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Objectives: White matter lesions are a very common finding on MRI in older adults and their presence increases 

the risk of stroke and dementia. Accurate and computationally efficient modelling methods are necessary to map 

the association of lesion incidence with risk factors, such as hypertension. However, there is no consensus in the 

brain mapping literature whether a voxel-wise modelling approach is better for binary lesion data than a more 

computationally intensive spatial modelling approach that accounts for voxel dependence. 

Methods: We review three regression approaches for modelling binary lesion masks including mass-univariate 

probit regression modelling with either maximum likelihood estimates, or mean bias-reduced estimates, and 

spatial Bayesian modelling, where the regression coefficients have a conditional autoregressive model prior to 

account for local spatial dependence. We design a novel simulation framework of artificial lesion maps to compare 

the three alternative lesion mapping methods. The age effect on lesion probability estimated from a reference 

data set (13,680 individuals from the UK Biobank) is used to simulate a realistic voxel-wise distribution of lesions 

across age. To mimic the real features of lesion masks, we propose matching brain lesion summaries (total lesion 

volume, average lesion size and lesion count) across the reference data set and the simulated data sets. Thus, we 

allow for a fair comparison between the modelling approaches, under a realistic simulation setting. 

Results: Our findings suggest that bias-reduced estimates for voxel-wise binary-response generalized linear models 

(GLMs) overcome the drawbacks of infinite and biased maximum likelihood estimates and scale well for large 

data sets because voxel-wise estimation can be performed in parallel across voxels. Contrary to the assumption 

of spatial dependence being key in lesion mapping, our results show that voxel-wise bias-reduction and spatial 

modelling result in largely similar estimates. 

Conclusions: Bias-reduced estimates for voxel-wise GLMs are not only accurate but also computationally efficient, 

which will become increasingly important as more biobank-scale neuroimaging data sets become available. 
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. Introduction 

White matter hyperintensities of presumed vascular origin (WMHs),

lso known as white matter lesions or leukoaraiosis ( Wardlaw et al.,

013 ), are signs of cerebral small vessel disease (SVD) in the brain. Le-

ions are evident on Magnetic Resonance Imaging (MRI) as hyperinten-

ities on the T2-weighted, fluid attenuated inversion recovery (FLAIR),

nd proton density-weighted brain images. WMHs are common in the

ging brain and are associated with cerebrovascular burden ( Griffanti

t al., 2018; Lampe et al., 2019; Rostrup et al., 2012 ). It is not clear how

ifferent contributors to the cerebrovascular burden, such as hyperten-

ion or smoking history, relate to the spatial distribution of WMHs in the
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rain and this has given rise to the exploitation of a variety of statistical

ethods in the field. 

There are other types of lesions in brain imaging, which differ by

he factor influencing their development. For example, multiple scle-

osis (MS) is an autoimmune disease of the central nervous system,

hich causes the destruction of myelin further resulting in brain and

pinal cord lesions. Another example are stroke lesions, which can have

ery similar signal intensities as WMHs and are of vascular origin too.

owever, independent of the type of brain lesions, their size, location,

rowth, etc., are important for diagnosis, treatment or prevention. While

ll types of lesion data motivate the current work, going forward we will

ocus on WMHs of presumed vascular origin. 
il 2021 
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1 Project URL: https://osf.io/h7sxr/ . 
As originally created, the MRI scans exist in so-called native space,

nd do not correspond to any other subject’s brain. These native space

mages are used to quantify the severity of lesions either based on a vi-

ual scoring system (e.g. Fazekas scale, Fazekas et al., 1987 ), or by seg-

enting the lesions by producing a binary lesion map indicating lesion

resence/absence. Visual scoring as well as manual lesion segmenta-

ion are quite common in neurodegenerative diseases such as MS, even

hough they are expensive, time-consuming and subject to inter-rater

ariability ( Hagens et al., 2019; Rudick et al., 2012 ). An objective auto-

ated segmentation procedure, such as BIANCA ( Griffanti et al., 2016 ),

s preferable since it provides a scalable method to obtain reproducible

esion maps on thousands of subjects. 

Whether created manually or by an automated method, the native

pace lesion maps can be transformed to the MNI atlas space, produc-

ng aligned binary lesion maps ready for group analyses. For example,

 voxel-wise analysis can compare the distribution of patterns of lesions

rom different disease subtypes ( Filli et al., 2012 ), or perform voxel-

ise linear regressions between lesion probability and different clinical

isability scores ( Charil et al., 2003; Kincses et al., 2011 ). Approaches

uch as the ones mentioned are known as mass-univariate since they fit a

odel at each voxel independently, ignoring any spatial dependence be-

ween nearby voxels which is later accounted for at the inference stage

e.g. using a method like false discovery rate (FDR) correction that al-

ows for positive spatial dependence, Genovese et al., 2002 ). While some

uthors have used a standard linear model with lesion incidence as re-

ponse ( Kincses et al., 2011 ), this is ill-advised as it ignores the binary

nd heteroscedastic nature of the data. 

Mass-univariate voxel-wise modelling of lesion masks that accounts

or the binary nature of the data is done through maximum likelihood

stimation of a generalized linear model (GLM), e.g. logistic or probit

egression. While the GLM has been used in the voxel-wise brain le-

ion mapping literature ( Lampe et al., 2019; Rostrup et al., 2012 ), to

ur knowledge the limitations of logistic or probit regression with small

ample size and/or low incident responses have not been addressed.

hese issues have been thoroughly investigated in the statistics litera-

ure and a short overview is provided here. 

Outside of linear models, maximum likelihood estimation typically

equires iterative optimization, such as iteratively reweighted least

quares (IRLS) ( Green, 1984 ). When a covariate (or a combination of co-

ariates) in a logistic or probit regression model perfectly separates the

utcome variable, ‘data separation’ occurs ( Albert and Anderson, 1984 )

nd the maximum likelihood estimates (MLEs) for those covariates are

nfinite. Hence the iterative procedure for maximum likelihood will di-

erge or, even worse, stop early, reporting massive in absolute value

stimates without any warning that the estimates are in reality infi-

ite. This is more likely to happen when dealing with rare responses

r small sample size. For example, with lesion data, it could happen if

nly subjects older than 60 years of age have a lesion at a particular

oxel and no subject younger than 60 does. In such cases, estimated

tandard errors also diverge to infinity but faster than the estimates. As

 result, the commonly used Wald statistics become artificially small in

bsolute value masking any significance in evidence when testing. In

ddition, the optimal properties of the ML estimator only hold asymp-

otically, and finite sample properties may be far from what is expected

symptotically. To address both limitations of the MLE, the use of a bias-

eduction approach ( Kosmidis and Firth, 2009; Kosmidis et al., 2020 ) in

ass-univariate voxel-wise modelling is explored. The method guaran-

ees finite-valued estimates ( Kosmidis, 2020 ) as it corrects for the first-

rder bias of the ML estimator. Furthermore, bias-reduced estimates are

ast to obtain (typically being only slightly more expensive than MLEs)

nd the voxel-wise modelling allows for parallel implementation, which

akes the method feasible for large imaging data sets. 

In contrast to the mass-univariate approaches for brain image anal-

sis, Ge et al. (2014) introduce a Bayesian Spatial Generalized Linear

ixed Model (BSGLMM). While still accounting for the binary nature of

he data, the main difference between BSGLMM and the classical GLMs
2 
s that BSGLMM accounts for the local spatial dependence in the brain

hrough the inclusion of spatially varying coefficients to a Bayesian spa-

ial model. Spatially varying coefficients are latent spatial processes (or

elds) and they are modelled jointly using a multivariate pairwise differ-

nce prior model, a particular instance of the Multivariate Conditional

utoregressive (MCAR) model. Given that the method estimates an en-

ire brain mask of coefficients for each covariate in a model (e.g. age

nd sex), there is a considerable computational burden, which is partly

lleviated by a parallel graphical processing unit (GPU) implementation

 Ge et al., 2014 ). 

The motivation for the present work is the lack of validation for the

ass-univariate generalized linear regression model, and the only very

imited simulation framework used to evaluate the BSGLMM method. In

articular, it is not known whether the sample sizes and typical incident

ates found in WMH studies produce highly biased (or even divergent)

stimates of regression effects with standard maximum likelihood es-

imators. With the Bayesian approach, while Ge et al. (2014) provide

imulations showing the benefits of spatial regularization, those evalua-

ions used only 2D images with large homogeneous lesion patterns that

o not reflect the highly structured and inhomogeneous patterns found

n real data. 

To gain a better understating of the differences between the alterna-

ive lesion mapping methods, in this paper we develop a novel simula-

ion framework of artificial lesion maps. We estimate the effect of age

n lesion probability in a reference data set (a subset of the UK Biobank

ata set, Miller et al., 2016 ) and we use it to simulate a realistic voxel-

ise distribution of lesions across age. We use age as a covariate since it

s thought to be the strongest risk factor for the presence of lesions, al-

hough the simulation approach could be adapted to utilise effect maps

f any risk factor. To mimic the real features of lesion masks we suggest

atching brain lesion summaries (total lesion volume, average lesion

ize and lesion count) across the reference data set and the simulated

ata sets. In this way, we allow for a more realistic, fairer comparison

etween the modelling approaches. 

In this paper, we compare three alternative approaches for modelling

inary lesion masks, two mass-univariate regression methods and the

SGLMM method, with the remainder of the paper organised as follows.

n Section 2.1 we start by providing the details behind these different

ethods. We set out the steps of our proposed novel simulation frame-

ork in Section 2.2 , which mimics features of real lesion masks. We

hen apply the three modelling approaches to simulated data sets and

valuate their performance in terms of a range of estimation accuracy

etrics, such as bias and mean squared error, as well as spatial over-

ap between Wald statistics (reference versus estimated z -scores), false

ositive control and computational cost ( Section 3.1 ). To demonstrate

he scalability of one of the methods, we apply it to a subset of the UK

iobank data, where we estimate the effect of systolic blood pressure on

esion probability ( Section 3.2 ). 

Software to generate lesion masks using our simulation framework

s available through the Open Science Framework website, 1 which also

rovides a demonstration of the parallel GLMs implementation. 

. Materials and methods 

.1. Summary of existing regression methods 

Suppose that there are 𝑁 individuals and that each subject 𝑖 ( 𝑖 =
 , … , 𝑁) comes with a binary lesion mask 𝒀 𝑖 ∈  ⊂ ℝ 

3 .  is the human

rain and we consider 𝑀 cubic cells (voxels) as a discretization of the

D brain on a regular rectangular grid, where 𝑠 𝑗 denotes the 𝑗th voxel

ithin the brain ( 𝑗 = 1 , … , 𝑀). When modelling binary lesions masks

oxel-wise, we consider two approaches that ignore spatial dependence

nd one that explicitly models that dependence. 

https://osf.io/h7sxr/
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.1.1. Generalized linear model 

A mass-univariate approach fits a model at each voxel marginally,

gnoring spatial dependence. A generalized linear model (GLM) is re-

uired in order to respect the binary nature of the data. Every GLM

as a link function, deterministic and stochastic components, which we

rite as 

 𝑌 𝑖 ( 𝑠 𝑗 ) | 𝑝 𝑖 ( 𝑠 𝑗 )] ∼ Bernoulli ( 𝑝 𝑖 ( 𝑠 𝑗 )) (stochastic component) (1) 

𝑔 
(
𝑝 𝑖 
(
𝑠 𝑗 
))

= 𝜂𝑖 
(
𝑠 𝑗 
)

(link function) (2) 

𝜂𝑖 ( 𝑠 𝑗 ) = 𝒙 ⊤
𝑖 
𝜷( 𝑠 𝑗 ) (deterministic component) , (3) 

here 

• 𝑌 𝑖 ( 𝑠 𝑗 ) denotes a Bernoulli random variable with probability of suc-

cess 𝑝 𝑖 ( 𝑠 𝑗 ) and probability mass function 𝑓 ( 𝑦 𝑖 ( 𝑠 𝑗 ) | 𝒙 𝑖 ; 𝜷( 𝑠 𝑗 )) , where

𝑦 𝑖 ( 𝑠 𝑗 ) is a realization of random variable 𝑌 𝑖 ( 𝑠 𝑗 ) that represents the

presence ( 𝑌 𝑖 ( 𝑠 𝑗 ) = 1 ) or absence of a lesion for subject 𝑖 at voxel 𝑠 𝑗 .

Note that in this mass-univariate voxel-wise modelling framework,

𝑌 1 ( 𝑠 1 ) , … , 𝑌 𝑁 

( 𝑠 1 ) , … , 𝑌 1 ( 𝑠 𝑀 

) , … , 𝑌 𝑁 

( 𝑠 𝑀 

) are assumed to be indepen-

dent random variables given 𝑝 𝑖 ( 𝑠 𝑗 ) . 
• 𝑔 denotes the link function, which is a monotonic function that re-

lates the expectation of the stochastic outcome to the deterministic

component. 
• 𝒙 𝑖 denotes the 𝑃 -vector of subject-specific covariates for subject 𝑖,

where 𝑿 is the full rank model matrix that collects 𝒙 1 , … , 𝒙 𝑁 

in its

rows and has columns 𝑿 1 , … , 𝑿 𝑃 . 
• 𝜷( 𝑠 𝑗 ) = ( 𝛽1 ( 𝑠 𝑗 ) , … , 𝛽𝑃 ( 𝑠 𝑗 )) ⊤ is a 𝑃 -vector of parameters at each voxel

𝑠 𝑗 ; these are fixed effects. 

The GLM outlined in Eqs. (1) –(3) is fitted at each voxel 𝑠 𝑗 indepen-

ently. We obtain the maximum likelihood estimators (MLEs) �̂�( 𝑠 𝑗 ) by

aximizing the log-likelihood 

( 𝜷( 𝑠 𝑗 )) = 

𝑁 ∑
𝑖 =1 

log 𝑓 ( 𝑦 𝑖 ( 𝑠 𝑗 ) | 𝒙 𝑖 ; 𝜷( 𝑠 𝑗 )) , (4) 

hrough an iterative optimization procedure, such as IRLS

 Green, 1984 ). The MLE is typically the default choice of an es-

imator because of its optimal asymptotic properties (consistency,

symptotic normality and efficiency). If the model assumptions are ad-

quate, then any inferential procedures based on those estimates, such

s tests using Wald statistics (also known as standardized coefficients

r z -scores) are also asymptotically correct. However, for finite sample

ize 𝑁 the estimates can be unstable and biased. 

Bias-reduction in parametric estimation has been thoroughly studied

n the literature; for a detailed review see Kosmidis (2014) . There are

any methods, such as bootstrap, which correct for bias, but they rely

n the existence of the MLE. However, if data separation occurs, the

LE for one or more covariates is infinite, 2 which apart from computa-

ional issues also results in invalid Wald-type inference (extremely wide

nd uninformative Wald-type confidence intervals due to large standard

rrors). The bias-correction approach which we focus on in this work

as first introduced in Firth (1993) for logit link binomial GLMs and

hen was further developed for exponential families and applied in gen-

ralized nonlinear models ( Kosmidis and Firth, 2009; Kosmidis et al.,

020 ). Adjustments to the score equations (partial derivatives of the

og-likelihood set to zero) ensure that estimates �̃�( 𝑠 𝑗 ) have asymptoti-

ally smaller bias than what the MLE typically has; see Appendix A.2 for

etails. Furthermore, obtaining the MeanBR estimates is only a modest

ddition to the computational complexity for computing the MLEs. The
2 Software packages handle separation differently depending on their conver- 

ence criterion and the user might not be notified. 

s  

3 
eanBR method is implemented in the R package bsglm2 ( Kosmidis

t al., 2020; Kosmidis, 2020 ) as an extension to the base R glm tool. 

For the current analyses of simulated and real data, we have chosen

robit link Φ−1 , where Φ indicates the standard normal cumulative dis-

ribution function; we use probit link to ensure comparability with the

ink used in the BSGLMM approach. Finally, at each voxel, we obtain

aximum likelihood estimates �̂�( 𝑠 𝑗 ) and mean bias-reduced estimates
̃ ( 𝑠 𝑗 ) along with Wald statistics ̂z ( 𝑠 𝑗 ) and ̃z ( 𝑠 𝑗 ) based on those estimates,

espectively. 

.1.2. Bayesian spatial generalized linear mixed model 

The spatial generalized linear mixed model (GLMM) is based on the

LM presented above. However, the deterministic components are ex-

licitly defined functions of space. While the stochastic component and

he link function in Eqs. (1) and (2) are the same, the deterministic com-

onent introduced by Ge et al. (2014) is: 

𝑖 ( 𝑠 𝑗 ) = 𝒙 𝑇 
𝑖 
( 𝜶 + 𝜷( 𝑠 𝑗 )) , (5) 

here the key difference is the inclusion of spatially varying coefficients

n addition to the fixed effects. In particular, 

• 𝜶 denotes a 𝑃 -vector of parameters, fixed effects. 
• 𝜷( 𝑠 𝑗 ) denotes a 𝑃 -vector of mean-zero random effects, one at each

voxel 𝑠 𝑗 . These random effects are spatially varying voxel-specific

effects. 

The last bit of the model specification is to assign priors to all param-

ters in order to complete the specification of the hierarchical model.

his is done in the following way: 

• fixed effects’ priors are flat, improper, uninformative, i.e. 𝜋( 𝜶) ∝ 𝟏 . 
• random effects (spatially varying coefficients) have Markov random

field (multivariate conditional autoregressive (MCAR) model) priors

to account for the spatial dependence. Two voxels are considered to

be neighbors if they share a face, i.e. a maximum of six neighbors.

In terms of notation, 𝑆 𝑘 denotes the set of neighboring locations for

location 𝑠 𝑗 and the cardinality of this set is denoted as 𝑁( 𝑠 𝑗 ) . The

MCAR prior can be written as 

[ 𝜷( 𝑠 𝑗 ) | 𝜷(− 𝑠 𝑗 ) , 𝚺] ∼ MVN 

[ ∑
𝑠 ∈𝑆 𝑘 

𝜷( 𝑠 ) 
𝑁( 𝑠 𝑗 ) 

, 
𝚺

𝑁( 𝑠 𝑗 ) 

] 

, (6) 

where 

– 𝜷(− 𝑠 𝑗 ) denotes 𝜷 excluding the coefficients at voxel 𝑠 𝑗 . 

– 𝜷𝑇 = [ 𝜷𝑇 ( 𝑠 1 ) , … , 𝜷𝑇 ( 𝑠 𝑀 

)] is a 𝑃 ×𝑀 column vector. 

– 𝚺 is a 𝑃 × 𝑃 symmetric positive definite matrix. 

– The inverse of the hyperparameter 𝚺 is needed and its inverse is

assumed to have Wishart prior, i.e. 𝚺−1 ∼ W ( 𝜈, 𝑰 𝑃 ) , where 𝜈 is set to

0 in Ge et al. (2014) and 𝑰 𝑃 is a 𝑃 × 𝑃 identity matrix. 

The joint distribution of 𝜷 is improper and not identifiable ( Ge et al.,

014 ), but all the full conditional distributions are well-defined but not

asy to sample from. A graphical processing unit (GPU) allows for par-

llel implementation of the Gibbs sampler derived in Ge et al. (2014) . 3 

t each voxel, posterior summaries for the spatially varying coefficients
∗ ( 𝑠 𝑗 ) are obtained along with standardized posterior effects or z -scores

posterior mean divided by posterior standard deviation) z ∗ ( 𝑠 𝑗 ) . 

.2. Simulations 

Simulation of brain lesions is complicated by the need for a gen-

rative model that accounts for dependence in the data. The mass-

nivariate model makes no attempt to model dependence, and while

he BSGLMM explicitly models dependence, it does so on the regression

arameters not the data itself. That is, the BSGLMM assumes that the bi-

ary lesion data 𝒀 𝑖 are independent given the (CAR-regularised) regres-

ion parameters 𝜷. Thus even if an accurate regression model could be
3 Code available at https://www.nisox.org/Software/BSGLMM/ . 

https://www.nisox.org/Software/BSGLMM/
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t everywhere in the brain, simulation of lesion data 𝒀 from either the

ass-univariate, or a conditionally independent Bayesian model would

e characterised by independent “salt and pepper ” noise, i.e. random

solated lesions of 1 or 2 voxels, or single voxel omissions from an oth-

rwise large lesion. 

Thus in this work we develop a novel simulation approach that gen-

rates realistic binary lesion data that is calibrated to a given gener-

lized linear model. We use this approach to compare three alternative

ethods (see Section 2.1 ) for modelling the spatial distribution of white

atter lesions, and to assess their performance in terms of a variety of

easures of accuracy, such as mean squared error (MSE). 

.2.1. Simulation procedure 

We aim to simulate 𝒀 ∗ 1 , … , 𝒀 ∗ 
𝑁 

∗ lesion masks for 𝑁 

∗ subjects that

ollow a generalized linear model for a given map of regression param-

ters. Given an existing data set (referred to as ‘reference’ data) of 𝑁

esion masks 𝒀 = ( 𝒀 1 , … , 𝒀 𝑁 

) and a vector 𝑿 2 = ( 𝑋 12 , … , 𝑋 𝑁2 ) of cen-

ered age, artificial binary lesion masks are simulated as follows: 

Steps 1 Learn parameters from reference data. 

For a reference dataset 𝒀 and a model matrix 𝑿 = [ 𝟏 𝑁 

𝑿 2 ] ,
where 𝟏 𝑁 

is an 𝑁-vector of ones, obtain estimated maps for

intercept and age effects 𝜷( 𝑠 𝑗 ) = [ 𝛽1 ( 𝑠 𝑗 ) 𝛽2 ( 𝑠 𝑗 )] , at each 𝑠 𝑗 ( 𝑗 =
1 , … , 𝑀). These coefficients 𝜷 are considered as truth going for-

ward. 

Steps 2 Construct simulation design. 

Create the model matrix 𝑿 

∗ by simulating age 𝑿 

∗ 
2 for 𝑁 

∗ 

subjects, where 𝑥 ∗ 2 𝑚 ∼ U ( min ( 𝑿 2 ) , max ( 𝑿 2 )) , ( 𝑚 = 1 , … , 𝑁 

∗ ) , the

uniform distribution on the age range in the reference data set.

Then the simulation model matrix is 𝑿 

∗ = [ 𝟏 𝑁 

∗ 𝑿 

∗ 
2 ] . 

Steps 3 Simulate smooth noise for linear predictor. 

Simulate a zero-mean Gaussian Random Field (GRF) with

squared exponential covariance function independently for

each of the 𝑁 

∗ subjects. The R package RandomFields
( Schlather et al., 2020 ) and its function RFsimulate() are

used to simulate a GRF with covariance 𝐶( ℎ ) = 𝜎2 exp (− ℎ 2 ∕2 𝓁 2 ) ,
where ℎ is the distance between voxels, and the two parameters

are the variance 𝜎2 and the scale 𝓁. The scale determines the de-

pendence between voxels. 

Steps 4 Generate binary lesion data. 

Create a binary lesion mask for subject 𝑚 as 𝑌 ∗ 
𝑚 
( 𝑠 𝑗 ) =

𝕀 
{
Φ
(
𝒙 ∗ ⊤
𝑚 

𝜷( 𝑠 𝑗 ) + GRF 𝑚 ( 𝑠 𝑗 ) 
)
> 0 . 5 

}
, where 𝒙 ∗ 

𝑚 
is the 𝑚 th row of

the simulated model matrix 𝑿 

∗ and GRF 𝑚 ( 𝑠 𝑗 ) is the value of

the simulated GRF for subject 𝑚 at voxel 𝑠 𝑗 . In particular, we

first add the true effect and noise and transform the sum into

a lesion probability using the cumulative distribution function

of the standard normal before thresholding the lesion probabil-

ities at 0.5 to get binary lesion masks. Note that the threshold

of 0.5 ensures that we match the lesion incidence found in the

reference data 𝒀 , set via the intercept term since we are using

centered age. 

In our illustration, the reference data set 𝒀 consists of binary lesion

asks of 13,680 UK Biobank (UKB) ( Miller et al., 2016 ) participants

long with their age at scan date; the data set is described further in

ection 2.3 . Since our binary lesion mask simulator takes effect maps

nd GRF parameters as inputs, we make the following choices: (i) the

ffect maps 𝜷( 𝑠 𝑗 ) are mean bias-reduced estimates obtained by fitting

oxel-wise GLMs with probit link function and age as the only covariate

n the model, and (ii) the use of probit link GLMs to model the simulated

ata means the variance parameter 𝜎2 should be fixed to 1 to match the

tandard Normal variance, and thus there is only one free GRF parame-

er 𝓁. Note that we simulate lesion masks of the same resolution as the

eference data lesion masks. 
4 
.2.2. Tuning of simulation parameters 

Aiming to mimic the real features of the data, we tune the scale pa-

ameter 𝓁 of the GRF to minimise the discrepancies between reference

nd simulated data medians of the following lesion mask summaries: (i)

otal lesion volume, (ii) lesion count, (iii) average lesion size. Specifi-

ally, looking over ten age bins, 

i) total lesion volume is defined as the number of lesion-affected vox-

els; 

ii) lesion count is determined using the FSL cluster 4 function (con-

nectivity 6); 

ii) average lesion size is defined as total lesion volume divided by lesion

count; 

nd the age bins are determined by the deciles of the reference data set

ge distribution. 

We repeat Steps (3–4) on a grid of scale parameters conditionally on

he noise component in Step 3 and until a satisfactory match is found

etween the simulated medians and reference medians across age bins.

.2.3. Measures of accuracy 

Once the GRF parameter is tuned, the three regression modelling

ethods can be applied and their performance compared across 𝑅 rep-

titions. First, we repeat Steps (3–4) ( Section 2.2.1 ) 𝑅 times to obtain 𝑅

imulated data sets. Then, for each simulated data set 𝑟 ( 𝑟 = 1 , … , 𝑅 ), we

t 𝑁 

∗ lesion masks 𝒀 ∗ ( 𝑟 ) on age 𝑿 

∗ 
2 to obtain ML �̂�( 𝑠 𝑗 ) ( 𝑟 ) , MeanBR ̃𝜷( 𝑠 𝑗 ) ( 𝑟 ) 

nd BSGLMM 𝜷∗ ( 𝑠 𝑗 ) ( 𝑟 ) intercept and age estimated maps and their asso-

iated z -scores. 

To compare the performance of the three regression modelling meth-

ds, we calculate the following measures of accuracy of MLE �̂�( 𝑠 𝑗 ) ,
oxel-wise: 

• Bias B: B ( ̂𝜷( 𝑠 𝑗 )) ≈
1 
𝑅 

∑
𝑟 �̂�( 𝑠 𝑗 ) ( 𝑟 ) − 𝜷( 𝑠 𝑗 ) , 

• Mean squared error MSE: MSE ( ̂𝜷( 𝑠 𝑗 )) ≈
1 
𝑅 

∑𝑅 

𝑟 =1 ( ̂𝜷( 𝑠 𝑗 ) 
( 𝑟 ) − 𝜷( 𝑠 𝑗 )) 2 , 

• Probability of underestimation PU: PU ( ̂𝜷( 𝑠 𝑗 )) ≈
1 
𝑅 

∑𝑅 

𝑟 =1 𝕀 
{
�̂�( 𝑠 𝑗 ) ( 𝑟 ) <

𝜷( 𝑠 𝑗 ) ( 𝑟 ) 
}
. 

The corresponding summaries are estimated for �̃�( 𝑠 𝑗 ) and 𝜷∗ ( 𝑠 𝑗 ) . We

lso explore the Pearson correlation coefficient between the estimated

oefficients and the reference data coefficients as another measure of es-

imator accuracy, resulting in one correlation coefficient per realisation

 across the three methods. 

To make inference about the effect of a covariate on the lesion prob-

bility across the brain, z -score maps are typically explored. Given the

ifference in the sample size 𝑁 of the reference data set and 𝑁 

∗ of the

imulated data sets, the power to detect significant age effect varies and

se of a fixed z -score threshold (e.g. ±1 . 96 ) to compare maps is not ap-

ropriate. Thus, we fix the z -score threshold to a particular percentile

f the z -score distribution (in absolute value), such that we select the

ighest 𝑀 

∗ z -scores. We explore the Dice similarity coefficient (DSC)

 Dice, 1945 ) to measure the spatial overlap between a reference result

nd one of the three methods, e.g. the highest 𝑀 

∗ reference age z -scores

 ( 𝑠 𝑗 ) and the the highest 𝑀 

∗ age z -scores ẑ ( 𝑠 𝑗 ) ( 𝑟 ) for simulated data set

 . DSC results are the mean across 𝑅 repetitions. We note that in the im-

ge validation literature, a DSC greater than 0.7 is interpreted as good

verlap ( Zijdenbos et al., 1994; Zou et al., 2004 ). 

We also create maps of the lesion incidence across the brain, where

 ( 𝑠 𝑗 ) denotes the reference data set lesion incidence at voxel 𝑠 𝑗 and �̂� ( 𝑠 𝑗 )
enotes the lesion incidence for a simulated data set. 

Software to generate lesion masks using our simulation framework

s available through the Open Science Framework website, 5 which also

rovides a demonstration of the parallel GLMs implementation. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster
https://osf.io/h7sxr/
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.3. Application 

To demonstrate the scalability of the mass-univariate approaches

ML and MeanBR), we apply them to a subset of the UK Biobank data

 Miller et al., 2016 ). The data set includes 13,680 healthy ageing indi-

iduals, for details on the selection criteria see Veldsman et al. (2020) .

oxel-wise analysis is used to investigate the effect of systolic blood

ressure (BP) on the spatial distribution of lesions while controlling for

onfounding (age, sex, age by sex interaction and head size scaling are

ncluded as confounding variables; this is the minimal set of confound-

ng variables suggested by Alfaro-Almagro et al., 2020 ). The mean age

f the participants is 62.9 years ( ± 7.4 years) with 53% being female

7236 women). Two sequential measurements of systolic BP were taken

n each subject (either manual, or automatic measurement) and the av-

rage of these two readings is used as our main covariate of interest.

ote that blood pressure is known to be a dominant risk factor for the

resence of lesions ( Debette and Markus, 2010 ), so it was chosen for

llustrative purposes. 

To generate the binary lesion masks for these 13,680 subjects, we

se the Brain Intensity Abnormality Classification Algorithm (BIANCA)

 Griffanti et al., 2016 ) to segment the lesions. BIANCA’s inputs include

1-weighted and T2-weighted FLAIR images ( Alfaro-Almagro et al.,

018 ). The BIANCA output image in native space is thresholded at 0.8

nd binarised as part of the segmentation, where the threshold is op-

imised as part of the BIANCA training on manually segmented masks

f subjects from the UKB cohort. Those binary maps in subject space

re then registered to 2 mm MNI space by applying the estimated spa-

ial normalisation parameters derived as part of the published UKB pre-

rocessing pipeline ( Alfaro-Almagro et al., 2018 ). More specifically, the

eneration of T2 FLAIR images in MNI space includes T2 FLAIR to T1

inear registration (FLIRT, Jenkinson et al., 2002 ) and T1 to MNI non-

inear warping (FNIRT, Andersson et al., 2007 ). The resulting images are

inarised with a 0.5 threshold, as interpolation produces non-binary val-

es. It is these 13,680 binary lesion masks (reference data 𝒀 ) that are

t using a mass-univariate approach (i) to define the reference MeanBR

stimates for intercept and age used in the simulator (Step 1 of the sim-

lator in Section 2.2.1 with age as the only covariate), and (ii) to ob-

ain ML and MeanBR estimates for systolic blood pressure across voxels

hile accounting for confounding due to age, sex, age by sex and head

ize scaling. 

. Results 

.1. Results on the simulated data 

The reference data set used to obtain the reference coefficients is the

ubset of the UKB data set described in Section 2.3 . We fit 13,680 lesion

asks on age to obtain MeanBR voxel-wise estimates for the intercept

nd age terms. The model includes only age as a covariate and the anal-

sis mask comprises the 72,603 voxels with non-zero lesion incidence. 

.1.1. Simulation setting 

Illustration of simulation steps To tune the GRF scale parameter, we

imulate one data set of 𝑁 

∗ = 1000 subjects for various scale values. Fig. 1

emonstrates the resulting simulated masks 𝒀 ∗ for two scale parameter

hoices for subjects aged 50 and 70 years. Increasing the scale parameter

ncreases the smoothness of the GRF (lower granularity), i.e. the scale

arameter controls the number of lesions and their size; if the variance

arameter is fixed, increasing the scale parameter leads to lower count

ut bigger size of lesions (see Figs. 2 and S2). Given that the true age

ffect suggests higher lesion probability with increasing age, we would

xpect to see more lesions for an individual aged 70, which is indeed

he case in the illustration in Fig. 1 . 

Tuning of simulation parameters As described in Section 2.2.2 , our

ain goal is to match as closely as possible the reference data (UKB data)

esion summaries to the simulated lesion summaries. Fig. 2 includes the
5 
esults for one of the lesion summaries we considered – average lesion

ize. The top plot represents the median average lesion size across 10

ge groups for five simulation settings along with the mean and median

or the reference data set (dashed and solid black lines). By visual in-

pection, we found that the best scale parameter value based on all three

ummaries (also see Figs. S1 and S2) is 𝓁 = 1 . 5 . The side by side boxplots

f average lesion size in one simulated data set of 1000 subjects and in

he UKB data set of 13,680 participants across age groups suggests the

hosen simulation setting follows closely the trend in the reference data

cross age and the variability in the simulated data is lower than the

ariability in the reference data. Note we repeated the experiment for a

econd seed to make sure the lesion summaries do not vary substantially

nd a plot complementary to Fig. 2 is included in Fig. S3. 

Estimated age effect We have tuned the scale parameter of the GRF

nd the simulations from now on assume the variance and scale param-

ters are fixed to 1 and 1.5, respectively. Exploring the achieved lesion

robability for a single simulated data set of 1000 subjects and the UKB

esion probability based on 13,680 participants ( Fig. 3 ), we observe that

he highest lesion probability regions are consistent across the two maps

ut the simulated data set does not achieve as wide a spatial coverage

s the real data set (40,338 non-zero lesion incidence for the simulated

ata set vs 72,603 for the reference data set, respectively). Note that

he UKB data set is about 14 times bigger than the simulated data set,

.e. with a single simulated data set of that size we cannot capture the

arer lesions in the outer white matter. The more limited coverage is

lso observed for the estimated regression coefficients since we simply

o not fit the mass-univariate GLMs at voxels with zero lesion incidence.

owever, BSGLMM has larger z -scores due to the variance reduction of

he smoothness prior and careful inspection suggests possible bleeding

f signal into areas where ML and MeanBR do not capture any signal. 

.1.2. Estimator accuracy 

We have visually compared the lesion probability maps and signif-

cance maps for one simulated data set against the UKB data set, but

n order to quantify the difference between the three modelling ap-

roaches, we repeat the experiment 𝑅 = 1000 times, using the chosen sim-

lation scale parameter for two sample sizes of 𝑁 

∗ = 250 and 𝑁 

∗ = 1000 .
e estimate �̂�( 𝑠 𝑗 ) ( 𝑟 ) , �̃�( 𝑠 𝑗 ) ( 𝑟 ) and 𝜷∗ ( 𝑠 𝑗 ) ( 𝑟 ) ( 𝑟 = 1 , … , 𝑅 ) and their associ-

ted z -scores and measures of accuracy as described in Section 2.2.3 .

e focus on voxels with lesion incidence in the reference data set

 > 0 . 005 to ensure the lesion count is not too low in the simulated data

ets. 

Shrinkage effect The plots of the estimated coefficients across the

hree methods against the reference coefficients (UKB) for age ( Figs. 4 ,

4 and S5), for one realisation of 𝑁 

∗ = 1000 subjects, suggest that

eanBR and BSGLMM estimates are closer to the UKB reference co-

fficients than ML estimates. The plots highlight the shrinkage effect of

he coefficients towards zero, especially for the voxels with the lowest

esion incidence (Fig. S5). This is the result of bias reduction for MeanBR
̃ (see Kosmidis, 2020 ) and the effect of the prior for BSGLMM 𝜷∗ . 

Accuracy We compare mean squared error (MSE), bias, probability

f underestimation (PU) and correlation coefficient across bins of vox-

ls for 𝑁 

∗ = 250 in Table 1 and for 𝑁 

∗ = 1000 in Table 2 . The summaries

resented for the estimates across methods are conditional on the MLEs

niteness. The Bayesian method has better performance in terms of MSE

nd correlation due to the smoothness prior, which reduces estimator

ariance at the expense of higher bias. Note that Pearson’s correlation

s sensitive to outliers, thus the poor ML performance for low lesion

ncidence (e.g. large ML estimates as seen in Fig. 4 ). The PU values

uggest a slightly positively skewed estimates for the Bayesian method,

.e. tendency for overestimate the estimates. The opposite holds for the

ass-univariate approaches, where we tend to underestimate the coef-

cients. According to standard asymptotic theory, all estimators should

onverge to a Normal distribution as the sample size increases, having

U of 50%, or equivalently being median unbiased. Reassuringly, in-

reasing the sample size from 250 to 1000 subjects ( Table 1 vs Table 2 )
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Fig. 1. Illustration of simulation steps for scale parameters 𝓁 = 1 and 𝓁 = 2 for a subject aged 50 (a) and a subject aged 70 (b). Higher age is associated with higher 

lesion probability in the periventricular areas (Step 1), as shown by the linear predictor for a 50-year-old and a 70-year-old. Higher scale parameter leads to coarser 

GRF component (Step 2). The choice of the GRF parameter is crucial for simulating realistic lesion masks. Voxels with zero lesion incidence for the UKB data set 

( 𝑝 ( 𝑠 𝑗 ) = 0 ) are plotted as transparent to show a standard anatomical MRI for reference; axial slice 𝑧 = 45 shown. 
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Fig. 2. Gaussian random field parameter tuning by matching the reference data (UKB) median average lesion size across age bins (black solid line). (Top) Plot 

of median average lesion size across age bins for five simulation settings (five GRF scale parameter values) and reference data values (black lines). Legend values 

indicate the scale parameter value 𝓁 used to simulate a GRF for each subject in the simulated sample. (Bottom) Boxplots of average lesion size in UKB participants 

(white) and in one simulated 1000-subject sample with GRF scale parameter 𝓁 = 1 . 5 (blue) across ten age bins. Note the x -axis labels denote the center of each age 

bin, the y -axis units are in 2 mm 

3 voxels, and the variance GRF parameter is fixed to 1 for all simulation settings. 
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ets PU closer to 50%. Overall, BSGLMM performs better for smaller

ample size and for low lesion probability, but BSGLMM and MeanBR

erform similarly for 𝑁 

∗ = 1000 . 
If we further explore the spatial overlap between the highest 𝑀 

∗ vox-

ls, the DSCs across methods suggest good spatial overlap ( Table 3 ). If

e select a small number of voxels, i.e. voxels with the highest 𝑀 

∗ = 1000
 -scores, all methods seem to detect the strongest age effect very well.

he Bayesian method has the worst overlap between the three meth-
6 
ds. We understand this to be a reflection of the BSGLMM’s tendency to

bleed out ” stronger effects into weaker effect areas, a problem perhaps

ore severe at 𝑁 

∗ = 250 . 
False positive control To further compare the methods in terms of false

ositive detection, we simulate a single data set with no age effect added

o the true effect component in Steps 1 and 2, Section 2.2.1 (only refer-

nce data (UKB) intercept map used), but we add age 𝑿 

∗ 
2 as a covariate

hen fitting all three models. We explore the same accuracy metrics as
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Fig. 3. Square-root transformed lesion probability based on 13,680 UKB participants 
√

𝑝 and lesion probability based on one simulated sample with 𝑁 

∗ = 1000 
subjects 

√
�̂� (left panel) and significance maps ( z -scores) for the effect of age across methods (right panel). 72,603 voxels have non-zero lesion probability for the 

UKB data set and 40,338 for the simulated data set, respectively, which explains the difference in spatial coverage in the left panel. 

Fig. 4. Estimated coefficients ̂𝜷Age (ML), ̃𝜷Age (MeanBR), 𝜷∗ 
Age 

(BSGLMM) vs. 𝜷Age (reference). Each point is coloured according to the density of points on an invisible 

grid overlaid on the plots (the brighter the colour, the higher the density of the points) and the identity superimposed (dashed black line). Bias reduction and the 

effect of the prior result in shrinkage of the coefficients towards zero with the Bayesian model following the equality line most closely. One simulated data set of 

1000 subjects used; 11,632 voxels with reference data lesion incidence 𝑝 > 0 . 005 and finite MLEs plotted. 

Table 1 

Comparing methods across 𝑅 = 1000 data sets, 𝑁 

∗ = 250 subjects each. The measures of accuracy are averaged 

across voxel bins based on the reference data (UKB) lesion incidence 𝑝 with standard deviation in brackets. 

BSGLMM is more accurate in terms of MSE and correlation values, but has higher bias than MeanBR. All 

values are multiplied by 1000 except probability of underestimation (PU) represented in percentage and 

Pearson correlation 𝜌 with range (−1 , 1) . 

Accuracy Method/# 

voxels 

𝑝 ∈ (0 . 005 , 1] 𝑝 ∈ (0 . 005 , 0 . 01] 𝑝 ∈ (0 . 01 , 0 . 05] 𝑝 ∈ (0 . 05 , 0 . 1] 𝑝 > 0 . 1 

metrics 11,634 4510 4981 935 1208 

MSE ML 43.67 (49.94) 93.63 (42.30) 17.15 (20.66) 0.24 (0.08) 0.11 (0.03) 

MeanBR 1.21 (1.08) 1.94 (1.13) 1.01 (0.75) 0.21 (0.05) 0.10 (0.03) 

BSGLMM 0.21 (0.13) 0.33 (0.13) 0.15 (0.05) 0.10 (0.02) 0.07 (0.01) 

Bias ML 32.12 (31.38) 61.92 (27.75) 18.36 (14.22) 2.10 (1.27) 0.81 (0.60) 

MeanBR − 1.07 (2.12) − 2.75 (2.36) − 0.03 (1.12) 0.10 (0.43) 0.02 (0.32) 

BSGLMM 1.62 (4.94) 2.30 (5.98) 1.43 (4.56) 0.92 (3.15) 0.35 (2.03) 

PU 

(%) 

ML 43.92 (4.01) 41.25 (3.84) 44.59 (2.94) 47.49 (1.97) 48.36 (1.72) 

MeanBR 57.42 (6.38) 61.30 (7.39) 56.34 (3.97) 52.45 (1.89) 51.25 (1.65) 

BSGLMM 43.97 (16.63) 41.47 (19.47) 44.54 (15.50) 46.75 (12.16) 48.78 (9.53) 

𝜌 ML 0.12 (0.013) 0.12 (0.018) 0.18 (0.033) 0.79 (0.014) 0.86 (0.009) 

MeanBR 0.46 (0.029) 0.34 (0.034) 0.49 (0.040) 0.80 (0.013) 0.86 (0.009) 

BSGLMM 0.80 (0.006) 0.75 (0.010) 0.81 (0.008) 0.87 (0.009) 0.89 (0.007) 

i  

m  

u  

t  

t  

b  

e  

a  

l  

c  

F  

increase. 
n Tables 1 and 2 by setting 𝜷( 𝑠 𝑗 ) = 0 for all voxels 𝑠 𝑗 and the Bayesian

ethod performs best in terms of lowest MSE and the percentage of

nderestimation is very close to 50%, which is to be expected if the es-

imates are symmetric around zero ( Table 4 ). Interestingly, the effect of

he prior in the Bayesian method (shrinkage towards zero) reduces the

ias to be smaller or comparable to the MeanBR method since the true
7 
ffect is set to zero in this case. We observe ( Table 5 ) that all methods

ppear to be conservative in their false positive rate especially for low

esion incidence voxels with the Bayesian method always being most

onservative. This is also evident from the quantile–quantile plots (see

ig. S6), where as lesion incidence decreases, the normality deviations
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Table 2 

Comparing methods across 𝑅 = 1000 data sets, 𝑁 

∗ = 1000 subjects each. The measures of accuracy are aver- 

aged across voxel bins based on the reference data (UKB) lesion incidence 𝑝 with standard errors in brackets. 

All values are multiplied by 1000 except probability of underestimation (PU) represented in percentage 

and Pearson correlation 𝜌 with range (−1 , 1) . 

Accuracy Method/# 

voxels 

𝑝 ∈ (0 . 005 , 1] 𝑝 ∈ (0 . 005 , 0 . 01] 𝑝 ∈ (0 . 01 , 0 . 05] 𝑝 ∈ (0 . 05 , 0 . 1] 𝑝 > 0 . 1 

metrics 11,634 4510 4981 935 1208 

MSE ML 1.61 (14.45) 3.89 (22.76) 0.23 (3.36) 0.05 (0.01) 0.03 (0.01) 

MeanBR 0.22 (0.31) 0.40 (0.44) 0.15 (0.06) 0.05 (0.01) 0.03 (0.01) 

BSGLMM 0.07 (0.03) 0.08 (0.03) 0.06 (0.02) 0.04 (0.01) 0.02 (0.01) 

Bias ML 3.13 (3.32) 5.87 (3.68) 1.85 (1.24) 0.46 (0.35) 0.21 (0.20) 

MeanBR 0.16 (0.50) 0.31 (0.65) 0.08 (0.39) 0.01 (0.22) 0.01 (0.15) 

BSGLMM 0.80 (2.95) 1.13 (3.86) 0.75 (2.49) 0.31 (1.34) 0.13 (0.81) 

PU 

(%) 

ML 47.34 (2.23) 46.27 (2.25) 47.61 (1.90) 48.83 (1.74) 49.10 (1.59) 

MeanBR 53.22 (2.68) 54.79 (2.68) 52.83 (2.08) 51.27 (1.61) 50.53 (1.56) 

BSGLMM 46.24 (13.29) 44.75 (16.21) 46.48 (11.96) 48.41 (8.91) 49.15 (6.96) 

𝜌 ML 0.58 (0.144) 0.45 (0.134) 0.81 (0.029) 0.94 (0.003) 0.96 (0.002) 

MeanBR 0.76 (0.022) 0.65 (0.032) 0.83 (0.006) 0.94 (0.003) 0.96 (0.002) 

BSGLMM 0.90 (0.002) 0.85 (0.004) 0.90 (0.003) 0.95 (0.003) 0.96 (0.002) 

Table 3 

Dice similarity coefficient (DSC) when comparing reference (UKB) 

and simulation z -scores estimated across the three regression meth- 

ods. DSCs are obtained across 𝑅 = 1000 data sets, 𝑁 

∗ ∈ {250 , 1000} 
subjects each and the spatial overlap considered is between the 

highest 𝑀 

∗ z -scores, where 𝑀 

∗ ∈ {1000 , 5000 , 10 , 000} . 

𝑁 

∗ Method 

Dice similarity coefficient 

𝑀 

∗ = 1000 𝑀 

∗ = 5000 𝑀 

∗ = 10 , 000 

𝑁 

∗ = 250 ML 0.824 0.774 0.748 

MeanBR 0.821 0.756 0.718 

BSGLMM 0.740 0.704 0.736 

𝑁 

∗ = 1000 ML 0.907 0.871 0.857 

MeanBR 0.907 0.868 0.848 

BSGLMM 0.888 0.813 0.815 
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.1.3. Computational time and scalability 

On average, ML and MeanBR take about 15–20 min for each 250-

ubject data set and about 50–60 min for each 1000-subject data set

or single-core jobs, and 3–4 min and 10–12 min for parallel jobs (8

ores), respectively. The difference in computational cost between ML

nd MeanBR is minimal with bias-reduction increasing the computa-

ional cost by only a few minutes for a 1000-subject data set. Note that

he number of regressions per simulated data set varies depending on the

umber of non-zero lesion incidence voxels. 23,404 regressions are per-

ormed on average per 250-subject data set and 40,286 per 1000-subject

ata set, respectively, instead of 228,483 (voxels in the brain mask). Our

ode determines the voxels with non-zero lesion incidence first and cre-

tes a matrix of binary values only for those voxels to be used as input
Table 4 

Comparing methods across one null age effect data s

racy are averaged across voxel bins based on the refe

are multiplied by 1000 except probability of undere

Accuracy Method/# 

voxels 

𝑝 ∈ (0 . 005 , 1] 𝑝 ∈ (0 . 005 , 0 .

metrics 11,596 4473 

MSE ML 12.08 31.08 

MeanBR 0.17 0.28 

BSGLMM 0.03 0.03 

Bias ML − 0.62 − 1.62 

MeanBR 0.28 0.59 

BSGLMM 0.12 0.14 

PU 

(%) 

ML 49.39 49.06 

MeanBR 49.14 48.66 

BSGLMM 49.14 48.73 

8 
o the GLMs. This trick saves computation time, but also allows better

AM management for big UKB-scale data sets since it avoids reading in

ll lesion masks at once. For the simulated data sets this implementation

ight not be optimal in terms of speed, but it makes the UKB application

ossible even without parallel implementation. 

BSGLMM takes about 16 min for 100,000 iterations of the Gibbs sam-

ler for a 250-subject data set and about 60 min for a 1000-subject data

et, respectively. BSGLMM is performed on an NVIDIA TESLA K80 GPU

ard with 12 GB RAM and 2496 threads. While the BSGLMM run time is

omparable to the ML and MeanBR, note that there is a practical upper

imit of subjects due to a GPU RAM constraint; the problem arises since

he Bayesian method implementation loads all binary masks limiting its

pplication to UKB-scale data. 

To summarise, while BSGLMM’s GPU implementation is computa-

ionally efficient, the ML and MeanBR have more flexibility in how par-

llelism can be used, making the latter easier to apply at biobank scale.

.2. Results on the real data 

We choose to fit the mass-univariate voxel-wise GLM with MeanBR

stimates due to its scalability to the UK Biobank data set of 13,680

ubjects, but also obtain MLEs to check how often separation occurs.

he models we fit include systolic BP as the main effect of interest and

ge, sex, age by sex interaction and head size scaling as confounders.

n 72,603 regressions across the brain (voxels with non-zero lesion in-

idence), sex MLEs are infinite for 23,330 voxels (32%); separation is

ore likely to occur for binary covariates and, for example, systolic BP

LEs are infinite for only 260 voxels (0.4%). 

Spatial distribution of lesions The lesion incidence across 13,680 UKB

articipants suggests the areas with the highest probabilities cover the
et of 𝑁 

∗ = 1000 subjects. The measures of accu- 

rence data (UKB) lesion incidence 𝑝 . All values 

stimation (PU) represented in percentage. 

 01] 𝑝 ∈ (0 . 01 , 0 . 05] 𝑝 ∈ (0 . 05 , 0 . 1] 𝑝 > 0 . 1 

4978 934 1211 

0.19 0.04 0.02 

0.13 0.04 0.02 

0.03 0.02 0.01 

− 0.02 0.05 0.07 

0.10 0.07 0.08 

0.10 0.09 0.09 

49.66 49.84 49.17 

49.46 49.73 49.17 

49.32 50.48 48.92 
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Table 5 

False positive rate evaluation. Number of voxels with z -scores significant at 5% for a two-sided 

test for age when no age effect is included. Percentage is calculated within each bin (column) 

based on the reference data (UKB) lesion incidence 𝑝 . All methods appear to be conservative 

since we would expect 5% false positives, i.e. about 700 voxels across each row. These results 

are based on one simulated data set of 1000 subjects used, 11,596 voxels with lesion incidence in 

the reference data greater than 0.005 and infinite MLEs discarded. Note, for this one simulated 

data set a 5% FDR correction found no significant voxels for any method. 

Method/ 𝑁( | z | > 
1 . 96) 

% voxels (# voxels) 

𝑝 ∈ (0 . 005 , 1] 𝑝 ∈ (0 . 005 , 0 . 01] 𝑝 ∈ (0 . 01 , 0 . 05] 𝑝 ∈ (0 . 05 , 0 . 1] 𝑝 > 0 . 1 

11,596 4473 4978 934 1211 

ML 3.6% (422) 2.1% (95) 4.5% (225) 5.5% (51) 4.2% (51) 

MeanBR 3.5% (406) 2.3% (104) 4.1% (205) 5.2% (49) 4.0% (48) 

BSGLMM 1.6% (182) 0.4% (17) 1.8% (88) 3.6% (34) 3.6% (43) 

Fig. 5. Square-root transformed lesion probability based on 13,680 UKB participants 
√

𝑝 (left panel) and significance maps ( z -scores based on MeanBR estimates) for 

the effect of systolic BP (right panel); age, sex, age by sex interaction and head size scaling included as confounders. 72,603 voxels have non-zero lesion probability; 

axial slices {40 , 45 , 50} . 
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6 Project URL: https://osf.io/h7sxr . 
eriventricular and deep white matter regions ( Fig. 5 ). Fitting voxel-

ise GLMs with systolic BP as our main covariate of interest, we ex-

lore its effect on lesion probability ( Figs. 5 and S7). Fig. 5 includes

xial slices of z -scores for the effect of systolic BP (right) along with

he UKB lesion probability (left); the darker the colour, the stronger the

ffect of systolic BP on lesion probability. The spatial distribution of

esions mirrors what is well known clinically, that is lesions are classi-

ally found capping the ventricles, clustering around the ventricles and

ithin the deep white matter ( Fazekas et al., 1987 ). Hypertension is

nown to be one of the strongest predictors of the presence of lesions

 Dufouil et al., 2001 ). Consistent with the literature, we find hyperten-

ion related lesions distributed in periventricular and deep white matter

egions as well as capping the ventricles ( Moroni et al., 2018 ). We get

4,108 voxels with z -scores greater than 1.96 in absolute value (in com-

arison, 11,251 for z -scores based on MLEs, respectively). Thus, systolic

P has a strong effect on lesion probability as expected based on the

xisting literature. 

Computational time ML and MeanBR take about 3 h and 3.5 h, respec-

ively, utilizing batch jobs run on 8 cores. As mentioned in Section 3.1.3 ,

e use the empirical incidence mask to select the non-zero incidence

oxels and then run the GLMs for those voxels only, here 72,603 regres-

ions. 

. Discussion 

Simulation framework. Using binary lesion masks of 13,680 healthy

ging UK Biobank participants as our reference data set, we develop a

inary lesion mask simulator. Age is used as the sole regressor and by

sing a reference data set, we start building our simulation study by

etting the true age coefficient map to the UKB-derived one. In other

imulation studies, binary lesion masks or 2D slices are simulated, but

he true coefficients are not available ( Ge et al., 2014; Sundaresan et al.,

019 ), which does not allow any comparison between competing meth-

ds. 

We made the artificial lesion masks as realistic as possible through

uning to make sure the artificial and real lesion masks share important

esion characteristics, such as lesion size, lesion count and lesion vol-
9 
me. This step potentially overcomes the drawbacks of other simulation

pproaches, where the same count, size and shape lesions are simulated

6 spheroid lesions of size 5 voxels in each dimension, Chard et al., 2010 )

r smoothing of the resulting simulated lesion masks ( Sundaresan et al.,

019 ) is applied, which could introduce stronger spatial dependencies

han what is expected from real lesion masks. 

Our simulator code is available 6 and ready to use to simulate bi-

ary lesion masks for healthy aging individuals. However, if the sim-

lation framework is to be adjusted to any patient reference data set,

.g. Dementia patients, binary lesion masks and age for those patients

re needed to obtain the coefficient maps and to tune the simulator as

escribed in Section 2.2.2 . 

Method comparison. We compare three alternative regression ap-

roaches for modelling of binary lesion masks. Two of them rely on

oxel-wise fitting of generalized linear models using maximum like-

ihood and mean bias-reduction. The other is a Bayesian hierarchical

odel that takes into account the spatial dependence in the brain though

he inclusion of spatially varying coefficients. 

The bias and mean squared error of the maximum likelihood and

ean bias-reduced coefficients suggest poorer performance of the max-

mum likelihood estimator, which is in line with the widely dispersed

LEs in the coefficient plots ( Fig. 4 ). BSGLMM seems to perform slightly

etter in terms of mean-squared error values, but has higher bias than

ean bias-reduced estimates due to the spatial regularization it imposes.

hen comparing the ability of the methods to detect the voxels with

he strongest age effect on lesion probability, all three methods seem to

erform similarly well. Null simulations find that for a non-existent age

ffect all methods are valid but conservative, with false positive rates

owest for low incidence voxels. 

The resources required to apply those methods vary significantly

ince the Bayesian spatial model utilises a GPU implementation to de-

rease the computational burden. For the size of the simulated data sets,

ll methods are relatively fast to perform with about an hour run-time

or one data set of sample size 1000 subjects (single core for mass-

https://osf.io/h7sxr
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nivariate). However, for the spatial model there is a practical upper

imit on the number of subjects due to the GPU RAM constraint since all

esion masks need to be loaded in memory. On the contrary, for the mass-

nivariate methods, parallel implementation is possible given that the

ethods are applied independently at each voxel. Thus, mass-univariate

pproaches are computationally practical for large data sets. 

UK Biobank application. Reassuringly, the distribution of lesions in

he real data reflects the known distribution of lesions associated with

ge and hypertension ( Dufouil et al., 2001 ). Further work by our group

emonstrates the clinical utility of the mass-univariate method (mean

ias-reduced estimates) in mapping the spatial distribution of lesions

ssociated with different cerebrovascular risk factors ( Veldsman et al.,

020 ). Application of the mass-univariate methods (ML and MeanBR)

o lesion masks on 13,680 subjects demonstrates that total separation

ccurs quite often for binary covariates (32% of voxels have infinite sex

stimates) even in such big data sets, thus mean bias-reduced estimates

ould be favoured. The run-time of about 6 h suggests that voxel-wise

odelling is feasible for large data sets; heavier parallelism (we use a

aximum of 8 cores) can reduce run-time substantially. 

Limitations. Our simulation framework is not adapted for automated

uning, i.e. a grid of scale values for the Gaussian random field are

xplored. An automated procedure could be developed but the mer-

ts might not outweigh the computational effort. Further improvement

ould be introduced by allowing the GRF scale parameter to vary across

ge groups to achieve a closer match to the suggested empirical lesion

ummaries. To match the variability in the reference data better, a more

exible covariance function than the squared exponential (e.g. Matern

t the expense of an extra parameter to tune) or a non-stationary GRF

ight need to be adopted. However, our goal is to provide a simula-

ion framework for the comparison of lesion mapping methods and we

elieve that matching the median lesion summaries across age groups

s sufficient for the fair comparison of the three approaches and any

lternatives that may result from future research. 

Note that we do not account for any left-right symmetry of lesions,

e have not imposed any physiological boundaries or 3D dependence in

he entire brain when simulating the lesion masks. However, we do not

elieve this has any impact on the results presented here since the mass-

nivariate approaches do not account for the spatial dependence in the

rain and the spatial model only accounts for local spatial dependence.

e refer to the lesion masks as realistic but this is not meant to imply

ny clinical realism (given the drawbacks mentioned) and we see the

esion masks as useful in a methods development or methods comparison

ontext. 

We generate the lesion masks in MNI space by using outputs from

he published UK Biobank pipeline ( Alfaro-Almagro et al., 2018 ). Sen-

itivity analysis to registration or lesion segmentation approaches could

e of future interest but it is out of the scope of the current statistical

ork since we focus on masks in MNI space for the design of the simula-

ion framework. The proposed lesion mask simulator could be tuned to

eflect features of lesions independent of the image resolution, but the

ethod comparison results presented are specific to the sampling reso-

ution of 2 mm 

3 voxels and we have not performed sensitivity analysis

o other voxel sizes. 

Note that the lack of scalability of the Bayesian approach is due

o the GPU memory constraint and it could be overcome by either a

ime-consuming CPU implementation of the Gibbs sampler proposed

y Ge et al. (2014) , or by adopting a divide-and-conquer method for

ayesian inference. The latter involves splitting the data into smaller

ubsets (computationally manageable), sampling from the posterior dis-

ribution on all subsets and then combining the posterior samples to ap-

roximate the full data posterior, where possible methods include the

nes suggested by Srivastava et al. (2018) , Minsker et al. (2017) , and

i et al. (2017) . We have focused our method comparison on the imple-

entation available instead. 

Investigating the effect of systolic blood pressure on lesion probabil-

ty, we present test statistics at all non-zero lesion incidence voxels to
10 
emonstrate the scalability of the method. We could have excluded vox-

ls where the lesion incidence fell too low and then use false discovery

ate correction to account for multiple testing ( Veldsman et al., 2020 )

o achieve better inference. 

Conclusion. The proposed simulation framework mimics real features

f the data, which allows for a fair comparison between the lesion map-

ing methods through realistic experiments. Our findings suggest that

ias-reduced estimates for voxel-wise binary-response generalized linear

odels overcome the instabilities of maximum likelihood estimates, and

cale well for large data sets due to parallel implementation. Contrary

o the assumption of spatial dependence being key in lesion mapping,

ur results show that voxel-wise bias-reduction and spatial modelling re-

ult in largely similar estimates, but bias-reduction is computationally

easible for biobank-scale neuroimaging data. 
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ppendix A. Iterative estimation: maximum likelihood and 

ias-reduction 

1. Maximum likelihood estimates 

The typical iterative algorithm used to find the maximum likelihood

stimates (MLEs) for generalized linear models (GLMs) is iteratively

eweighted least squares (IRLS) ( Green, 1984 ). IRLS is equivalent to

isher scoring obtain an iterative solution to the estimating equations

also known as score equations) 

𝜕𝑙 

𝜕 𝜷
= 

( 

𝜕𝑙 

𝜕𝛽1 
, … , 

𝜕𝑙 

𝜕𝛽𝑃 

) ⊤

= 𝑈 ( 𝜷) = 𝟎 , (A.1)

here 𝑙 is the log-likelihood, 𝑈 ( 𝜷) is the score vector ( 𝑃 -vector). A Tay-

or series expansion for 𝜕 𝑙∕ 𝜕 𝜷 ( Eq. (A.1) ) gives the standard Newton–

aphson method for solving the estimating equations 

∗ ≈ 𝜷 + 

[ 
− 𝜕 2 𝑙 

𝜕 𝜷𝜕 𝜷⊤

] 
−1 𝑈 ( 𝜷) = 𝜷 + [ 𝐽 ( 𝜷)] −1 𝑈 ( 𝜷) , (A.2) 

here 𝐽 ( 𝜷) = − 𝜕 2 𝑙∕ 𝜕 𝜷𝜕 𝜷⊤ is the observed information matrix, 𝜷 is the

nitial value of the parameters and 𝜷∗ is the updated value. Evaluation

https://doi.org/10.13039/100012338
https://doi.org/10.13039/100010269
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f 𝑈 and 𝐽 is repeated until convergence and the resulting estimates are

he MLEs we report in the paper denoted as �̂�. 

If we replace the observed information 𝐽 ( 𝜷) with the expected in-

ormation (Fisher information) 𝐼( 𝜷) = 𝔼 ( 𝐽 ( 𝜷)) in the Newton–Raphson,

he Fisher scoring iteration results. Fisher scoring is typically preferred

ince the Fisher information is useful post-hoc to estimate the asymp-

otic variance of the parameters. Note that for canonical link (e.g. logit

ink function for Binomial GLMs), observed and expected information

oincide, hence Fisher scoring is equivalent to Newton–Raphson. 

2. Bias-reduced estimates 

The bias-correction method we use to obtain mean bias-reduced

MeanBR) estimates �̃� was first introduced in Firth (1993) and was then

pplied and developed further for exponential family models ( Kosmidis

nd Firth, 2009; Kosmidis et al., 2020 ). The method is known as adjusted

core equations, i.e. a penalty 𝐴 ( 𝜷) is added to the score equations in

q. (A.1) in order to get estimates with asymptotically smaller bias 

 

∗ ( 𝜷) = 𝑈 ( 𝜷) + 𝐴 ( 𝜷) = 𝟎 , (A.3) 

here 𝐴 ( 𝜷) is a 𝑃 -vector based on the expected information matrix 𝐼( 𝜷)
nd on the observed information 𝐽 ( 𝜷) . General formulae for the adjusted

core equations are derived by Kosmidis and Firth (2009) , showing that

olving the mean bias-reducing score functions by iterative optimization

e.g. IRLS) results in higher-order mean unbiased estimators. What is

nteresting is that the general form of the first order bias is of the form 

𝑏 1 ( 𝜷) 
𝑁 

= −[ 𝐼( 𝜷)] −1 𝐴 ( 𝜷) , (A.4) 

here the mean bias function 𝐵( 𝜷) of the MLE of 𝜷 can be expanded in

ecreasing powers of 𝑁 as 

 ( 𝜷) = 𝔼 
(
�̂� − 𝜷

)
= 

𝑏 1 ( 𝜷) 
𝑁 

+ 

𝑏 2 ( 𝜷) 
𝑁 

2 + 

𝑏 3 ( 𝜷) 
𝑁 

3 + 𝑂 

(
𝑁 

−4 )
or an appropriate set of functions 𝑏 1 ( 𝜷) , 𝑏 2 ( 𝜷) , … , which are 𝑂(1) as

 → ∞. Thus, the adjustment to the score functions 𝐴 ( 𝜷) is a function

f the first-order bias and the Fisher information, i.e. iteratively sub-

racting the first-order bias in the Fisher scoring updates ( Kosmidis and

irth, 2010 ). The iterative procedure from Eq. (A.2) becomes a quasi

isher scoring to obtain MeanBR estimates 

∗ ≈ 𝜷 + [ 𝐼( 𝜷)] −1 𝑈 

∗ ( 𝜷) . (A.5) 

ere it is ‘quasi’ since we are using the expectation of the second deriva-

ives of the scores 𝑈 ( 𝜷) , instead of the second derivative of the adjusted

cores 𝑈 

∗ ( 𝜷) . Note that the iterated first-order bias adjustment is only

ossible when 𝑏 1 ( 𝜷) is available in closed-form. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2021.118090 . 
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