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Abstract

Milling properties and flour color are essential selection criteria in soft wheat breeding. How-

ever, high phenotypic screening costs restrict selection to relatively few breeding lines in

late generations. To achieve marker-based selection of these traits in early generations, we

performed genetic dissection of quality traits using three doubled haploid populations that

shared the high-quality soft wheat variety Kitahonami as the paternal parent. An amplicon

sequencing approach allowed effective construction of well-saturated linkage maps of the

populations. Marker-based heritability estimates revealed that target quality traits had rela-

tively high values, indicating the possibility of selection in early generations. Taking advan-

tage of Chinese Spring reference sequences, joint linkage maps of the three populations

were generated. Based on the maps, multifamily quantitative trait locus (QTL) analysis

revealed a total of 86 QTLs for ten traits investigated. In terms of target quality traits, 12

QTLs were detected for flour yield, and 12 were detected for flour redness (a* value).

Among these QTLs, six for flour yield and nine for flour a* were segregating in more than

two populations. Some relationships among traits were explained by QTL collocations on

chromosomes, especially group 7 chromosomes. Ten different ideotypes with various com-

binations of favorable alleles for the flour yield and flour a* QTLs were generated. Pheno-

types of derivatives from these ideotypes were predicted to design ideal genotypes for high-

quality wheat. Simulations revealed the possibility of breeding varieties with better quality

than Kitahonami.

Introduction

Wheat (Triticum aestivum L.) is a global food crop and is consumed mainly in the form of

baked products. Since high end-use quality is essential for the economic value of wheat and
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determines farmers’ return on investment, improving end-use quality is one of the primary

objectives of wheat breeding programs [1]. The wheat flour extraction rate during milling is an

important end-use quality trait. However, a higher extraction rate tends to cause a darker flour

color due to contamination by the bran fraction during milling. To obtain high-quality flour

that is more refined and has a higher extraction rate, wheat end-users use flour color for pre-

diction and classification purposes. It is well known that flour color is affected by protein con-

tent. Increasing the protein content of flour almost always leads to darker noodles [2].

Therefore, in breeding for improved flour quality, it is important to take milling performance,

flour color and protein content into account simultaneously.

Since evaluations of quality traits are expensive and a large amount of grain is needed, such

traits are not usually evaluated until late in a wheat breeding program. To overcome these

problems, many studies have been performed to identify quantitative trait loci (QTLs) and

associated markers for selecting favorable alleles in early generations of the breeding program

(reviewed in Kiszonas and Morris [3]). Using biparental populations, the most influential

QTLs were found on chromosomes 3A, 5A and 7D, accounting for 22%, 19% and 19% of mill-

ing yield variation, respectively [4]. Carter et al. [5] reported QTLs for break flour yield on

chromosomes 3B and 4D. A QTL for total flour yield on chromosome 2B was previously iden-

tified as being associated with both flour yield and break flour yield [6, 7]. For flour color, poly-

phenol oxidase genes (Ppo) on group 2 chromosomes and phytoene synthase genes (Psy) on

group 7 chromosomes have been well studied due to their relationships with the discoloration

and yellowness of products, respectively [8–15]. However, QTLs containing many other genes

involved in flour color-related traits have been identified [16–18]. Genetic dissection of flour

protein content has been intensively performed because this trait directly affects processing

quality. QTLs for protein content have been reported on 18 of 21 chromosomes [3].

High-density genotyping platforms for wheat, such as 90K iSelect [19] and 660K Axiom

arrays (http://wheat.pw.usda.gov/ggpages/topics/Wheat660_SNP_array_developed_by_

CAAS.pdf), enable us to perform genome-wide association studies (GWASs) using a set of

germplasms or advanced breeding lines. GWASs of wheat quality traits have drastically

emerged within the last five years and revealed many significant marker-trait associations

(MTAs) across the wheat genome [20–25]. These MTAs would be useful for improving wheat

quality. However, Kiszonas and Morris [3] pointed out in their review paper that although the

wheat research community have collected numerous markers and QTLs, very few of the mark-

ers and QTLs are being used for the improvement of wheat. The low utilization of this genetic

knowledge is mainly due to the lack of information on the availability of these markers and

QTLs in breeding materials.

Generally, during long-term breeding programs, favorable QTLs are expected to accumu-

late in most breeding materials. Our previous study revealed that ongoing pyramiding of flour

yield QTLs occurred during the history of wheat breeding [22]. Based on these results, pyra-

miding of favorable alleles from various donors into an elite variety will be continued in future

breeding. Therefore, it is important to find QTLs that are not carried in an elite variety and to

investigate the allelism of the detected QTLs among breeding materials. One effective way to

extract useful QTL information is to perform QTL analysis jointly for multiple families derived

by crossing some accessions with a single reference line [26]. In multifamily QTL analysis,

information on accessions that possess QTL alleles different from those of the reference line

can be obtained, which will be very useful in future breeding programs. In addition, by incor-

porating a variable that indicates segregation of each QTL in each family into a statistical

model, it is possible to infer which of the donor lines possess QTL alleles different from those

of the reference line.
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Recently, the first reference genome sequences of Chinese Spring (CS) wheat were released

[27]. The information provides us with a precise comparison of QTL positions among map-

ping populations. Furthermore, taking advantage of next-generation sequencing technology,

cost-effective and robust strategies involving amplicon sequencing of multiplex samples were

established for hexaploid wheat [28, 29]. These methods enable us to construct linkage maps

and to perform marker-assisted selection (MAS) for a moderate number of markers in a short

period of time. Since the method is flexible for selecting markers, it is possible to construct sev-

eral linkage maps with as many common markers as possible very efficiently.

In this study, we used three doubled haploid populations derived from crosses between

three breeding lines and a common variety, Kitahonami, which is a leading variety in the Hok-

kaido region of Japan. The objective of this study was to construct linkage maps of the three

populations using amplicon sequencing and to determine whether common QTLs could be

detected in the three mapping populations. Furthermore, we estimated the probability of seg-

regation of each QTL in each population by a Bayesian method for jointly analyzing three pop-

ulations. Based on the results, we constructed a comprehensive breeding design of genotypes

that show superior quality by combining favorable QTLs from four parental varieties.

Materials and methods

Plant materials

Four soft winter wheat varieties, Kitahonami, Kinuhime, Shunyou and Tohoku224, were used

in this study. Kitahonami was released in the Hokkaido prefecture of Japan in 2006 and has

become a leading variety in Japan. The variety shows superior milling properties and high noo-

dle-making quality. Tohoku224, which was later released as Yukiharuka, is adapted to the

northeastern region of Japan, while Kinuhime and Shunyou are adapted to the central region

of Japan. The last three varieties show relatively poor milling properties compared to Kitaho-

nami. We developed three F1-derived doubled haploid mapping populations for genetic analy-

sis: Kinuhime/Kitahonami (KK), Shunyou/Kitahonami (SK) and Tohoku224/Kitahonami

(TK). Each population consisted of 188 lines. The four parental varieties were grown with two

replicates under field conditions in Morioka, Iwate, Japan (39.7˚N, 141.1˚E), during four suc-

cessive cropping seasons from 2010/2011 to 2013/2014. The plot size was 1.5 m x 0.7 m, and

each plot consisted of 25 plants separated from each other by 12 cm. The three mapping popu-

lations were grown under the same plot size as the parental varieties but without replication.

Each doubled haploid line (DHL) was subjected to a field trial for at least two cropping

seasons.

Trait evaluations

The heading dates of the accessions were recorded in all experimental plots. To compare data

among cropping seasons, heading dates were converted into days to heading (DH) from May

1st of each year. Grain samples harvested from field trials were subjected to quality analysis.

For each field plot, 100 grams of clean grain was tempered to a 14.5% moisture content and

milled using a Quadrumat Junior instrument (C.W. Brabender Instrument Inc., South Hack-

ensack, NJ). Milling was performed at a speed of 21.4 g/min and with a silk 72GG filter

attached as a reel sieve. During the milling process, flour was divided into faster and slower

halves in the flour drawer of the equipment. The faster and slower flours were called "A flour"

and "B flour", respectively. Flour yield (FlYd) was calculated as the percentage of total flour

weight (A flour + B flour) relative to sample weight (A flour + B flour + bran). Flour efficiency

(FlEf) was obtained by the percentage of A flour weight relative to total flour weight (A flour

+ B flour). The A flour was subjected to an additional sieving step using a stainless steel
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212 μm testing sieve (Tokyo Screen Co. Ltd., Japan). Sieved A flour was subjected to evaluation

of color values using a ZE-6000 meter (Nihon Denshioku, Japan) based on 3-dimensional

color values with the following rating scale: L� value (FlL) for whiteness (100: white, 0: black),

a� value (Fla) for red-green chromaticity (+60: red, -60: green), and b� value (Flb) for yellow-

ness (+60: yellow, -60: blue). A six-gram flour sample was combined with 10 ml of distilled

water to form a paste, which was then mixed well without bubbling. Flour paste was poured

into a Petri dish for ZE-6000 analysis, and the three color parameters were measured with the

illuminant: C and angle: 2˚ settings. In addition, particle size distribution was measured using

a HELOS Particle Size Analyzer (Sympatec GmbH, Clausthal-Zellerfeld, Germany) as follows:

flour particle specific area (Sm) and median size (x50) were used as representative parameters

of particle characteristics. Flour protein content (FPC) was measured using near-infrared spec-

troscopy with an Infratec 1241 instrument (FOSS, Hilleroed, Denmark) and adjusted to a

13.5% moisture content. Flour ash content (Fash) was determined by combustion at 600˚C for

4 hours. All traits, except for the milling properties, were measured twice, and arithmetic

means were used as the trait values for each sample.

Genotyping and linkage map construction

DNA was extracted from ground leaf tissue using a PI-50α automated DNA extraction system

(Kurabo, Japan). Publicly available simple sequence repeat (SSR) markers (GrainGenes 3.0,

https://wheat.pw.usda.gov/GG3/) were used for screening polymorphisms among the four

parental varieties using capillary electrophoresis with a QIAxcel system (QIAGEN, Hilden,

Germany), and polymorphic SSR markers were used to genotype DHLs with the same equip-

ment. To increase the number of genetic markers, approximately 3,000 originally developed

amplicon sequencing markers were used (S1 Table). Based on the physical positions and

genome specificity of the markers, we selected 500–600 markers for genotyping in each popu-

lation. Genotyping via amplicon sequencing was performed following the protocol described

in Ishikawa et al. [29]. We also used established diagnostic markers, such as Wx-A1, Wx-B1,

MFT (Mother of FT), Vp1-A1, Ppd-A1, Ppd-D1, Psy-B1, Vrn-A1 and Vrn-D1 (reviewed in Liu

et al. [30]). Linkage maps of the three populations were separately constructed with MapDisto

v1.3.5 [31]. Linkage groups were identified using a minimum logarithm of odds (LOD) score

of 4 and a maximum recombination fraction of 0.30. Recombination fractions were converted

into centimorgan (cM) map distances using the Kosambi mapping function. Taking advantage

of International Wheat Genome Sequencing Consortium (IWGSC) CS reference sequences

[27], common linkage maps of the three populations were constructed. We selected 860 single

nucleotide polymorphism (SNP) markers, and the physical positions of the markers were esti-

mated by a BLAST search of marker sequences against the reference sequence. Based on the

positions of the markers, the genetic distances were recalculated while considering all DHLs.

Statistical analysis and Bayesian QTL mapping

All statistical analyses were performed using the R platform [32]. Analysis of variance and lin-

ear models were implemented with the base package of R. Significance test of correlation coef-

ficients were performed by the ‘cor.mtest’ function in the ‘corrplot’ package. P-values of

correlation coefficients were obtained via multiple comparison tests for all pairs of traits.

Marker-based heritability estimation was performed using the ‘heritability’ package. To con-

struct a relatedness matrix among DHLs, we used the ‘kin’ function in the ‘synbreed’ package

with the ‘realized’ method. For each trait, the phenotypic value of each DHL was corrected by

removing the effects of cropping season, and the phenotypic values were then averaged over

the replicates of each DHL. This modified phenotypic value was used for QTL analysis. Three
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DHL populations were separately and jointly analyzed with a Bayesian QTL mapping method

using the model described by Hayashi and Iwata [26]. In short, the model assumed biallelic

QTLs with an allele, Q, derived from Kitahonami and an alternative allele, q, and was written

as follows:

yij ¼ mi þ
XN

l¼1

siluijlal þ eij ð1Þ

where yij was the modified phenotypic value of the jth DHL in the ith population; μi was the

mean of the ith population; N was the number of QTLs fitted in the model; uijl was a variable

indicating the QTL genotype of the jth DHL in the ith population, taking a value of 1 and -1

for QTL genotype QQ and qq, respectively; al was the effect of the lth QTL; sil was a variable

indicating the segregation of the lth QTL in the ith population, with values of 1 and 0 indicat-

ing QTL segregation and no QTL segregation in the ith population, respectively; and eij was

the residual, which followed N(0,σe
2), with σe

2 being the residual variance. These model param-

eters, including N, were estimated through Bayesian model fitting, where their posterior distri-

butions were constructed with a Markov chain Monte Carlo (MCMC) procedure. Specifically,

for QTL detection, a total linkage map (whole genome) was divided into equal intervals of 1

cM, and a putative QTL with some effect was located in a randomly selected interval to assess

whether or not the QTL located in that interval was fitted in the model. The posterior probabil-

ity of QTL existence was calculated for each interval as the relative frequency of the MCMC

samples where a QTL located in the interval was fitted in the model of all MCMC samples.

Accordingly, the number of QTLs, N, was also inferred with Bayesian estimation following Sil-

lanpaa and Arjas [33]. For more details on the Bayesian procedure applied to model (1), see

Hayashi and Iwata [26]. As a result of this Bayesian estimation, QTL information was obtained

for each interval, including the posterior probability of QTL existence and the magnitude of

the QTL effect, which provided evidence of the presence of a QTL in that interval. A QTL was

declared significant on a chromosome when the QTL intensity, defined as the sum of posterior

probabilities of QTL existence over all intervals on the chromosome [26, 33], exceeded the pre-

determined threshold. The threshold value for QTL intensity corresponding to a genome-wide

5% significance level was determined with 100 repetitions of permutation tests, where the max-

imum QTL intensity over all chromosomes was obtained by analyzing permutated phenotypic

data every repetition and the fifth-highest QTL intensity value among the 100 repetitions was

adopted as a threshold. When the QTL intensity of a chromosome exceeded twice the thresh-

old, two different QTLs were assumed to exist on the chromosome, where the boundary

between the two QTL regions was delimited such that the sum of the posterior probabilities

over intervals in each QTL region exceeded the threshold. For each significant QTL, the esti-

mated position and effect were calculated as the weighted averages of QTL positions (intervals)

and QTL effects in a QTL region, using the posterior probability of each interval as a weight.

Moreover, the posterior probability of QTL segregation in each DHL population was calcu-

lated as the relative frequency of sil taking a value of 1 among all MCMC samples for each l
(l = 1, 2, 3).

Construction of the prediction model and cross-validation

To investigate the predictability of trait values from genotypes of DHLs, six-fold cross-valida-

tion was performed in the following manner: DHLs of the three populations were randomly

partitioned into six equally sized groups, each including 94 DHLs. Five of the groups were

used as a training set to construct the prediction model. The model was applied to predict trait
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values of the remaining group (validation set). This process was then repeated six times, with

each of the six groups used exactly once as the validation set.

The prediction model was constructed in the same manner as adopted in QTL analysis,

where the posterior probability of QTL existence and the estimate of the QTL effect were

obtained in each 1 cM interval in the common linkage map with Bayesian analysis as described

above. To predict a trait value of an individual in the validation set, the genotype was imputed

in all intervals over whole-genome region for the individual based on the marker genotype,

and subsequently, the prediction model including the posterior probability of QTL existence

and estimated QTL effect in each interval was applied to the genotype. The predicted trait

value was obtained by

ŷi ¼ m̂ þ
Xm

l¼1

pluilâl ð2Þ

where ŷi was the predicted trait value of the ith individual in the validation set; m̂ was the esti-

mate of the intercept of the model (2); pl was the posterior probability of QTL existence in the

lth interval; uil was a covariate indicating the genotype of the ith individual in the lth interval,

with values of 1 and -1 corresponding to the genotypes QQ and qq, respectively, with Q being

an allele derived from Kitahonami and q being an alternative allele from other cultivars; and âl

was the estimated effect of QTLs located in the lth interval, with m being the number of

intervals.

Simulation of ideotypes

Here, a QTL region was redefined as a continuous chromosomal region consisting of the 1 cM

intervals described above with posterior probabilities of QTL existence greater than 0.01 and

the intervals with posterior probabilities less than 0.01 but surrounded by intervals with poste-

rior probabilities greater than 0.01. Based on the FlYd and Fla QTL regions defined in such a

manner, ten ideotypes with favorable genotypes for FlYd and Fla values, which were obtained

for the population of DHLs derived from the same cross combinations employed here, were

considered for simulation. The first ideotype (Ideotype 1) harbored favorable alleles in all tar-

get regions and was thus regarded as an optimal genotype of FlYd and Fla, while the other

nine ideotypes (Ideotype 2—Ideotype 10) were genotypes with gradually loosened restraints

on Fla QTLs in ascending order based on the proportions of variance explained by the QTL

regions relative to total Fla variance such that the degree of accumulation of favorable alleles in

Fla QTLs decreased in the order of Ideotype 1 to Ideotype 10. Different genotypes were

included in an ideotype due to variable genotypes in chromosomal regions other than the

fixed QTL regions. We generated 500 genotypes for each ideotype by randomly allocating the

Kitahonami-type allele and alternative allele to unconstrained regions depending on the geno-

type in the adjacent regions, considering the recombination fraction. Generation of random

genotypes was conducted by an original Fortran program. Using the results of the above

Bayesian QTL analysis of DHLs, which included information on QTLs in each 1-cM-interval

chromosomal region, phenotypic values of FlYd, FlL, Fla, Flb and FPC were predicted for a

total of 5,000 genotypes derived from the 10 ideotypes.

Results

Linkage map construction

Combining SSR, amplicon sequence and diagnostic markers, the numbers of markers geno-

typed were 561, 686 and 691 for the KK, SK and TK populations, respectively. With the
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criterion of a maximum recombination fraction of 0.30, genetic maps consisting of 35, 30 and

35 linkage groups were obtained for the KK, SK and TK populations, respectively (Table 1).

These maps consisted of 499 loci (555 markers) for KK, 573 (685) for SK and 598 (683) for TK

with total lengths of 3,920.5, 3,493.2 and 4,718.0 cM, respectively. In all three populations, the

cumulative length of chromosomes was greatest in the D genome. The number of loci per chro-

mosome ranged from 17 (chromosomes 3A of KK, 6D of KK and 6B of SK) to 44 (5D of TK)

(26.5 on average), and the average distance between loci per chromosome ranged from 3.7 cM

(3B of SK) to 12.1 cM (3D of TK) (7.3 cM on average). Using primer sequences, we estimated

the physical positions of amplicon sequence markers by a homology search against the CS

RefSeq v1 genome sequence [27]. The physical positions of the markers revealed that the cumu-

lative sizes of these maps reached 13.27, 13.51 and 13.24 Gb for the KK, SK and TK populations,

respectively, corresponding to 94.4, 96.1 and 94.1% of the reference genome size (14.07 Gb).

The D-genome maps, which tended to have low coverage due to their low polymorphism, cov-

ered 3.75 (94.8%), 3.79 (95.9%) and 3.74 Gb (94.6%) of the genomic region. The genotypes of

DHLs and genetic and physical positions of each marker are shown in S1 File.

Heritability estimates of traits

For each population, the number of observations of each trait in each environment are shown

in S2 Table. The total number of observations per trait varied from 1,020 to 2,018 because Fash

Table 1. Summary of linkage maps obtained using the three doubled haploid populations.

Kinuhime/Kitahonami (KK) Shunyou/Kitahonami (SK) Tohoku224/Kitahonami (TK)

Chr/Genome No LGs No loci Length [cM] cM/locus No LGs No loci Length [cM] cM/locus No LGs No loci Length [cM] cM/locus

1A 1 20 148.7 7.4 2 23 124.1 5.4 1 31 225.4 7.3

2A 2 30 189.2 6.3 2 37 156.0 4.2 3 37 200.7 5.4

3A 2 17 175.1 10.3 1 25 180.7 7.2 3 29 203.3 7.0

4A 2 25 125.3 5.0 1 19 151.8 8.0 1 26 182.7 7.0

5A 2 29 254.8 8.8 1 34 237.5 7.0 2 31 284.3 9.2

6A 2 18 107.7 6.0 2 23 94.4 4.1 2 20 127.9 6.4

7A 1 32 299.0 9.3 1 37 233.8 6.3 1 36 334.4 9.3

1B 1 22 195.1 8.9 2 18 114.8 6.4 1 25 172.4 6.9

2B 2 24 201.6 8.4 2 26 128.6 4.9 3 23 130.0 5.7

3B 4 28 113.5 4.1 2 36 133.8 3.7 2 31 207.9 6.7

4B 1 24 142.2 5.9 1 19 126.7 6.7 1 28 219.5 7.8

5B 2 26 175.8 6.8 1 29 224.7 7.7 2 29 215.5 7.4

6B 1 20 163.1 8.2 1 17 135.0 7.9 1 21 163.1 7.8

7B 1 26 177.8 6.8 2 29 142.4 4.9 1 29 274.3 9.5

1D 1 21 208.6 9.9 1 29 171.9 5.9 2 25 217.1 8.7

2D 2 22 233.0 10.6 1 32 210.0 6.6 2 29 217.0 7.5

3D 2 20 143.0 7.1 1 28 194.9 7.0 1 18 217.5 12.1

4D 1 19 162.8 8.6 1 22 121.7 5.5 1 31 250.7 8.1

5D 1 29 287.8 9.9 1 41 277.5 6.8 1 44 385.0 8.8

6D 2 17 120.0 7.1 2 28 147.9 5.3 3 25 142.3 5.7

7D 2 30 296.6 9.9 2 21 185.4 8.8 1 30 347.2 11.6

A genome 12 171 1299.7 7.6 10 198 1178.1 6.0 13 210 1558.6 7.4

B genome 12 170 1169.2 6.9 11 174 1005.9 5.8 11 186 1382.7 7.4

D genome 11 158 1451.7 9.2 9 201 1309.2 6.5 11 202 1776.7 8.8

Total 35 499 3920.5 7.9 30 573 3493.2 6.1 35 598 4718.0 7.9

https://doi.org/10.1371/journal.pone.0230326.t001
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was not observed in all four environments and some DHLs could not be measured due to an

insufficient number of harvested grains. All phenotypic data are shown in S3 Table and sum-

marized in S4 Table. Analysis of variance of each population showed that DHLs and environ-

ments had significant effects on all traits, except that environment did not affect x50 in the SK

population (S5 Table). We calculated marker-based estimates of heritability for the nine traits

that were observed in all four environments. The relatedness matrix of DHLs was obtained

based on genotypes of 305 common markers across the three populations. The heritability of

milling properties such as FlYd and FlEf was approximately 0.65, which was slightly lower

than that of DH (Table 2). Among the flour color parameters, Fla showed a heritability similar

to that of milling properties (FlYd and FlEf), and Flb displayed high heritability comparable to

that of DH. On the other hand, FlL had the lowest heritability among the traits investigated. In

this study, FPC, x50 and Sm showed moderate heritability.

Distribution of trait values

Phenotypic values of parents and DHLs were obtained by least square means across the four

environments (S6 Table). The DH of Kitahonami (34.5) was approximately 10 days later than

that of the three other parents (Fig 1A). The values for the DHLs were distributed among the

parental values and showed transgressive segregation in all three populations. The phenotypic

distributions of the three populations were almost overlapping. For FlYd, Kitahonami (68.8)

showed the highest value, followed by Shunyou (62.1), Tohoku224 (61.6) and Kinuhime (59.3)

(Fig 1B). Consistent with the parental values, the values of the SK population were higher than

those of the other populations, followed by the TK and KK populations. Lines with transgres-

sive segregation were found in the SK population, which showed higher values than the Kita-

honami population. The relationship between the parental values and distribution of values in

the DHL populations for FlEf was similar to that for FlYd (Fig 1C). Among the flour color

parameters, the FlL values of the four parental varieties were almost the same, and the distribu-

tions of FlL values among the three populations overlapped (Fig 1D). On the basis of Fla and

Flb, the four parents were divided into two groups: Kitahonami (Fla: -0.28, Flb: 15.4) and Shu-

nyou (-0.32, 15.2) had low Fla and high Flb values, while Tohoku224 (0.13, 12.8) and Kinu-

hime (0.04, 13.0) had high Fla and low Flb values (Fig 1E and 1F). The distribution of values

for each population included the average value of the parents as the mode, and significant

transgressive segregation was observed in both directions. Distributions of the other four traits

are described in S1 Fig.

Table 2. Marker-based estimate of heritability for each trait.

Trait va ve h2 conf.int

DH 8.953 2.666 0.771 0.730 - 0.811

FlYd 5.879 3.453 0.630 0.564 - 0.696

FlEf 20.301 10.858 0.652 0.587 - 0.716

FlL 0.065 0.276 0.191 0.119 - 0.264

Fla 0.046 0.026 0.636 0.570 - 0.702

Flb 2.055 0.658 0.757 0.709 - 0.806

FPC 0.687 0.671 0.506 0.429 - 0.583

x50 8.518 11.336 0.429 0.346 - 0.512

Sm 76883.790 74176.810 0.509 0.431 - 0.587

va: restricted maximum likelihood (REML) estimate of the genetic variance; ve: REML estimate of the residual variance; h2: plug-in estimate of heritability; conf.int:

95% confidence interval for heritability.

https://doi.org/10.1371/journal.pone.0230326.t002
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Fig 1. Distributions of least square means across environments. (A) DH: days to heading, (B) FlYd: flour yield, (C) FlEf: flour efficiency, (D) FlL: flour color L�,

(E) Fla: flour color a� and (F) Flb: flour color b�. KH: Kitahonami, KI: Kinuhime, SH: Shunyou, TO: Tohoku224.

https://doi.org/10.1371/journal.pone.0230326.g001
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Relationships between traits

Using all DHLs, the relationships between traits were calculated (Fig 2A). In this analysis, no

clear relationships were observed between DH and quality traits. A positive correlation

between the milling properties FlYd and FlEf was observed (r = 0.62), and FlEf showed a

strong positive correlation with x50 (0.75) and a negative correlation with Sm (-0.64). For

flour color parameters, FlL was negatively correlated with Fash (-0.51). A strong negative cor-

relation and moderate positive correlation were observed between Fla and Flb (-0.80) and

between Fla and FPC (0.57), respectively. Correlations between the traits described above were

also observed within the populations (Fig 2B–2D). In addition, significant correlations were

observed between flour color parameters and particle size traits (x50 and Sm) in the KK and

TK populations. Therefore, in the two populations, DHLs with higher Sm values had lower Fla

values.

Fig 2. Correlation coefficients between ten traits for the three populations combined (A), Kinuhime/Kitahonami population (B), Shunyou/Kitahonami

population (C) and Tohoku224/Kitahonami population (D). Colored boxes indicate that the correlation coefficients are significant at the 0.05 level. DH: days to

heading from May 1st, FlYd: flour yield, FlEf: flour efficiency, Sm: specific area of flour particles, x50: median size of flour particles, Fsh: flour ash content, FlL:

flour color L�, Fla: flour color a�, Flb: flour color b�, and FPC: flour protein content.

https://doi.org/10.1371/journal.pone.0230326.g002
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Single-population QTL analysis

Thresholds of QTL intensity at the 5% level are shown in S7 Table. With single-population

analysis of ten traits, a total of 30, 44 and 28 QTLs were detected in the KK, SK and TK popula-

tions, respectively (S8 Table). Since selection for high FlYd and low Fla values led to the devel-

opment of Kitahonami, these two traits have been the focus of soft wheat breeding programs

in Japan. Therefore, we mainly describe the results of these two traits in the text. For FlYd,

three, six and six QTLs were found in the KK, SK and TK populations, respectively (Table 3).

The QTL intensity ranged from 0.382 to 1.082 (0.763 on average). The contribution of the

QTLs ranged from 0.050 to 0.133, and the cumulative contributions of the detected QTLs were

0.245, 0.589 and 0.460 in the KK, SK and TK populations, respectively. Kitahonami alleles had

positive effects for thirteen of 15 QTLs. For Fla, three, four and two QTLs were detected in the

KK, SK and TK populations, respectively. The intensity of the QTLs ranged from 0.499 to

1.004 (0.831 on average). The contributions of the QTLs ranged from 0.058 to 0.113, and the

cumulative contributions were 0.299, 0.341 and 0.198 in the KK, SK and TK populations,

respectively. In contrast to the results for FlYd QTLs, Kitahonami alleles showed favorable

effects only for QFla.kk.tarc-5D, QFla.sk.tarc-1B and QFla.sk.tarc-4A, resulting in lower Fla

values.

Table 3. Flour yield and flour color a� QTLs detected by single-population analysis.

Trait1 Pop QTL LG Pos [cM] Probability2 Contribution Effect3

FlYd KK QFlyd.kk.tarc-2D 2D.2 87.6 0.660 0.081 0.794

QFlyd.kk.tarc-4D 4D 43.2 0.392 0.064 0.740

QFlyd.kk.tarc-7A 7A 136.2 0.900 0.100 0.897

SK QFlyd.sk.tarc-3B 3B.1 72.7 1.001 0.136 0.871

QFlyd.sk.tarc-4D 4D 40.9 0.469 0.051 0.535

QFlyd.sk.tarc-5A 5A 212.2 1.082 0.086 -0.642

QFlyd.sk.tarc-7A 7A 103.9 1.000 0.133 0.860

QFlyd.sk.tarc-7B 7B.1 42.1 1.001 0.118 0.826

QFlyd.sk.tarc-7D 7D.1 118.7 0.577 0.064 -0.622

TK QFlyd.tk.tarc-2B 2B.2 29.3 0.382 0.050 0.568

QFlyd.tk.tarc-2D 2D.2 56.2 0.388 0.059 0.621

QFlyd.tk.tarc-3B 3B.1 83.6 0.997 0.092 0.778

QFlyd.tk.tarc-4D 4D 114.1 0.992 0.099 0.811

QFlyd.tk.tarc-6B 6B 124.4 0.682 0.076 0.691

QFlyd.tk.tarc-7A 7A 198.5 0.916 0.085 0.740

Fla KK QFla.kk.tarc-1A 1A 96.1 1.001 0.113 0.083

QFla.kk.tarc-5D 5D 55.2 0.765 0.084 -0.065

QFla.kk.tarc-7A 7A 125.1 1.004 0.103 0.071

SK QFla.sk.tarc-1B 1B.1 34.9 0.499 0.058 -0.045

QFla.sk.tarc-4A 4A 144.9 0.521 0.075 -0.050

QFla.sk.tarc-7A 7A 210.6 0.866 0.096 0.058

QFla.sk.tarc-7B 7B.2 26.0 0.999 0.112 0.060

TK QFla.tk.tarc-1A 1A 120.0 0.961 0.103 0.068

QFla.tk.tarc-7A 7A 159.9 0.859 0.095 0.064

1 FlYd: Flour yield, Fla: Flour color a�

2 Expected posterior probability
3 Expected QTL effect of ’Kitahonami’ allele

https://doi.org/10.1371/journal.pone.0230326.t003
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Multifamily QTL analysis using CS reference sequences

Based on the estimated physical positions of 860 selected markers, we constructed common

genetic maps of the three populations and recalculated linkage distances (S1 File). Multifamily

QTL analysis using the common maps revealed a total of 86 QTLs for ten traits. QTL intensi-

ties along chromosomes and detected QTLs are listed in S9 Table and S10 Table, respectively.

Twelve FlYd and 12 Fla QTLs that exceeded the QTL intensity threshold (0.446 for FlYd, 0.344

for Fla) were detected (Table 4). For FlYd, QTL intensities ranged from 0.578 to 1.178 (0.958

on average). The contributions of the QTLs ranged from 0.021 to 0.103, and the cumulative

value was 0.602. The probabilities of QTL segregation in the populations revealed that FlYd

QTLs on QFlyd.m.tarc-3B, QFlyd.m.tarc-4D, QFlyd.m.tarc-6B and QFlyd.m.tarc-7A showed

high segregation probabilities (>0.90) in the three populations. On the other hand, QFlyd.m.

tarc-2B, QFlyd.m.tarc-3A, QFlyd.m.tarc-5A, QFlyd.m.tarc-5D, QFlyd.m.tarc-6D and QFlyd.m.

tarc-7B segregated in one population. Kitahonami alleles showed positive effects for all FlYd

QTLs except QFlyd.m.tarc-3A, QFlyd.m.tarc-5A and QFlyd.m.tarc-7D. For Fla, QTL intensity

ranged from 0.436 to 1.039, with an average of 0.904. The contributions of the QTLs ranged

from 0.018 to 0.081, and the cumulative contribution was 0.507. Only QFla.m.tarc-7B.2 and

Table 4. Flour yield and flour color a� QTLs detected by multifamily analysis.

Probability of QTL segregation

Trait1 Chr QTL Pos [cM] Probability2 KK SK TK Contribution Effect3

FlYd 2B QFlyd.m.tarc-2B 119.72 0.795 0.953 0.099 0.134 0.054 0.790

2D QFlyd.m.tarc-2D 139.57 1.012 0.993 0.663 0.988 0.037 0.554

3A QFlyd.m.tarc-3A 133.00 0.682 0.727 0.674 0.987 0.021 -0.421

3B QFlyd.m.tarc-3B 98.47 1.005 0.993 0.999 0.999 0.065 0.717

4D QFlyd.m.tarc-4D 65.73 1.006 0.996 0.992 0.996 0.044 0.587

5A QFlyd.m.tarc-5A 268.17 1.138 0.447 0.984 0.140 0.050 -0.282

5D QFlyd.m.tarc-5D 261.75 1.178 0.760 0.439 0.955 0.030 0.444

6B QFlyd.m.tarc-6B 127.14 1.012 0.934 0.959 0.996 0.026 0.442

6D QFlyd.m.tarc-6D 111.45 0.578 0.995 0.036 0.144 0.103 0.952

7A QFlyd.m.tarc-7A 145.22 1.008 0.998 0.999 0.998 0.088 0.827

7B QFlyd.m.tarc-7B 59.93 1.090 0.425 0.933 0.267 0.053 0.671

7D QFlyd.m.tarc-7D 179.70 0.985 0.324 0.994 0.983 0.030 -0.497

Fla 1A QFla.m.tarc-1A 125.00 1.039 0.997 0.057 0.992 0.074 0.066

2B QFla.m.tarc-2B 61.13 0.436 0.776 0.083 0.988 0.029 -0.038

4A QFla.m.tarc-4A 205.01 1.037 0.954 0.975 0.040 0.036 -0.047

5D QFla.m.tarc-5D 79.59 1.027 0.980 0.009 0.997 0.051 -0.050

6A QFla.m.tarc-6A 19.14 0.999 0.916 0.047 0.998 0.032 -0.042

6B QFla.m.tarc-6B 163.14 0.980 0.995 0.990 0.002 0.029 0.044

6D QFla.m.tarc-6D 133.75 0.682 0.988 0.208 0.669 0.028 -0.041

7A QFla.m.tarc-7A.1 142.21 1.003 0.999 0.254 0.998 0.081 0.063

7A QFla.m.tarc-7A.2 310.39 1.000 0.726 1.000 0.672 0.032 0.041

7B QFla.m.tarc-7B.1 50.59 1.016 0.982 0.987 0.532 0.029 -0.039

7B QFla.m.tarc-7B.2 229.20 1.000 1.000 1.000 0.950 0.067 0.059

7D QFla.m.tarc-7D 39.68 0.631 0.924 0.906 0.964 0.018 -0.030

1 FlYd: Flour yield, Fla: Flour color a�

2 Expected posterior probability
3 Expected QTL effect of ’Kitahonami’ allele

https://doi.org/10.1371/journal.pone.0230326.t004
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QFla.m.tarc-7D segregated in all three populations, and the direction of the effect varied

between the QTLs. Notably, QTL clusters were observed on group 7 chromosomes (Fig 3, S10

Table). On the 7A chromosome, QFla.m.tarc-7A.1, Qx50.m.tarc-7A, QFlb.m.tarc-7A.1, QFlef.
m.tarc-7A and QFlyd.m.tarc-7A were detected in the 142–145 cM region. On 7B, QSm.m.tarc-
7B, QFlef.m.tarc-7B, Qx50.m.tarc-7B, QFla.m.tarc-7B.2 and QFlb.m.tarc-7B.2 were located in

the long arm terminal, and all of them had high segregation probabilities in the three popula-

tions. QFlef.m.tarc-7D and QFlb.m.tarc-7D were detected near QFpc.m.tarc-7D.2.

Trait predictabilities from the genotypes

The predictabilities of five traits for the DHLs were evaluated by six-fold cross-validation. The

mean correlation coefficients (prediction accuracies) between the predicted and observed val-

ues of Fla, Flb, FlL, FlYd and FPC were 0.482, 0.566, 0.144, 0.485 and 0.369, respectively

(Table 5). The correlation coefficients of FlYd and Fla varied among the validation sets: from

0.641 to 0.362 for FlYd and from 0.680 to 0.360 for Fla. On the other hand, the correlation

coefficients of Flb ranged from 0.621 to 0.448, indicating moderately stable predictability. The

predictabilities of FlL were the lowest among the five traits investigated.

Construction of ideal genotypes and prediction of trait values

Based on the results of multifamily analysis, we selected an ideal genotype (Ideotype 1) that

pyramided favorable alleles in terms of 21 regions containing FlYd and Fla QTLs (Table 6).

Among possible derivatives of the ideotype, individuals with higher FlYd and lower Fla values

than those measured for Kitahonami were observed, which indicated the possibility of breed-

ing varieties with higher quality than Kitahonami (Fig 4A). However, the derivatives tended to

show high Flb and low FPC values due to strong negative and moderate positive correlations

between Fla and Flb and between Fla and FPC, respectively (Fig 2). Since Flb and FPC largely

affect the end-use quality of flour, nine other ideotypes (Ideotypes 2–10) that differed in the

number of fixed Fla QTL alleles were generated (Table 6). Scatter diagrams of the five traits

indicated that variation in Flb and FPC increased as the number of fixed Fla QTLs decreased

(Fig 4B, S2 Fig). The derivatives from Ideotypes 8–10 included individuals with higher FlYd

and lower Fla values than those observed in Kitahonami and similar Flb and FPC values com-

pared to those observed in this variety. Genotypes of derivatives from the ten ideotypes and

their predicted phenotypes are given in S2 and S3 File, respectively.

Discussion

Recently, high-density SNP arrays and genotyping-by-sequencing (GBS) have been widely

used for genetic analyses [34–38]. However, when using a specific crossed population, a SNP

array is not an efficient way to develop genetic maps because a large number of probes do not

show any polymorphism between parents. Since GBS relies on randomly distributed polymor-

phic sites flanking restriction enzyme recognition sites, the tags of GBS tend to show distribu-

tion bias across samples and the genome. Therefore, GBS is not suitable for genome-wide

surveys using biparental populations. In this study, we used a target amplicon sequencing

approach to construct genetic maps of three DHL populations. Because the DHL populations

shared Kitahonami as the paternal parent, the use of common polymorphic sites as markers to

compare maps among populations was quite beneficial. Taking advantage of the amplicon

sequencing approach, well-saturated genetic maps were effectively constructed by selecting

suitable marker sets for the target population.

Performing quality evaluations at a late stage often results in ostensibly promising wheat

lines with high yield and resistance to diseases that cannot be released due to poor end-use
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quality traits, such as weak performance in milling and processing properties. Because the eval-

uation of quality traits is a labor-intensive and time-consuming step, it is difficult to perform

Fig 3. Posterior probabilities of the four traits along with group 7 chromosomes. Flour color a� (Fla), flour color b� (Flb), flour yield (FlYd) and

flour protein content (FPC) QTLs were detected on group 7 chromosomes using multifamily Bayesian QTL analysis.

https://doi.org/10.1371/journal.pone.0230326.g003
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genetic analysis of these traits using a large segregating population. In addition, due to unex-

pected environmental conditions, missing data caused by insufficient amounts of harvested

seeds for milling often occur. In this study, we did not evaluate a complete set of DHLs during

the four-year trial. However, with data for commonly used varieties and lines, we calculated

least square means across environments, which could then be used as genetic estimates for

each line. These values showed reasonable distribution patterns that were predicted by the

parental values (Fig 1). Furthermore, heritability estimates of the target traits, FlYd and Fla,

were relatively high, indicating that these traits were mainly governed by genetic factors

(Table 2). These results indicate that selection based on the detected QTLs at an early stage of

Table 5. Correlation coefficients between predicted and observed values obtained by six-fold cross-validation.

Validation set

Trait cv1 cv2 cv3 cv4 cv5 cv6 Mean S.D.

Fla 0.574 0.397 0.360 0.680 0.489 0.393 0.482 0.114

Flb 0.579 0.599 0.448 0.621 0.596 0.555 0.566 0.057

FlL 0.064 0.094 0.123 0.249 0.141 0.191 0.144 0.061

FlYd 0.564 0.479 0.641 0.377 0.362 0.489 0.485 0.098

FPC 0.260 0.375 0.409 0.308 0.402 0.458 0.369 0.066

S.D.: Standard deviation

https://doi.org/10.1371/journal.pone.0230326.t005

Table 6. Genotypes of the ten ideotypes used for simulation.

Position [cM] Position [Mb]1 Ideotype2

Region Chr Start End Start End QTL 1 2 3 4 5 6 7 8 9 10

1 1A 116.5 139.1 511.5 528.7 QFla.m.tarc-1A A A A A A A A A A -

2 2B 56.9 69.3 417.6 652.4 QFla.m.tarc-2B B B - - - - - - - -

3 2B 114.1 156.0 759.3 776.8 QFlyd.m.tarc-2B B B B B B B B B B B

4 2D 123.2 152.3 67.2 320.5 QFlyd.m.tarc-2D B B B B B B B B B B

5 3A 124.3 142.6 595.9 659.6 QFlyd.m.tarc-3A A A A A A A A A A A

6 3B 90.2 107.4 52.7 431.6 QFlyd.m.tarc-3B B B B B B B B B B B

7 4A 163.6 230.2 694.9 737.4 QFla.m.tarc-4A B B B B B B - - - -

8 4D 59.8 74.2 27.2 313.6 QFlyd.m.tarc-4D B B B B B B B B B B

9 5A 210.2 321.6 584.4 689.9 QFlyd.m.tarc-5A A A A A A A A A A A

10 5D 68.7 88.2 66.8 365.3 QFla.m.tarc-5D B B B B B B B - - -

11 5D 313.9 348.7 542.7 558.3 QFlyd.m.tarc-5D B B B B B B B B B B

12 6A 0.0 65.1 0.6 31.4 QFla.m.tarc-6A B B B B - - - - - -

13 6B 120.3 133.3 352.1 633.5 QFlyd.m.tarc-6B B B B B B B B B B B

14 6B 140.9 188.3 645.5 694.1 QFla.m.tarc-6B A A A - - - - - - -

15 6D 68.4 179.9 23.4 436.9 QFlyd.m.tarc-6D; QFla.m.tarc-6D B B B B B B B B B B

16 7A 141.1 154.2 127.8 488.7 QFlyd.m.tarc-7A; QFla.m.tarc-7A.1 B B B B B B B B B B

17 7A 298.6 314.7 724.1 733.4 QFla.m.tarc-7A.2 A A A A A - - - - -

18 7B 8.1 64.7 5.9 64.7 QFlyd.m.tarc-7B; QFla.m.tarc-7B.1 B B B B B B B B B B

19 7B 215.3 238.9 706.8 739.4 QFla.m.tarc-7B.2 A A A A A A A A - -

20 7D 9.1 52.8 13.3 32.9 QFla.m.tarc-7D B - - - - - - - - -

21 7D 129.5 208.0 71.6 530.0 QFlyd.m.tarc-7D A A A A A A A A A A

1 Positions in the IWGSC Chinese Spring RefSeq v1 sequence [26].
2 Genotype ’A’ and ’B’ indicate fixed region for non-Kitahonami’s and Kitahinami’s allele, respectively, while ’-’ indicates unconstrained region.

https://doi.org/10.1371/journal.pone.0230326.t006
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Fig 4. Scatter diagrams of predicted values for the five traits. Predicted values of derivatives from Ideotype 1 (A) and

Ideotype 8 (B). Points in blue indicate Kitahonami’s values.

https://doi.org/10.1371/journal.pone.0230326.g004
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breeding has a great impact on improving these two traits. Since least square means across

environments enabled us to detect reliable QTLs, historical data collected in breeding pro-

grams, which often include missing values, could be used for genetic analysis with the same

statistical procedure.

QTLs detected by multifamily analysis tended to show higher QTL intensities than those

detected by single-population analysis (Table 3, Table 4). For FlYd, single-population analysis

revealed three, six and six QTLs in KK, SK and TK, respectively, while 12 QTLs were detected

by multifamily analysis. Based on the physical positions of flanking markers, QTLs detected by

single-population analysis were included in those detected by multifamily analysis, except for

QFlyd.tk.tarc-2B. Because the intensity of this QTL (0.382) barely exceeded the 5% threshold

value (0.372), further research is necessary to confirm its existence. Three QTLs were detected

only by multifamily analysis. Among them, QFlyd.m.tarc-3A and QFlyd.m.tarc-6D showed rel-

atively low posterior probabilities compared to those of other QTLs, while QFlyd.m.tarc-5D
showed a high posterior probability, indicating that the QTL was reliable. For Fla, QTLs

detected by single-population analysis were also found by multifamily analysis, except for

QFla.sk.tarc-1B. Multifamily analysis revealed six QTLs that could not be found by single-pop-

ulation analysis. Among these QTLs, QFla.m.tarc-6A, QFla.m.tarc-6B and QFla.m.tarc-7B
showed quite high posterior probabilities. In this study, for both FlYd and Fla, the average pos-

terior probabilities from multifamily analysis were higher than those from single-population

analysis, meaning that multifamily analysis improved the power to detect QTLs by increasing

the size of the population. These results support the effectiveness of multifamily analyses in

detecting actual QTLs described in Hayashi and Iwata [26].

Genome-wide QTL analyses of quality traits in soft wheat revealed flour yield and flour

color QTLs on almost all chromosomes [5, 7, 23, 39–41]. By association mapping studies,

many MTAs have been identified for wheat quality parameters. For example, 15, 28, 25 and 32

MTAs for flour color L�, a�, and b� and yellow pigment content, respectively, were detected

[25]. Recently, using soft winter wheat from the eastern region of the United States, significant

MTAs for flour yield were found on chromosomes 1B, 2A and 2B [42]. Our previous associa-

tion mapping approach revealed approximately 20 QTLs related to flour yield that accumu-

lated during the process of breeding [22]. Although these genetic factors are useful for the

wheat research community, it is difficult to apply the information in actual breeding selection.

Generally, breeding is a process of pyramiding favorable alleles from various materials into an

elite genotype, such as a leading variety. Therefore, it is important to obtain allelism informa-

tion for QTLs detected among breeding materials. A nested association mapping (NAM) pop-

ulation developed by crossing one elite variety with various germplasms can be used to dissect

genetic factors for agronomically important traits [43–45]. A NAM population can also reveal

the genetic architecture of genome-wide recombination rate variation, which would be useful

information for improving the efficiency of gene pyramiding [46]. Therefore, the DHLs used

in this study are suitable materials for genetic analysis as well as breeding materials for pyra-

miding favorable alleles of quality traits.

The predictabilities of five traits were evaluated by six-fold cross-validation (Table 5). The

prediction accuracies of the two target traits, FlYd and Fla, were approximately 0.5, and the

highest values exceeded 0.6, indicating that prediction of these traits from genotypes was possi-

ble. However, the prediction accuracies of these traits varied among cross-validation sets. To

determine the appropriate selection criteria of a training set, further research is necessary to

investigate the relationship between genotypes of the training set and selection candidates.

Ranks based on prediction accuracies corresponded to those based on heritabilities (Table 2).

Because heritability is defined as the portion of phenotypic variance that can be explained by

genotype, it is reasonable for a trait with high heritability to show a high prediction accuracy
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based on genotype. As expected, the low-heritability trait, FlL, was not predictable (0.144).

This result was consistent with the result of our QTL analysis, which revealed only one FlL

QTL, with a contribution of 0.061.

In a breeding program, it is important to maintain a balance between antagonistic traits

[47, 48]. Among the traits investigated in this study, the two target traits had clear selection cri-

teria: higher flour yield was better, and lower flour a� was better. On the other hand, other

traits such as DH, Flb and FPC had optimal values corresponding to those for target cultiva-

tion areas and end-use products. Multitrait QTL analysis reveals whether or not correlated

traits are governed by the same genetic factors. In this study, we detected collocation of QTLs

on group 7 chromosomes. According to the IWGSC functional annotations (https://wheat-

urgi.versailles.inra.fr/Seq-Repository/Annotations) and expression profiles (http://www.

wheat-expression.com/) [49, 50], annotated high-confidence genes around the QTL clusters

were investigated (S4 File). Average transcripts per million (tpm) values from 166 studies

were used to assess the expression levels of these genes in grains. Based on human-readable

descriptions, phytoene synthase on chromosome 7B (TraesCS7B02G482000) is one of the

causal genes for flour color parameters [15]. Among the genes highly expressed in grain

tissues, genes related to carbohydrate metabolism, such as “glucose-1-phosphate adenylyl-

transferase” (TraesCS7A02G287400), “pyrophosphate—fructose 6-phosphate 1-phospho-

transferase subunit beta” (TraesCS7A02G198200), “1,4-alpha-glucan branching enzyme”

(TraesCS7A02G251400, TraesCS7B02G472400 and TraesCS7B02G472500), “starch syn-

thase” (TraesCS7A02G189000 and TraesCS7D02G117800) and “debranching enzyme 1”

(TraesCS7D02G133100) are candidate genes in the QTLs because carbohydrates are a domi-

nant component of grains and are known to affect its processing quality. Transcription factors

such as Zinc finger, MADS-box, Myb and NAC are also possible candidates because they are

involved in various seed developmental processes. On chromosome 7A, a gene annotated as

“Flowering locus T/ Terminal flower 1-like protein” (TraesCS7A02G229400) showed high

expression levels in grains. Many studies have demonstrated that the proteins encoded by

Flowering locus T-like (FT-like) genes act not only as major mobile flowering signals in flow-

ering plants but also participate in the regulation of diverse developmental processes [51].

Therefore, pleiotropic effects of the 7A QTLs may be due to this multifunctionality of FT-like

genes. Further studies delimiting QTL intervals are necessary to identify causal genes in the

clusters. Although it is unclear whether or not the causal genes of these QTLs are the same,

breeding selection of these QTL regions should be performed carefully while considering the

balance of traits. A simulation study of the ideotypes showed the possibility of breeding lines

with higher flour yield than Kitahonami. This possibility was realized by excluding QFlyd.m.

tarc-3A, Qflyd.m.tarc-5A and Qflyd.m.tarc-7D, for which the Kitahonami alleles had negative

effects. For flour color, the design of ideal genotypes was not simple because Fla was correlated

with Flb and FPC. A lower Fla, which indicates high noodle-making quality, inevitably leads to

a high Flb and low FPC. Since the Flb and FPC of flour greatly affect its end-use quality, it is

important to optimize these values. Simulation revealed that fine-tuning of genotypes would

be essential to obtain genotypes with ideal phenotypic values.

Bayesian QTL analyses of single populations and multiple families followed by simulations

revealed the possibility of breeding varieties superior to Kitahoanmi. Trait predictability is an

attractive technology with the potential to significantly improve breeding efficiency. Genomic

predictions using a high-density genotyping platform were performed for quality traits of

durum wheat [21, 52]. Recently, the genomic predictabilities of 35 key traits were reported,

which demonstrated the potential of genomic selection for wheat end-use quality [53]. In this

report, the prediction accuracy and standard deviation of flour yield across four seasons were

0.56 ± 0.04 and 0.45 ± 0.09 when cross-validation was performed within material categories
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(panels) and across panels, respectively. These values were comparable to our prediction accu-

racies, even though the number of markers used in this study was small. In regular breeding

programs, due to high costs, it is still difficult to routinely obtain high-density genotypic data

from a large number of selection candidates. The cost-effective amplicon sequencing method

described herein would be a suitable platform for selecting several dozens of trait-associated

chromosomal regions simultaneously. Furthermore, to increase the chance pyramiding QTLs

by crossing, the growth acceleration method called ’speed breeding’ [54] may be an effective

tool for establishing the ideal genotypes presented here. Therefore, genome-wide target selec-

tion combined with speed breeding is a next-generation breeding strategy for high-quality

wheat.
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