se-
quences has revealed that these D genome-based primers
are widely distributed and suitable for whole-genome
mapping. Therefore, because of the importance of the Dt

sub-genome in determining fiber quality traits [23], we
used D genome (G. raimondii) sequence-based SSR
primers [26], together with SSR primers from Cotton
Marker Database (http://www.cottonmarker.org/) to
construct an intraspecific linkage map. Previously,
Sun et al. [18] reported a linkage map based on an
intraspecific cross of upland cotton cultivars sGK9708
and 0–153. They used 200 SSR markers to construct
a genetic map and identified 50 QTLs for fiber quality in
the F2, F2:3 and RIL populations in 4 environments. We
added 603 primers to our published genetic map and
identified QTLs for fiber quality in 11 environments, in-
cluding four previously reported environments [18]
(Table 1) to augment our previous results from the
same intraspecific RIL (F6:8) population of upland cot-
ton. Furthermore we conducted a meta-analyses with
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Biomercator V4.2 [34] using the fiber QTLs identified
from the present study, those previously reported in F2,
F2:3 and RIL population [18], and those generated from
meta-analyses conducted by Said et al. [35, 36], along
with three succeeding QTLs studies [33, 37, 38]. We
identified some stable and consistent QTLs that aggre-
gated into clusters in upland cotton. These QTL clus-
ters can be made more valuable to MAS to improve the
fiber quality of upland cotton.

Results
Assessment of phenotypic performance
The phenotypic performance of the five fiber traits was
observed to continuously segregate, and transgressive
segregation was observed. Very low absolute skewness
and kurtosis values showed that these traits were nor-
mally distributed (Table 2). The results of correlation
analyses of fiber quality traits in RILs are presented in
Table 3. Positive correlations between any of the two
traits, which included fiber elongation (FE), fiber length
(FL), fiber strength (FS), and fiber uniformity (FU), were
observed, with a significance level of 0.01. Fiber micronaire
(FM) was negatively correlated with FL and FS. ANNOVA
revealed that fiber quality traits presented significant envir-
onmental and genetic effects (P < 0.01, Table 4). A broad

sense heritability test was also performed for all fiber traits
as defined elsewhere [39]. Fiber elongation had the lowest
heritability (0.27), whereas that of other fiber traits was
high, ranging from 0.80 (FU) to 0.93 (FL).

Construction of a genetic map
In the present study, we obtained 851 primer pairs that
were clearly polymorphic between the two parents, 0–153
and sGK9708. These 851 primer pairs generated 997 loci,
in which 132 pairs produced two loci, 13 pairs yielded
three loci, and two pairs resulted in four loci. All 997 loci
were used in the construction of a linkage map. A total of
793 loci were grouped into 76 linkage groups. Seventy
three groups were assigned to 26 chromosomes of upland
cotton (Additional file 1). Three groups could not be asso-
ciated with any chromosome. We named these “UD” fol-
lowing the number. The total recombinant length of this
map was 4,110 cM, which represented approximately
93.2 % [40] of the total length of the cotton genome, with
an average distance of 5.2 cM between adjacent markers.
The At sub-genome spanned 1,635 cM, consisted of 269
markers on 37 linkage groups, and with an average dis-
tance of 6.1 cM between adjacent markers. Thirty six
groups were assigned to the Dt sub-genome and com-
prised 524 markers spanning 2,327.4 cM, with an average
of 4.6 cM between adjacent loci (Table 5). Chromosomes
c4, c5, c14, c16 and c25 had more markers compared to
the other chromosomes. Among these, c25 had 113 loci
that encompassed204 cM, with an average distance of
1.9 cM between two adjacent markers. The smallest
group, c11, had 8 markers, and a total length of 37.8 cM.

Segregation distortion of SSR markers
Segregation distortion is a common occurrence in plants
[41], including cotton [7]. We observed severe segrega-
tion distortions at a rate of about 45 % (Table 5). Among
the 361 distorted loci, 241 (67.1 %) favored sGK9708
alleles and 119 (32.9 %) involved 0–153 alleles. A total of
36 segregation distortion regions (SDRs) were detected
on 20 chromosomes (Additional file 1). The At sub-
genome contained 10 SDRs, whereas the Dt sub-genome
comprised 26 SDRs. The largest SDR was on c25, which
consisted of 26 distorted loci. The highest number of
SDRs on one chromosome was 5, which was observed in

Table 1 Details of 11 environments used to evaluate 196 RIL
along with their parents

Year Environment Abbreviation used Replication Layout

2007 Anyanga Ay07 2 5× 0.8 m

2008 Anyanga Ay08 2 5× 0.8 m

Quzhoua Qz08 2 5× 0.8 m

Linqinga Lq08 2 5× 0.8 m

2009 Anyang Ay09 2 5× 0.8 m

Quzhou Qz09 2 5× 0.8 m

Akesu Ak09 2 2× 0.6 m

2010 Anyang Ay010 2 5× 0.8 m

Zhengzhou Zz010 2 5× 0.8 m

Gaoyi Gy010 2 5× 0.6 m

2013 Anyang Ay013 2 5× 0.8 m
aData of these environments was reported in our previous report and used for
QTL mapping but excluded in ANNOVA except Quzhou 2008

Table 2 The observed phenotypic performance of mean values of fiber quality traits of two parents and RILs in 11 environments

Traita 0-153 sGK9708 RIL Minimum Maximum Std. deviation Kurtosis Skewness

FL 30.25 27.40 29.20 23.81 33.69 1.288 −0.256 −0.059

FU 85.66 83.25 84.50 77.10 88.05 0.845 0.096 −0.318

FM 4.39 4.90 4.37 2.21 6.57 0.395 0.078 −0.080

FE 6.49 6.38 6.45 5.55 7.50 0.058 0.357 −0.181

FS 33.27 25.75 30.05 22.85 36.10 1.872 0.092 0.293
aFL fiber length, FU fiber uniformity, FM fiber mironaire, FE fiber elongation, FS fiber strength
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c16 and c25. One chromosome (c21) contained 3 SDRs, 6
chromosomes (c4, c13, c14, c18, c20, and c26) comprised 2
SDRs, whereas the remaining 11 chromosomes (c2, c5–c9,
c15, c17, c19, c23, and c24) harbored only 1 SDR.

Collinearity between the linkage and physical map
Loci collinearity between linkage map and the G. hirsutum
physical map of various chromosomes is presented in
Fig. 1. Some loci whose physical location was not con-
firmed were excluded from the analysis. The overall loci
order on the genetic map was in agreement with the
order of corresponding sequences on the At and Dt

sub-genomes of G. hirsutum. In the At sub-genome
(c1–c13), 1.76 GB corresponded to 1,635 cM, whereas
in the Dt sub-genome (c14–c26) 774 Mb was equivalent
to 2,327 cM.

QTL mapping of fiber quality traits
A total of 165 QTLs for five fiber traits were identified on
24 chromosomes using the composite interval mapping

method [42]., Forty seven QTLs identified in a minimum
of 3 and a maximum of 10 environments were declared as
stable QTLs, of which 12 QTLs were described as stable
in our previous report [18], whereas 35 were novel. The
physical map was also used to identify QTLs that con-
firmed 69 QTLs, including 43 stable ones. Two chromo-
somes, c14 and c25 had more QTLs. No QTL was
detected on c1 and c8. Approximately 58 QTLs were
identified on the At sub-genome chromosomes, whereas
107 QTLs were localized to the Dt sub-genome chromo-
somes. QTLs positions with their observed phenotypic
variance (PV) and nearest loci are listed in Additional file
2 and graphically presented in Additional file 1.

Fiber length
In total, 31 QTLs for FL were detected on 11 chromo-
somes, including c4, c6, c7, c14, c16, c18, c21, c22, c23,
c24, and c25 (Additional file 3). The highest number of
QTLs on one chromosome was 6 (c25). Four chromo-
somes, c6, c16, c22, and c24, harbored only one QTL.
Twelve QTLs for FL were identified in only one envir-
onment and 5 QTLs were detected in two environ-
ments. Fourteen QTLs were identified in 3 or more
environments and declared as stable QTLs. Nine stable
QTLs for FL on c4, c7, c16, c23 and c25 have favorable
alleles from parent 0–153, whereas 5 stable QTLs on
c14, c18 and c21 showed favorable alleles from parent
sGk9708. The QTL on c4, qFL-C4-2, was identified in
three environments, explaining 5.8–8.1 % of the ob-
served PV. Two QTLs on c7, qFL-C7-1 and qFL-C7-2
were also identified in 4 environments described in our
previous report [18]. The QTL qFL-C7-1 was stable and
identified in 3 environments, explaining 5.8–12.1 % of
the observed PV. Three QTLs on c14, qFL-C14-1, qFL-
C14-2 and qFL-C14-3 were identified in 8, 6, and 3 en-
vironments, explaining 8.1–13.1 %, 7.1–11.5 %, and
6.3–8.1 % of the observed PVs, respectively. The QTL
qFL-C14-2 was also identified in our previous report
[18] in 3 environments. The QTL on c16, qFL-C16-1
was identified in three environments, explaining 5.7–
7.5 % of the observed PV. The QTL on c18, qFL-C18-3
was identified in a single environment in our previous
report [18] and now in four environments, explaining
5.2–11.0 % of the detected PV. The QTL on c21, qFL-
21-1 was identified in seven environments, explaining
8.7–23.6 % of the observed PV. The QTL on c23, qFL-
C23-2 was identified in a single environment in our
previous report [18] and now in three environments,
explaining 9.0–14.9 % of the observed PV. Five QTLs
on c25, qFL-C25-2, qFL-C25-3, qFL-C25-4, qFL-C25-5,
and qFL-C25-6 were respectively identified in 4, 6, 5, 5,
and 3 environments, explaining 5.2–10 %, 6.8–9.4 %, 6.8–
11.8 %, 6.5–10.5 % and 8.6–10.6 % of the observed PVs,
respectively. Two QTLs, qFL-C25-2 and qFL-C25-3, were

Table 3 Correlation analyses among fiber quality traits based
on eleven environments for RIL

Traitsa FL FU FM FE

FU 0.616b

FM −0.371b 0.031

FE 0.487b 0.619b −0.023

FS 0.740b 0.759b −0.364b 0.592b

aFor trait abbreviations see Table 2
bIndicates the correlation reaches the significant level at 0.01

Table 4 ANNOVA and a broad sense heritability of fiber quality
traits in RIL population

Traitsa Source DF Mean square F Value Pr > F H2
B

FL e 7 178.2 266.85 <.0001 0.93

g 195 23.2 34.81 <.0001

g*e 1365 1.4 2.15 <.0001

FU e 7 364.9 298.18 <.0001 0.8

g 195 11.6 9.47 <.0001

g*e 1365 2.0 1.63 <.0001

FM e 7 32.0 200.99 <.0001 0.85

g 195 2.5 15.74 <.0001

g*e 1365 0.3 2.11 <.0001

FE e 7 217.9 4905.24 <.0001 0.27

g 195 0.2 4.62 <.0001

g*e 1365 0.2 3.97 <.0001

FS e 7 1582.2 1056.22 <.0001 0.92

g 195 44.9 30.01 <.0001

g*e 1365 3.7 2.49 <.0001
aFor trait abbreviations see Table 2
H2

B is broad sense heritability, e is environment and g is genotype
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also previously identified in four environments [18]. In
total, 14 QTLs out of 31 were also identified during QTL
analysis with the physical map including 11 stable QTLs.

Fiber strength
A total of 35 QTLs for FS were identified on 13 chromo-
somes including c4, c6, c7, c9, c11, c12, c13, c14, c18,
c19, c21, c23, and c25 (Additional file 3). The highest
number of QTLs on one chromosome was 7 (c25). Five
chromosomes, c6, c9, c11, c12, and c19, harbor a single
QTL. Twenty-one QTLs for FS were identified in only
one environment and six QTLs were identified in two
environments. Eight QTLs were detected in three or
more environments and declared as stable QTLs. Six
stable QTLs for FS on c7 and c25 have favorable alleles

from parent 0–153, whereas two stable QTLs on c14
showed favorable alleles from parent sGk9708. The QTL
on c7, qFS-C7-1, was identified in 10 environments,
explaining 12.2–26.7 % of the observed PV. The QTL
qFS-C7-2 was identified in seven environments, explain-
ing 7.9–11.2 % of the observed PV. Both stable QTLs
were also previously identified in four environments
[18]. The QTL on c14, qFS-C14-3 was identified in eight
environments, explaining 4.9–13.7 % of the observed
PV. The QTL qFS-C14-4 was identified in four environ-
ments explaining 5.4–8.5 % of the detected PV. Four
QTLs on c25, qFS-C25-3, qFS-C25-4, qFS-C25-5, and
qFS-C25-6, were respectively identified in 3, 5, 6 and 7
environments, explaining 7.9–17.0 %, 8.4–15.0 %, 5.4–
15.0 %, and 6.4–15.8 % of the observed PVs. Two QTLs,

Table 5 Genomic distributions of SSR markers and identified QTLs

Chromosome Linkage
groups

Mapped
markers

Distorted
loci

Total distance
covered

Aver. distance b/w
markers

Maxa. distance b/w
markers

Mina. distance b/w
markers

Chr1 3 17 6 158.2 9.0 18.4 2.09

Chr2 3 23 12 106.6 3.9 18.0 0.37

Chr3 2 15 5 108.4 11.3 28.7 0.68

Chr4 1 36 15 177.4 5.1 25.8 0.51

Chr5 2 31 9 170.6 6.3 27.9 0.50

Chr6 4 35 7 193.6 3.6 14.8 0.42

Chr7 3 25 14 103.8 4.3 12.7 0.40

Chr8 2 11 2 99.8 11.0 16.8 4.76

Chr9 5 14 3 132.6 13.0 15.9 11.44

Chr10 4 14 6 96.5 21.5 30.4 12.56

Chr11 3 8 3 37.9 9.5 17.5 1.60

Chr12 4 21 9 170.8 10.3 25.0 0.45

Chr13 1 19 9 79.2 4.4 16.4 0.35

Chr14 3 55 22 200.1 3.1 21.5 0.19

Chr15 2 41 13 161.2 3.3 14.9 0.36

Chr16 1 67 34 132.3 2.0 9.8 0.12

Chr17 4 18 9 149.9 7.6 20.2 1.73

Chr18 5 39 23 268.5 4.6 24.8 1.07

Chr19 3 26 11 170.1 4.2 14.5 0.17

Chr20 4 33 21 217.3 7.6 32.0 0.34

Chr21 2 28 14 213.3 6.0 16.6 1.73

Chr22 2 21 6 126.1 7.0 13.5 2.38

Chr23 3 39 12 224.4 5.7 20.7 0.78

Chr24 1 14 12 108.7 8.4 31.8 0.38

Chr25 1 113 62 204.8 1.9 13.8 0.01

Chr26 5 18 12 150.8 7.9 14.7 2.88

UD 3 12 10 147.3 10.8 21.4 0.08

Total (AD) 76 793 361 4110.0 5.2 32.0 0.01
a Max. Distance means maximum marker interval within linkage groups in that chromosome and Min distance means minimum marker interval between two
markers in linkage groups of particular chromosome
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qFS-C25-3 and qFS-C25-4 were also earlier identified in
four environments [18]. All eight stable QTLs were also
detected and confirmed through physical map analysis.

Fiber elongation
For the FE trait, 32 QTLs were identified and located on
13 chromosomes including c3, c4, c7, c10, c13, c14, c15,
c19, c21, c22, c23, c25, and c26, explaining 3.15–17.9 % of
the observed PV (Additional file 3). The highest number
of QTLs on one chromosome was 8 (c25). Six chromo-
somes, c10, c13, c21, c22, c23, and c26, harbored a single
QTL. Eighteen QTLs were identified in one environment,
whereas four QTLs were identified in two environments.
Ten QTLs for FE were detected and described as stable
QTLs. Six stable QTLs for FE on c4, c22, and c25 have fa-
vorable alleles from parent 0–153, whereas four stable
QTLs on c14 showed favorable alleles from parent
sGk9708. Two QTLs on c4, qFE-C4-2 and qFE-C4-3 were
respectively identified in three and five environments,
explaining 4.6–8.5 % and 5.5–12.4 % of the observed PVs,
respectively. The QTL, qFE-C4-2 was also previously iden-
tified in four environments [18]. Four QTLs on c14 qFE-
C14-1, qFE-C14-2, qFE-C14-3, and qFE-C14-4 were re-
spectively identified in 4, 3, 4 and 3 environments,
explaining 8.8–17.9 %, 7.4–14.3 %, 8–15 % and 9.8–11.8 %
of the observed PVs. The QTL on c22, qFE-C22-1, was
identified in three environments, explaining 7.2–13.8 % of
the observed PV. Three stable QTLs on c25, qFE-C25-4,
qFE-C25-5, and qFE-C25-6 were identified in 3, 4, and 3
environments, explaining 5.6–9.4 %, 5.6–10.1 % and 6.8–
10.4 % of the observed PVs, respectively. The QTL qFE-
C25-4 was also earlier identified in three environments
[18]. In total, 13 QTLs, including 10 stable ones were also
identified and confirmed through physical map-based
QTL analysis.

Fiber uniformity
For FU, 32 QTLs were identified and located on 14 chro-
mosomes including c2, c4, c5, c6, c7, c10, c12, c13, c14,
c16, c18, c19, c23, and c25, explaining 1.8–18.2 % of the
observed PV (Additional file 3). The highest number of
QTLs on one Chromosome was 7 (c25). Seven chromo-
somes, c5, c6, c12, c13, c18, c19, and c23 harbored a single
QTL. Twenty QTLs were identified in one environment,
whereas seven 7 QTLs were detected in two environ-
ments. Five QTLs for FU were identified as stable QTLs.
Three stable QTLs for FU on c7, c13, and c25 have favor-
able alleles from parent 0–153, whereas two stable QTLs
on c14 showed favorable alleles from parent sGk9708.
The QTL on c7, qFU-C7-1 was identified in six environ-
ments, explaining 7.0–18.2 % of the observed PV. This
was also previously identified in the F2:3 and RIL popula-
tions in two environments [18]. The QTL on c13, qFU-
C13-1 was identified in three environments, explaining
4.4–6.5 % of the observed PV. It was same QTL that we
earlier identified in two environments [18]. Two stable
QTLs on c14, qFU-C14-2 and qFU-C14-3, were respect-
ively identified in five and four environments, explaining
6.7–14.2 % and 7.6–10.1 % of the observed PVs. The QTL
on c25, qFU-C25-5 was identified in four environments,
explaining 6.4–8.0 % of the observed PV. This was also
earlier identified in four environments [18]. In total, 13
QTLs including five stable ones were also confirmed
through QTL analysis using a physical map.

Fiber micronaire
A total of 35 QTLs were identified for FM on 16 chromo-
somes including c3, c4, c5, c6, c7, c10, c13, c14, c15, c16,
c17, c20, c21,c23, c24, and c25 (Additional file 3). The
highest number of QTLs on one chromosome was 6
(c25). Eight chromosomes, c3, c7, c10, c13, c17, c21, c23,

Fig. 1 Collinearity analyses between genetic map 0–153 and physical map of G. hirsutum. a Collinearity analyses between genetic map of 0–153
from C1-C13 (total distance 1635 cM) with corresponding sequence on At sub-genome (1.16GB) of G. hirsutum. b Collinearity analyses between
C14-C26 (total distance 2327 cM) of genetic map with corresponding sequence of Dt sub-genome (776 Mb) of G. hirsutum
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and c24 harbored a single QTL. Eighteen QTLs were
identified in one environment, whereas seven QTLs were
identified in two environments. Ten QTLs were identified
as stable QTLs. Three stable QTLs on c3, c4 and c16 have
favorable alleles from parent 0–153, whereas seven stable
QTLs on c7, c14 and c25 comprised favorable alleles from
parent sGk9708. The QTL on c3, qFM-C3-1 was identi-
fied in three environments, explaining 5.3–5.6 % of the
observed PV. It was also identified in our previous report
in one environment [18]. The QTL on c4, qFM-C4-2 was
identified in four environments, explaining 7.7–8.7 % of
the observed PV. The QTL on c7, qFM-C7-1, was identi-
fied in five environments, explaining 9.6–16.7 % of the ob-
served PV. The QTL on c16, qFM-C16-3, was identified
in three environments, explaining 5.2–7.9 % of the ob-
served PV. It was also identified in our previous report
[18] in one environment. Two QTLs on c14, qFM-C14-2
and qFM-C14-3, were identified in four environments,
explaining 6.1–9.1 % and 6.5–8.6 % of the observed PVs,
respectively. The QTL, qFM-C14-3 was also identified in
our previous report [18] in one environment. Four QTLs
on c25, qFM-C25-1, qFM-C25-2, qFM-C25-4, and qFM-
C25-5, were respectively identified in 4, 5, 3, and 4 envi-
ronments explaining 7.3–10.3 %, 5.2–9.9 %, 6.3–8.5 % and
6.2–10.5 % of the observed PVs. The QTL, qFM-C25-4
was also previously identified [18] in four environments.
In total, 15 QTLs, including eight stable ones, were also
identified and confirmed through physical map analysis.

QTL clusters and meta-analysis
QTL clustering is a common phenomenon in plants and
also observed in cotton [32, 43, 44]. We identified 30 clus-
ters on 11 chromosomes including c3, c4, c6, c7, c10, c12,
c13, c14, c16, c21 and c25. Most of stable QTLs fall in
these cluster regions. Six clusters having QTLs for all five
fiber traits were identified on c7, c14 and c25, among
which, the cluster on c7 c7-cluster 1 contained five QTLs
that were tightly linked to markers PGML00802 and
NAU2627 explaining 5.9–26.7 % of the observed PV. Two
QTL clusters on c25, c25-cluster 2 and c25-cluster 4 con-
tained nine and five QTLs that were tightly linked to
markers TMK19, BNL3806b, PGML00463b, SWU19198,
and NBRI1529 explaining 5.5–17.0 % and 6.2–14.5 % of
the observed PVs, respectively. Three clusters on c14,
c14-cluster 2, c14-cluster 3, and c14-cluster 4 each
contained five QTLs that were tightly linked to marker
SWU14535, PGML00989, NAU3393, SWU 14507,
CSHES150, BNL3099, and COT99 and explaining 5.7–
15 %, 5.4–11.8 % and 6.3–10.0 % of the observed PVs,
respectively. The details of each cluster are summarized
in Additional file 4.
In the meta-analysis, a total of 38 meta-cluster regions

on 11 chromosomes were identified, which included c4, c5,
c7, c12, c13, c14, c15, c16, c20, c23, and c25 (Additional

file 5). The results showed that some clusters in the 0-
153хsGK9708 genetic map, (which were very close) were
grouped into the same 20-cM meta-cluster region on the
consensus map and part of same meta-cluster (Additional
files 6 and 7). Twenty-nine QTLs were projected on con-
sensus chromosome 4 (Cons.c4), which resulted into 2
QTL meta-clusters. C4-m-cluster-1 has 14 QTLs, while
C4-m-cluster-2 has seven QTLs (Fig. 2). Fifty-three QTLs
were projected on Cons.c7 which yielded three QTL clus-
ters. C7-m-cluster-1, C7-m-cluster 2, and C7-m-cluster-3
contained 12, 21 and 6 QTLs respectively (Fig. 2). Seventy-
six QTLs were projected on Cons.c14 which resulted in
four meta-clusters. C14-m-cluster-1, C14-m-cluster-2, C14-
m-cluster-3, and C14-m-cluster-4 contained 5, 16, 8, and
15 QTLs respectively (Fig. 2). Sixty-eight QTLs were pro-
jected on Cons.c25 which resulted in four QTL clusters.
C25-m-cluster-1, C25-m-cluster-2, C25-m-cluster-3, and
C25-m-cluster-4 contained 18, 15, 21, and 6 QTLs, respect-
ively. The details of the remaining QTLs are summarized
in Additional file 5. The cluster on Cons.c4, C4-m-cluster-1
from the 45–65 cM interval was situated between markers
DPL0196 and NAU3093 (40,406,319–59,166,290 bp). Clus-
ter, C4-m-cluster-2 from 73 to 93 cM interval was located
between markers DPL0451 and CIR218 (60,349,199–
62,668,683 bp). The cluster on Cons.c7, C7-m-cluster-1,
from the 20–36 cM interval was localized between markers
NAU5303 and NAU3918 (3,545,485–8,213,231 bp). Clus-
ter, C7-m-cluster-2 from the 40–58 cM interval was located
between markers BNL1597 and NAU2186 (9,280,354–
15,534,308 bp). Cluster, C7-m-cluster-3 from 60 to
72 cM interval was situated between markers NAU1085
and CIR238 (16,350,941–2,178,086 bp). The cluster on
Cons.c14, C14-m-cluster-1, from 0 to 15 cM interval was
localized between markers SWU14174 and SWU14188
(17,025,534–21,454,750 bp). Cluster, C14-m-cluster-2 from
20 to 36 cM interval was localized between markers
BNL3099 and COT099 (49,640,545–50,515,032 bp).
C14-m-cluster-3 from 38 to 54 cM interval was be-
tween markers NAU3393 and PGML0989 (11,844,310–
17,029,745 bp) and C14-m-cluster-4 from the 58–78 cM
interval was between markers DPL0354 and BNL3033
(62,556,024–70,746,352 bp).

Discussion
Genetic map
The identification of stable QTLs for superior agro-
nomically significant traits and the construction of a
high-resolution map are essential for MAS. Several in-
traspecific genetic maps have been reported; however,
these contain some gaps that limit its applicability in
generating a high-density genetic map. Major obstacles in
the construction of a high-resolution map in intraspecific
crosses include a low rate of polymorphism within G.
hirsutum and the presence of fixed homozygous genetic
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blocks [23]. Therefore, there is a need to identify add-
itional markers that covers these gaps in the genetic
map. In the present study, an updated genetic map
based on our previous report showing 190 markers [18]
is described. We have added 586 markers including 386
(41 % of the total number of markers) novel SWU
primers. Among these 793 markers, 524 were mapped
to the Dt sub-genome and 269 were mapped to the At

sub-genome. In our previous report, chromosomes c4,
c7, c13, c14, c18, and c25 were identified as important
and rich in QTLs for fiber quality traits [18]. Most of
the new markers that we have successfully added to the
map have been localized to these chromosomes, thereby
enabling us to dissect these QTLs into clusters at a higher
resolution, as well as identify some important stable QTLs
for specific superior features. In the current map, 20 chro-
mosomes harbored more than one linkage group, which
indicates a relatively low rate of polymorphism in intra
specific crosses which was observed at a rate of 2.9 % in
the present study. The observed relatively low rate of poly-
morphism suggests that the genetic distance between the
two parents was very narrow, thereby indicating the need
for a saturated intra-specific map. Therefore, our next goal
is to develop new SSR and SNP primers that would facili-
tate in the construction of a saturated genetic map.

Segregation distortion
Among the 793 mapped primers, 361 showed distortion
from the normal Mendelian ratio, which is 1:1 in the case

of RILs. This severe distortion was also reported by Sun et
al. [18] and commonly occurs in RIL populations that
were developed from an introgressed line parent. This
high ratio of segregation distortion in our population may
be attributed to parent 0–153, which is an introgressed
line. Tang et al. [33] also reported similar results (41.8 %)
in their RIL population with introgressed parental line,
7235. Segregation distortion could be influenced by vari-
ous factors including genetic factors such as genetic drift
[45] and the environment. However, it does not signifi-
cantly impact the estimation of QTL position and effect
[46]. The broad sense heritability estimates of fiber quality
traits were high for FL, FM, FS and FU, indicating that the
QTLs identified in this population are more reliable and
useful in MAS for cotton breeding.

Distribution of QTLs among At and Dt sub-genomes
The distribution of QTLs was not uniform in the At and
Dt sub-genomes. Among the 165 QTLs identified, 58
QTLs (35 % of the total) were identified in the At sub-
genome, whereas 107(65 % of the total) were identified in
the Dt sub-genome. Previous comparative meta-analyses
conducted by Rong et al. [32], Lacape et al. [43] and Said
et al. [36] have indicated that in cotton a higher number
of QTLs for fiber traits resided within Dt sub-genome
chromosomes, and gene expression among homologous
pairs were not uniform [44, 47]. Yu et al. [48] also ob-
served 35 % more QTLs in the Dt sub-genome in an inter
specific backcross inbred line population. In the present

Fig. 2 Result of Meta analyses by Biomercator 4.2. QTLs belong to same cluster regions have same color. Length of each QTL vertically represents
the confidence intervals. Consensus Chromosome 4 (Cons.c4) has two clusters, Cons.c7 has 3 and Cons.c14 has 4 clusters
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study a higher number of loci were mapped to the Dt sub-
genome. This observation might be due to the presence of
more SSR markers that were developed from the D gen-
ome sequence [26], although this phenomenon has also
been previously described by Yu et al. [49] in their BC1

population. However we also observed that some At sub-
genome chromosomes also have more loci than its hom-
ologous counterparts in Dt sub-genome chromosomes.
This unequal distribution of loci indicates the presence of
active regions with more recombination frequencies in the
upland cotton genome [4]. Similarly, QTLs on both pairs
were also not homogeneous. Most importantly, homology
was observed between homologous pair c6-c25 and c7-
c16, which harbored QTL clusters and were in agreement
with the findings of previous reports [23, 43].
Comparison of the tetraploid cotton genome with its

ancestors shows that only the A genome (G. arboreum)
produces spinnable fibers, whereas the D genome
(G. raimondii) lacks this characteristic. After poly-
ploidization, transposable elements tend to be more
active, especially in the Dt sub-genome, compared to
that in the At sub-genome. Furthermore, the Dt sub-
genome also has a higher mutation rate than the At

sub-genome [28]. These findings might also contribute to
our observation that the Dt sub-genome harbored more
QTLs than the At sub-genome. However, the additional of
novel markers for the At Sub-genome may improve the
assessment of the contribution of each sub-genome in
fiber quality traits.

Consistency with previously reported fiber QTLs
It is very difficult to compare different QTLs that have
been reported in various populations, although this is ne-
cessary to fully understand the behavior of complex traits,
particularly in a changing environment. In present study,
325 markers were designated as novel SSRs (Additional
file 8). However, some regions did not have common
markers at QTLs and thus we were unable to compare
these with the findings of previous reports. However some
stable QTLs with common markers have been identified
and were used in our meta-analyses. We identified 38
cluster regions. When a meta-cluster contained stable
QTLs from our RIL population and QTLs were identified
by recent meta-analyses report [35], this was considered
as the same cluster. We also confirmed the previous
meta-analyses report [35], which in turn allowed us to de-
clare a true stable QTL in this consensus genomic region.
For example Lacape et al. [12], Shen et al. [5, 6] and Sun
et al. [18] reported QTLs for fiber strength and length that
were linked to primers BNL3806, TMK19, and BNL1440
on c25. We have identified two clusters that were tightly
linked to these primers. Four QTLs for fiber quality traits
FE, FL, FM and FS were closely linked to primer
BNL3806 and TMK19. Four QTLs for the fiber quality

traits, FE, FL, FS, and FU were tightly linked to
BNL1440. These QTLs were in two meta-cluster re-
gions C25-cluster-1:0–20 cM and C25-cluster-2-25-
45 cM. Our results confirm the findings of Said et al.
[36] as well as declare that these QTLs are indeed
stable. We also verified its physical position in the gen-
ome sequence of G. hirsutum. QTL analysis on the
basis of the physical map also confirmed that these loci
were closely linked to these fiber quality traits. How-
ever, additional studies confirming the presence of pu-
tative genes in this region are warranted. Meta-clusters
that harbor QTLs from our RIL population and the lat-
est QTL studies except for those identified by Said et
al. [36] were regarded as new meta-clusters in the
present study. Of the 38 meta-clusters, 31 clusters with
314 QTLs were considered similar to that of a previous
report [36]. In Addition, we identified seven novel clus-
ter regions with 55 QTLs for fiber quality traits in the
present study. The cluster on Cons.c4, C4-m-cluster-1,
which contained 14 QTLs including five fiber quality
traits FE, FS, FL, FU, and FM was considered as novel.
Three stable QTLs identified in our RIL population
qFE-C4-3, qFM-C4-2, and qFL-C4-2 and one stable
QTL identified by Tang et al. [33], qFS04.1 were also
detected in this cluster region. The cluster on c7, C7-
m-cluster-3 which contained six QTLs for three fiber
traits FL, FS, and FU was considered as a novel cluster.
One stable QTL, qFS-C7-2, which was identified in our
RIL population and one QTL, qFU07.1 identified by
Tang et al. [33], were also confined in this cluster re-
gion. On Cons.c14, C14-m-cluster-2 and C14-m-cluster-
3 were respectively identified as novel clusters. The
C14-m-cluster-2, contained 16 QTLs including six
stable QTLs for five fiber quality traits, were identified
in our RIL population. C14-m-cluster-3 contained three
stable QTLs that were identified in our RIL population
and one stable QTL qFS14.1, that was earlier identified
by Tang et al. [33]. On c15 and c20, C15-m-cluster-4
and C20-m-cluster-3 were considered as novel clusters,
respectively (Additional file 5). On c25, C25-m-cluster-4
which contained six QTLs for fiber quality trait was
considered as a novel cluster. Fine mapping of c25 was
also performed and discussed separately [50].

Conclusion
QTLs detected in different environments are stable QTLs
[51], that may be utilized in MAS and RIL population are
useful in the detection of stable QTLs in multiple environ-
ments [52]. We have identified 165 QTLs, of which 30
QTL clusters were identified in an intraspecific RIL popu-
lation in 11 environments. Meta analyses results have re-
vealed that 90 fiber QTLs in the RIL population were in
agreement with the findings of previous reports. We have
identified seven novel cluster regions that contained 55
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fiber QTLs, including 33 QTLs from the RIL population.
QTL clusters on c4, c7, c14 and c25 were identified as
stable across multiple environments and populations.
Therefore, these clusters were considered important for
cotton breeders and can be utilized in MAS to improve
fiber quality.

Methods
Mapping population
A segregation population consisting of 196 F6:8 RIL indi-
viduals were derived from a cross between two upland
cotton strains, 0–153 and sGK9708. Strain sGK9708 is in-
sect resistant with moderate fiber quality and high yield
potential, whereas strain 0–153 has excellent fiber quality
with low yield. The cross was made in 2001 and recom-
binant inbred lines were developed as detailed by Sun et
al. [18]. From 2007 to 2013 multi-environmental evalua-
tions were conducted in six different locations throughout
China with two replications in each environment (Table 1).
Sun et al. [18] reported four environments from the year
2007 to 2008. We added seven more environments with
three additional locations to the total phenotypic data set
(Table 1). These evaluation procedures were also earlier
described by Zhang et al. [50].

Phenotyping
Fiber samples were collected from each line to investi-
gate fiber quality traits. 30 normally opened bolls were
collected from each plot. Fiber quality traits were mea-
sured using an HVI-100 instrument (user technologies,
Switzerland) at the Cotton Fiber Quality Inspection
and Testing Center of Ministry of Agriculture, Anyang,
China. The fiber quality traits included FE, FL, FM, FS
and FU. These observed phenotypic data were analyzed
by using the software SPSS20.0 (SPSS, Chicago, IL,
USA). For ANOVA, we used the SAS statistical soft-
ware (version 8.1; SAS institute, Cary NC). To calcu-
late broad sense heritability the following equation was
used

H2
BðBroadsenseheritabilityÞ
¼ σ2G=ðσGþ σ2G � E=ne þ σ2E=nenrÞ

Where σ2G is genotypic variance, σ2G*E is genotype *
environment variance, and σ2E is variance of error.

Genotyping
DNA extraction
Young leaves were collected from each line and stored
at −80 °C. Genomic DNA from the parents and 196 RILs
was extracted using a modified CTAB method as described
by Paterson et al. [53]. PCR amplification was performed
in a total reaction volume of 10 μL containing 6.15 μL
ddH2O, 1 μL 10× buffer (with 1.5 mL Mg+), 0.5 μL dNTPs

(10 mM), 0.5 μL each primer, 0.15 μL of Taq polymer-
ase (500U) and 1.2 μL of genomic DNA (30 ng/μL).
PCR amplification conditions comprised of an initial
denaturation at 95 °C for 3 min, followed by 30 cycles
of denaturation at 94 °C for 1 min, annealing at 57 °C for
30s and an extension at 72 °C for 60s followed by a final
elongation at 72 °C for 5 min, and then held at 4 °C until
analysis. PCR products were electrophoresed on an 8 %
non-denatured polyacrylamide gel and silver staining was
used for visualization of bands.

SSR analyses
A total of 28,891 primers pairs, including 12,560 SWU
primers (D genome sequence-based), were used to de-
tect polymorphisms between the two parents. Approxi-
mately 851 polymorphic primers were selected and used
in genotyping 196 recombinant inbred lines. All loci
were named according to their respective primer names.
In the case of multiple loci generated by single primer pair
that showed a different segregation pattern from that of
the main band, a suffix of a/b/c was used after the primer
name to differentiate loci according to increasing molecu-
lar size. The details of the primers used in the present
study are listed in Additional file 7. The SWU primers
were synthesized by Beijing Genomics Institute (Beijing,
China), whereas all other primers were synthesized by
Invitrogen, Co. Ltd. (Shanghai, China) and Bio Asia, China
(Beijing, China).

Construction of the genetic map and QTL analyses
A linkage map was constructed using JoinMap 4.0 [54]
with a logarithm of odds (LOD) threshold of >7 and a
maximal distance of 50 cM. Recombination frequencies
were converted to map distance using the Kosambi map
function [55]. For some groups that have mixed markers
belonging to different chromosomes, a higher LOD
score of >9 was used to separate these into small groups.
Linkage groups were assigned to its respective chromo-
some based on previous reports [18, 19, 20, 33, 5657] and
marker mapping information from the CottonGen data-
base (http://www.cottongen.org/). Small groups that were
mapped to the same chromosome were recalculated to
combine these into one group. A minimum LOD score of
6 was used to combine these groups. In the case of c20
and c23, an LOD score of 5 was used to combine small
linkage groups into one. The G. hirsutum fasta sequence
was downloaded from http://www.cottongen.org/ and
used to check co-linearity of loci between the linkage map
and the G. hirsutum physical map.

QTL analyses and meta-analysis
Windows QTL Cartographer 2.5 [57] was used for QTL
mapping. The composite interval mapping method [42]
was used at a walking speed of 1 cM and using a
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1000-permutation test. QTLs for the same trait across dif-
ferent environments were declared the same when its con-
fidence interval overlapped. A QTL identified in at least
three environments was declared as stable. We used a
physical map in which loci were arranged according to
their position on the G. hirsutum genome, and QTL ana-
lysis was performed using the composite interval mapping
method as earlier described.
Meta-analysis was performed with Biomercator 4.2

[34] as described elsewhere [36]. A previous meta-QTL
analyses established a QTL data-base [35] consisting of
2,274 QTLs, which included 437 highly consistent QTLs
for fiber quality traits from 58 QTL reports on upland
cotton [35]. We downloaded its QTL information, in-
cluding names and CI from www.cottonqtldb.org. We
used the high-density consensus map [58] as a reference
to project our QTLs and performed chromosome-wise
meta-analyses. A total of 850 fiber QTLs from six QTLs
reports including 165 fiber QTLs from our RIL popu-
lation, 50 fiber QTLs from the F2,F2:3, and RIL popu-
lations of same parents [18], and 635 fiber QTLs
from previous reports literatures [33, 35, 37, 38] were
thereby generated.
For meta-analyses, two separate input files were pre-

pared, a map file and a QTL file. The map file
contained distances between markers on each chromo-
some, and the QTL file contained 12 columns, where
each row represented a single QTL in a given environ-
ment, i.e., QTL name, trait name, trait ontology, ex-
periment place, year, chromosome name, linkage group
name, LOD score, observed PV value (R2), most likely
position of the QTL, CI start position and CI end pos-
ition. First both files were loaded into the software and
checked for map connectivity. Then QTLs were pro-
jected on a consensus map and meta-analyses were
performed for each trait. Four models were thus gener-
ated, each with an Akaike information criterion (AIC)
value. The model with lowest AIC value was selected
and used for the identification of mQTL position,
whereas QTL clusters were determined manually. The
QTLs within the region of 20 cM on the consensus
map were considered as part of same cluster as earlier
defined by Said et al. [36].
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