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Abstract: Pain is a reliable indicator of health issues; it affects patients’ quality of life when not well
managed. The current methods in the clinical application undergo biases and errors; moreover, such
methods do not facilitate continuous pain monitoring. For this purpose, the recent methodologies in
automatic pain assessment were introduced, which demonstrated the possibility for objectively and
robustly measuring and monitoring pain when using behavioral cues and physiological signals. This
paper focuses on introducing a reliable automatic system for continuous monitoring of pain intensity
by analyzing behavioral cues, such as facial expressions and audio, and physiological signals, such as
electrocardiogram (ECG), electromyogram (EMG), and electrodermal activity (EDA) from the X-ITE
Pain Dataset. Several experiments were conducted with 11 datasets regarding classification and
regression; these datasets were obtained from the database to reduce the impact of the imbalanced
database problem. With each single modality (Uni-modality) experiment, we used a Random Forest
[RF] baseline method, a Long Short-Term Memory (LSTM) method, and a LSTM using a sample
weighting method (called LSTM-SW). Further, LSTM and LSTM-SW were used with fused modalities
(two modalities = Bi-modality and all modalities = Multi-modality) experiments. Sample weighting
was used to downweight misclassified samples during training to improve the performance. The
experiments’ results confirmed that regression is better than classification with imbalanced datasets,
EDA is the best single modality, and fused modalities improved the performance significantly over
the single modality in 10 out of 11 datasets.

Keywords: continuous pain intensity monitoring; facial expressions; electrocardiogram; electrodermal
activity; electromyogram; fused modalities; random forest; long short-term memory network;
sample weighting

1. Introduction

Pain is an indicator of the human body’s health condition; it is a warning mechanism
that gives a trusted message to indicate people to pay serious medical attention and
respond quickly. Recent studies have shown that behavioral cues and physiological signals
are very informative for pain detection [1–3]. Therefore, several automated methods
have been proposed using these cues and signals to overcome the limitations of current
clinical applications for pain recognition, such as their unreliability and non-continuous
monitoring for patients, especially those who cannot self-report their pain (infants, intensive
care patients, or people suffering from dementia). This paper focuses on introducing an
automated system that can be used to complement the current clinical methods for better
pain management by analyzing behavioral and physiological data from five modalities
of the X-ITE Pain Dataset. This multimodal pain database provides additional valuable
information for more advanced discriminating pain or pain intensities versus no pain
because it includes different qualities and durations of pain [4].
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Visual cues (facial expressions), vocalization cues (verbally and non-verbally), and
physiological signals (bio-signals) express pain physically; these cues and signals play
an important role in assessing pain in individuals [3]. Facial expressions are one of the
more important cues in predicting pain based on analyzing human behaviors during
pain [5,6]; across different nationalities, genders, cultures, ages, and genders, pain is
expressed similarly. Further, some individuals express pain non-verbally by moaning,
crying, groaning, and sighing (vocalization cues), and some express pain verbally by
mentioning pain or using offensive words, and some express their pain [7,8]. Additionally,
the physiological signals are informative indicators of pain, they cause alterations in tissues
and organs (e.g., skin, heart, and muscles’ electrical properties). The most widely used
signals are electrocardiogram (ECG), facial electromyography (EMG), and electrodermal
activity (EDA) [9,10].

For objective pain intensity assessment, an increasing number of studies [10–14] has
investigated behavioral cues and physiological signals with machine learning models. The
findings demonstrated that the EDA modality mostly outperformed other physiological
single modalities in terms of accurate pain assessment; EMG was the second best modality.
Further, the temporal integration of extracted features from each modality improved the
performance of pain assessment [14–16]. The temporal integration was represented for each
modality by a time series statistics descriptor that was calculated from several statistical
measures with their first and second derivatives per time series. The purpose of this paper
is to confirm the above works’ findings, utilize temporal integration, and combine the best
two modalities (EMG and EDA) and all modalities to improve the pain intensity monitoring
performance; various studies [10,13,14,17,18] motivated us to use the combined modalities.
The combination of both behavioral and physiological pain cues/signals is potentially
good for developing objective pain assessment regarding the Odhner et al. [19] study. We
also compared the results of the single modalities versus fused modalities (two and all
modalities) to introduce the best automated system for objective continuous monitoring of
pain intensity, which could be highly beneficial for reliable and economic pain intensity
assessment.

The current work is organized as follows. Section 1.1 describes the contribution
of this work. Section 2 provides an overview of pain recognition methods based on
behavioral and physiological responses and describes their relevance to this paper. Section 3
shows a description of the materials and methods for automatic monitoring of continuous
pain intensity using fused modalities: The X-ITE Pain Database preprocessing is shown
in Section 3.1, automatic monitoring methods for continuous pain intensity regarding
classification and regression are explained in Section 3.2, and the experimental setup is
explained in Section 3.3. Section 4 presents a comparison between models’ results when
using single and fused modalities regarding classification and regression, followed by a
discussion in Section 5 and a conclusion in Section 6.

1.1. Contributions

Werner et al. [14] and Walter et al. [16] reported the results of using phasic (short) and
tonic (long) stimulation samples from facial expressions, audio, and psychological data of
7 s, which were cut out from the continuous recording of the main stimulation phase in
X-ITE Pain Database. This paper goes beyond their studies, as it reports the first continuous
pain monitoring results based on analyzing data from the best two fused modalities (EMG
and EDA) and all fused modalities (facial expressions, audio, ECG, EMG, EDA) of the same
database. In line with this paper, the facial expressions modality results were reported
in [20,21] and both the facial expressions and EDA modalities’ results were reported in [22].
The findings from this paper outperformed those from our recent paper [20–22]. We used
the continuous recording of each modality of most of the data collection experiments, which
is about 1 h and a half per subject. Further, we compared classification and regression
results when using RF, LSTM, and LSTM-SW. We did not apply RF with fused modalities
experiments because it was not needed due to its lower performance compared to LSTM
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and LSTM-SW during best single modality (EDA) experiments. We preferred to continue
experiments with promising methods. Additionally, we compared models’ performances
achieved using EDA (best single modality) with fused modalities (the best two modalities
(EMG and EDA) and all modalities) to obtain the best method of recognizing pain intensity
for the two pain stimulus types (phasic and tonic) in three pain intensities (low, moderate,
and severe) and two qualities (heat and electrical stimuli). The findings of this work are the
baseline results for future research related to real-time pain intensity monitoring systems
using the EDA and fused modalities ((EMG and EDA) and all modalities) in the X-ITE Pain
Database.

2. Related Work

Many studies have focused on various possible objective indicators for pain. The
behavioral and physiological pain indicators are commonly used for pain assessment. Facial
expressions and vocalizations (from audio) are considered behavioral pain indicators; heart
rate variability, muscle activity, and electrodermal activity are considered physiological pain
indicators. Recent studies reported that the fusion of these indicators increased the accuracy
of distinguishing no pain versus pain [14,16,19]. Ekman and Friesen [23] decomposed facial
expressions into individual facial Action Units (AUs) with the Facial Action Coding System
(FACS). Examples of facial changes associated with pain are brow lower, cheek raise, lids
tight, nose wrinkle, nasolabial deepen, upper lip raise, lip corner pull, lip stretch, lips apart,
jaw drop, lids droop, eyes closed, and blink [1,23–26]. Vocalizations include verbal, non-
verbal, and breathing behaviors. They define during pain experienced as the utterance of
sounds, noises, and words using the vocal apparatus. Verbal vocalizations include protests
and complaints by mentioning pain or using offensive words [27]; non-verbal vocalizations
include moaning, crying, groaning, and gasps [7]; the changes in breathing patterns such
as sighing have also been considered as vocalizations in regard to Waters et al. [28].

Clinical studies [29–33] have provided strong empirical evidence for the correlation
between individual physiological signals and pain. The pain process starts from the
sensory receptors (also called nociceptors) by noxious thermal, chemical, or mechanical
stimuli, which can be activated to the body from an external or internal source. The
information regarding detecting harmful stimuli and converting these into electrical signals
is transduced via nociceptors and transmitted through the spinal cord to the brain. Then,
specific parts of the brain are responsible for responding to pain signals, which are the
prosencephalon, mesencephalon, and cortex [34–37]. ECG signals captures the changes in
the electrical activity of the heartbeats (low-frequency/high-frequency ratio) and the heart
rate interval. The Heart Rate Variability (HRV) is calculated on ECG data; the changes of
HRV in the low-frequency power increase during painful stimulation [38,39]. EMG signals
measures the changes in electrical properties of the muscle; EMG activity is often measured
at the zygomaticus (mouth corner raiser), trapezius (back of the neck), and corrugator
superscillii (brow lowerer) muscles [40]. EDA signals record the changes in the electrical
activity of the skin when using two electrodes connected to the index and ring fingers. In
response to a pain stimulus, EDA is a good measure because of intense body activity after
experiencing pain; when a painful stimulus is applied, the sympathetic nervous system
(SNS) activates the finger’s sweat glands to produce more sweat, and this, in turn, increases
skin conductance [41–43].

Many promising methods were introduced for automatically recognizing pain using
behavioral and physiological pain indicators because they carry valuable information
about different pain levels in patients. The automatic pain recognition consists of three
main steps: (1) face detection and registration/vocalizations preprocessing/physiological
preprocessing, (2) feature extraction, and (3) pain recognition. Several automatic methods
using facial expressions were introduced for recognizing frame-level and sequence-level
pain intensity. Frame-level methods ignore temporal information and are thus limited in
describing relevant dynamic information that is beneficial for pain intensity recognition.
Further, occlusion, such as self-occlusion, oxygen mask, and pacifier, is another limitation
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of using such methods. Thus, many recent works focus on sequence-level pain recog-
nition because it is more effective in describing such information [44–46]. According to
the ability of RF [47] for pain detection using facial expressions, audio, or physiological
indicators [13,14,20–22,45,48,49], we introduced in this work RF as a baseline method for
single modalities experiments and compared its performance to the proposed deep learning
methods (LSTM and LSTM-SW) that analyze data encoding temporal information.

Most methods of pain recognition used a single modality [44,50] used video, [51,52]
used audio signal, and [10,12,33] used physiological signals. The recent methods used
multiple modalities [3,4,14,16,53–55] that can improve the performance and flexibility
of pain recognition. Thiam et al. [54] proposed multi-modal methods to develop pain
intensity classification. They introduced a supervised deep learning method and a self-
supervised method for recognizing pain intensity based on physiological signals. The
self-supervised method automatically generated physiological data and simultaneously
performed a fine-tuning of the deep learning model, which had been previously trained on
a significantly smaller amount of data. Thus, they were able to significantly improve the
data efficiency. Hinduja et al. [55] introduced a multi-modal method for pain recognition by
fusing facial expressions and physiological signals (heart rate, respiration, blood pressure,
and electrodermal activity) from the BP4D+ database. The fusion improved accuracy when
evaluation included all subjects or same gender compared to using only one modality
(facial expressions or physiological signals). Pouromran et al. [10] focused on pain intensity
estimation using the BioVid dataset; they built different machine learning models for
continuous pain estimation: Linear Regression, Support Vector Regression (SVR), Neural
Networks, k-nearest neighbors, Random Forest, and XGBoost. They used the extracted
features from a single modality and the combination features from multiple modalities.
The EDA single model outperformed multi-modal results for pain intensity recognition,
and SVR gave the best predictive performance across different sensors.

The current automated methods for pain assessment have not yielded estimation ac-
curacies acceptable in clinical settings due to several reasons: (1) Half of the available pain
databases for research purposes contain response data from a single modality (e.g., facial ex-
pressions). (2) The multimodal pain databases have a significant impact on the performance
of automatic pain assessment systems; to the common belief that the quality and duration of
pain are need to provide additional valuable information for more advanced discriminating
pain or pain intensities versus no pain, the X-ITE Pain Database has been made to comple-
ment existing databases and the analysis of pain regarding quality and length. (3) There are
some studies to assess pain reported promising results of using more than three modalities;
they show that to obtain a reliable pain assessment system, it is recommended to analyze
pain and detecting valid pain patterns from multiple modalities, including both behavioral
cues and physiological signals. (4) Few of the current pain assessment methods focus
on continuous monitoring, which is more necessary for pain assessment for prompt pain
detection and immediate intervention. Therefore, this paper addresses those limitations
and proposes an automatic and multimodal system for continuous monitoring of pain
intensity using five sensor modalities (facial expressions, audio, ECG, EMG, and EDA)
from the X-ITE Pain Database. A combination of behavioral cues and physiological signals
was used with appropriate machine learning methods. LSTM [56] and LSTM using sample
weighting (LSTM-SW) were utilized with a single or multiple fused modalities (facial ex-
pression, audio, ECG, EMG, EDA, (EMG and EDA), or all modalities) to predict continuous
phasic or tonic pain intensity versus no pain. LSTM was proposed to learn long-term
dependency among longer time periods by storing information from previous periods. The
sample weighting method [48] was applied to reduce the weight of misclassified samples
by duplicating some training samples with more facial responses if their classification
scores were above 0.3 to improve the pain intensity recognition performance.
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3. Materials and Methods

Figure 1 shows the methodology of the proposed automatic system for continuous
monitoring of pain intensity. We pre-processed the input data from the five modalities
(facial expressions, audio, ECG, EMG, and EDA) to extract useful features. Then, we calcu-
lated temporal integration features from time series data coming from those five modalities.
After that, we prepared the experimental data by further processing the obtained data from
the temporal integration process; such processing was suggested to overcome imbalanced
database and outlier problems; for more details, see Section 3.1. Regarding classification
and regression, three types of experiments were introduced to analyze the experimen-
tal data for continuous monitoring of pain intensity: (1) Uni-modality (data from single
modalities) experiments, (2) Bi-modality (fusing data from two modalities) experiments,
and (3) Multi-modality (fusing data from five modalities) experiments. We applied RF as
baseline methods (Random Forest classifier (RFc) and Random Forest regression (RFr))
with single modalities experiments, Long Short-Term Memory (LSTM) and LSTM using
the sample weighting method (LSTM-SW) with single and fused modalities experiments;
see Section 3.2. For more details about the conducted experiments, see Section 3.3.

Figure 1. The general pipeline of the proposed automatic system for continuous monitoring of pain
intensity.

3.1. X-ITE Pain Database Pre-Processing

In this work, a multimodal Experimentally Induced Thermal and Electrical (X-ITE)
Pain Database [4] includes data that were recorded when healthy participants (subjects)
were exposed to two different pain qualities (heat and electric) in three intensities (low,
medium, and high) and two different pain stimuli durations (phasic (5 s = short) and tonic
(1 min = long)). The subjects were aged between 18 and 50 years (at least 90% Caucasian par-
ticipants = 67 men and 67 women). The heat pain stimulus was stimulated at participants’
forearm using a thermal stimulator (Medoc PATHWAY Model ATS, Medoc—Advanced
Medical Systems, Ramat Yishay, Israel). The electrical pain stimulus was stimulated at
participants when electrodes were attached to participants’ index and middle fingers using
an electrical stimulator (Digitimer DS7A, Digitimer Ltd., Letchworth Garden City, UK).
A person calibration was applied prior to the main stimulation phase experience, which
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means the participant self-reported the pain experienced during several stimuli using the
numeric rating scale. Three intensities of both pain stimuli (heat and electricity) of each
duration pain (phasic or tonic) were selected individually based on participants’ personal
pain sensitivity (tolerances). For each phasic stimulus, the three pain intensities (times
two pain modalities) were repeated 30 times for 5 s duration, applied in randomized order
with pauses of 8–12 s. The 1-min tonic stimuli were applied once per intensity, followed
by a pause of 5 min. The EDA includes both background tonic (Skin Conductance Level:
SCL = 1-min pain stimuli) and rapid phasic components (Skin Conductance Responses:
SCRs = 5-min pain stimuli). There were three phases of how tonic heat and electrical
pain intensity stimuli were applied: the two lower intensities were applied randomly
during the phasic stimulus period, and the highest intensity was applied at the end of the
experiment. The entire experiment (preparation and actual experiment) took about 3 h per
participant; approximately 1 and a half hours was the duration of the actual experiment for
each participant, which was used in this work. For more details see Gruss et al. [4]. The
five modalities were analyzed to objectively monitor the phasic and tonic pain intensity
during the application of the thermal and electrical pain stimuli and no pain.

In line with [14,16,20–22,48], the subset of the same 127 human healthy participants
(subjects) was selected, including samples only, for which data were available from five
sensor modalities (frontal facial RGB video, audio, ECG, EMG, and EDA). The data from
the five modalities from X-ITE Pain Database were pre-processed by (1) processing the
frontal facial RGB video using OpenFace [57] for detecting the face from each frame for
each participant (subject) and for extracting facial features (FF) and head pose, (2) pro-
cessing the audio signal using openSMILE [58], (3) applying the QRS-detection algorithm
by Hamilton et al. [59] with the ECG signals, (4) processing the three EMG channels with
a zero-phase third-order Butterworth band-pass filter, and (5) keeping EDA without fil-
tering. The FF that were used included 3 head poses (Yaw, Pitch, and Roll), AU1 (binary
occurrence output), and 17 AU intensity outputs of OpenFace, which are AU1 (Inner Brow
Raiser), AU2 (Outer Brow Raiser), AU4 (Brow Lowerer), AU5 (Upper Lid Raiser), AU6
(Cheek Raiser), AU7 (Lid Tightener), AU9 (Nose Wrinkler), AU10 (Upper Lip Raiser),
AU12 (Lip Corner Puller), AU14 (Dimpler), AU15 (Lip Corner Depressor), AU17 (Chin
Raiser), AU20 (Lip stretcher), AU23 (Lip Tightener), AU25 (Lips Part), AU26 (Jaw Drop),
and AU45 (Blink). The low-level descriptor (LLD) was extracted from audio modality,
comprising 4 energy features (sum of auditory spectrum (loudness), sum of RASTA-filtered
auditory spectrum, root-mean-square (RMS) energy, and zero-crossing rate), 6 voicing fea-
tures (F0 (Subharmonic Summation (SHS)\and Viterbi smoothing), probability of voicing,
logarithmic harmonics-to-noise ratio (HNR), Jitter (local and delivered duty paid (DDP)),
Shimmer (local)), and 14 spectral features (Mel Frequency Cepstral Coefficients (MFCCs)).
With processed ECG, R-to-R intervals were used to determine heart rate. Afterward, we
interpolated the heart rate signal linearly to match the sampling of the EMG and EDA
(1000 Hz). The 21-dimensional facial expression/24-dimensional audio/1-dimensional
ECG/3-dimensional EMG/1-dimensional EDA time series were selected at a frame rate of
25 frames per second (fps).

The temporal integration for each modality was represented by a time series statistics
descriptor [44,60] to describe the changes of features from each modality, which are called
Facial Activity Descriptor (FAD), Audio Descriptor (Audio-D), ECG Descriptor (ECG-D),
EMG Descriptor (EMG-D), and EDA Descriptor (EDA-D). Each second in each descrip-
tor was summarized by four statistics of the time series itself and its first and second
derivative, including minimum, maximum, mean, and standard deviation, yielding a
12 × 21-dimensional, 12 × 24-dimensional, 12 × 1-dimensional, 12 × 3-dimensional, and
12 × 1-dimensional descriptor for facial, audio, ECG, EMG, and EDA features, respectively.
A person-specific standardization of the features [44] was applied with all descriptors in
order to focus on the within-subject response variation rather than the differences between
subjects. For each subject, the mean and standard deviation were calculated, then each
feature value was subtracted by the mean and divided by the standard deviation that
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belonged to the same subject. RF, LSTM, and LSTM-SW were used with all descriptors.
The descriptor for each modality we use was at the same frame rate (1/25 s = 25 fps) in
line with [20–22]. A sliding window strategy was used to obtain input samples with a time
length of 10 s ago.

In the X-ITE Pain Database, −10 indicates samples with problems such as false start
and restart of the stimuli, overlapping between heat or electrical stimulation, unbalanced
phasic estimation, short pause, short tonic electrical stimulus, single heat stimulus in front,
or additional stimulus. Furthermore, −11 indicates the samples when the subject speaks or
interacts during the experiment (the beginning and after the first and second tonic stimuli
of the experiment). The remaining annotations were presented in Table 1.

Table 1. List abbreviations of pain stimuli type, modalities, intensities, and numerical class labels
with the percentage samples distribution. This table is also presented in our recent study [20–22].

Type Modality
Intensities

Severe Moderate Low No Pain (77%)

Phasic
H PH3 = 3 (2%) PH2 = 2 (2.1%) PH1 = 1 (2.1%)

BL = 0
E PE3 = −3 (2.6%) PE2 = −2 (2.6%) PE1 = −1 (2.6%)

Tonic
H TH3 = 6 (1%) TH2 = 5 (1%) TH1 = 4 (1%)

BL = 0
E TE3 = −6 (1%) TE2 = −5 (1%) TE1 = −4 (1%)

E: Electrical pain stimulus, H: Heat pain stimulus, BL: Baseline; −10 and −11 labels not used in the experiments:
−10 (0.5%) and −11(2.5%).

Several pre-processing steps were proposed on the X-ITE Pain Database to reduce the
impact of the extremely imbalanced database problem: First, we investigated the intensities
of facial expressions for most samples when expressing pain intensity, then we assigned
all subjects into four categories based on how they expressed pain intensity. Second, we
suggested splitting the database into three splits: training set, validation, and testing set.
Randomly, subjects for each split from each category were selected based on 80% of data for
training (100 subjects = 572,696 samples), 10% for validation (13 subjects = 75,537 samples),
and 10% for testing (14 subjects = 79,485 samples). Each split contained subjects from all
intensity categories. Third, the obtained splits from the database were processed: (a) all
sequences of samples with labels −10, −11, and no pain samples sequence before and after
these samples were excluded to simplify the problem and reduce the impact of imbalance
in the database; (b) the obtained dataset was split into 6 subsets to evaluate the proposed
methods (see the Subsets, which are the first six datasets in Table 2); (c) each obtained
dataset was reduced by removing some no pain samples prior to pain intensity samples in
a time series for each subject to evaluate the proposed methods; these datasets are called
Reduced Subsets; see the Reduced Subsets, which were the last six datasets in Table 2.

Table 2. List of datasets with samples’ distribution based on labels.

Subsets (Experimental Data) No Pain Pain Intensities

PD Phasic Dataset
Exclude tonic samples and no pain samples

before these samples and also after samples with
−10, −11 labeled.

77.7% 22.23%

HPD Heat Phasic Dataset Exclude electrical samples from PD and no-pain
samples before these frames. 87.5% 21.5%

EPD Electrical Phasic
Dataset

Exclude heat samples from PD and no pain
frames before these frames. 86.1% 13.9%
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Table 2. Cont.

TD Tonic Dataset
Exclude phasic samples and no pain samples

before these samples and also after samples with
−10, −11 labeled.

70.3% 29.7%

HTD Heat Tonic Dataset Exclude electrical samples from TD and no pain
frames before these frames. 20.0% 80.0%

ETD Electrical Tonic
Dataset

Exclude heat samples from TD and no pain
frames before these frames. 82.0% 18.0%

Reduced Subsets (Experimental Data) No Pain Pain Intensities

RPD Reduced Phasic
Dataset Reduce the no pain frames in PD to about 50%. 50.0% 50.0%

RHPD Reduced Heat
Phasic Dataset Reduce the no pain frames in HPD to about 50%. 50.1% 49.9%

REPD Reduced Electrical
Phasic Dataset Reduce the no pain frames in EPD to about 50%. 50.0% 50.0%

RTD Reduced Tonic
Dataset Reduce the no pain frames in TD to about 38%. 38.1% 61.9%

RETD Reduced Electrical
Tonic Dataset Reduce the no pain frames in ETD to about 49%. 49.0% 51.0%

3.2. Automatic Pain Intensity Monitoring Methods

Random Forest (RF) was used because it is an applicable method regarding classifi-
cation and regression tasks. RF is parallelizable method, which means that the process
can be split into multiple machines to run, and this leads to a faster computation time
(faster to train and predict). In contrast, Boosting is a sequential ensemble method, which
takes longer to compute. Further, RF is good with high dimensionality data, robust to
outliers and non-linear data, good to handle imbalanced data, and it has also low bias
and moderate variance. Alongside other studies [14,16,20–22], RFc and RFr were trained
with 100 trees and a maximum depth of 10 nodes for classification and regression tasks
with single modality experiments. The RFc method in [14,16,48] showed good results in
predicting pain intensity and no pain from the time windows of samples that were cut
out from the continuous recording of the main stimulation phase. LSTM is an effective
method for better handling time series prediction compared to other time series methods
because it has a memory cell that can maintain information in memory for long periods of
time. It is more accurate on datasets using large sequences. LSTM classification architecture
comprised a single LSTM layer activated by ReLU followed by a flatten layer, and then
one dense layer activated by ReLU. The final output layer had n neurons (n = number of
classes). The Softmax was used as the activation function in the output layer, and the Cate-
gorical Cross-Entropy (CCE) was the use as the loss function. The configurations of LSTM
regression architecture were similar to LSTM classification architecture, except the final
output layer with one neuron was activated using a sigmoid function. The pre-processed
data (time series data = samples) were inserted into LSTMs one by one in sequence.

After observing the highly imbalanced database and imbalanced proposed datasets
(see Tables 1 and 2), LSTM again was used after increasing the weight of the training
samples with more facial responses, called LSTM using sample weighting (LSTM-SW).
The sample weighting method was based on duplicating some samples with high scores.
The samples with prediction scores higher than 0.3 in training data when using the RFc
with FAD modality were determined, and then these samples were replicated once. The
duplicates are desirable, as some single images could appear multiple times per epoch
because the LSTM model puts more weight on getting these samples (with observable pain
reaction) correct and focuses less on samples without an observable pain reaction. The
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samples after increasing were trained on the LSTM for classification and regression. To
ensure comparability of test results, samples were never duplicated in the test data.

3.3. Experiments

Three categories of experiments applied on 11 datasets from the X-ITE Pain Database:
Uni-modality experiments using data from single modalities, Bi-modality experiments
using data from two modalities, and Multi-modality experiments using data from multiple
modalities. RF was used only with single modality (Uni-moality) experiments. Due to
RF’s poor performance compared to LSTM and LSTM, we decided to continue two and
all fused modalities experiments using LSTM and LSTM. For more details about those
methods, see Section 3.2. For reference, a Trivial classifier was calculated within classi-
fication experiments, which always votes for the majority class of the dataset (no pain
in our experiments). In order to be able to know which modality is best for monitoring
continuous pain intensity, the suggested automatic methods were trained with the time
series data from each single modality. In these experiments, the time series data (exper-
imental data = FAD, Audio-D, ECG-D, EMG-D, and EDA-D) were used individually to
predict pain intensity using RF, LSTM, and LSTM-SW for classification (discrete predictions)
and regression (continuous predictions). All LSTM/LSTM-SW classification models were
optimized using the loss function CCE, and LSTM/LSTM-SW regression models were opti-
mized using the loss function BCE. The obtained models were trained for 2000 epochs with
different lr (10−4 or 10−5 or 10−6) when setting up the batch size equal to 512 and using
adam optimizer. Table 3 shows the architecture of LSTM/LSTM-SW within Uni-modality
experiments.

Table 3. A summary of the LSTM/LSTM-SW architectures’ configurations using data from Uni-
modality. This table is also presented in our recent study [20–22].

Layer Type Attribute
Classification Regression

A(c) B(c) C(c) D(c) A(r) B(r)

Input
Size: 10 × 252 10 × 252 10 × 252 10 × 252 10 × 252 10 × 252

Timestep: 10 10 10 10 10 10
Features: 252 252 252 252 252 252

LSTM
Activation: ReLU ReLU ReLU ReLU ReLU ReLU

No. of units: 4 8 4 8 4 8

Dropout with p: 0.5 0.5 0.5 0.5 0.5 0.5

Flatten Output: 80 40 80 40 80 40

Dense1 Activation: ReLU ReLU ReLU ReLU ReLU ReLU
No. of units: 128 64 128 64 128 64

Dense2 Activation: Softmax Softmax Softmax Softmax Linear/Sigmoid
No. of units: 7 7 4 4 1 1

Output
Continuous - - - -

√ √

Discrete
√ √ √ √

- -
7 levels 7 levels 4 levels 4 levels

The architectures A(c), B(c), C(c), and D(c) for classification and A(r), B(r) for regression
all have input size of 10 × 252/288/36/12, the number of features was variant according to
the used modality. The number 10 indicates timesteps (25 Hz time series were reduced to
one Hz after applying temporal integration process), 252 indicates facial features (FAD),
288 indicates audio features (Audio-D), 12 indicates ECG features (ECG-D) or EDA features
(EDA-D), and 36 indicates features (EMD-D). A(c) and C(c) classification architectures
comprised a single LSTM layer with 4 units activated by ReLU followed by a flatten layer,
and then one dense layer with 128 neurons activated by ReLU. The final output layer had
7 neurons in A(c) and 4 neurons in C(c). B(c) and D(c) classification architectures comprised
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a single LSTM layer with 8 units activated by ReLU and followed by flatten layer, and
then one dense layer with 64 neurons activated by ReLU. The final dense output layer had
7 neurons in B(c) and 4 neurons in D(c). The Softmax was used as the activation function
in the output layer, and the CCE was the use as the loss function. The configurations of
A(r) regression architecture were similar to A(c) and C(c), and the configurations of B(r)
regression architecture were similar to B(c) and D(c), except the final output layer with one
neuron was activated using a sigmoid function.

Two Uni-modality architectures (FAD/EMG-D and EDA-D) were combined using
LSTM/LSTM-SW by merging their final dense layers using a concatenate layer (see Table 4).
A-Bi(c) and C-Bi(c) classification architectures of (FAD and EDA-D) Bi-modality or (EMG-D
and EDA-D) Bi-modality, including A(c) and C(c), comprised a single LSTM layer with
4 units activated by ReLU and followed by a flatten layer, and then one dense layer with
128 neurons activated by ReLU. The output of dense layer (dense1) from X (EDA-D)
modality architecture was concatenated with the output of dense layer (dense1) from Y
(FAD/EMG-D) modality. The final layer (dense2) had 7 neurons in A-Bi(c) and 4 neurons in
C-Bi(c). B-Bi(c) and D-Bi(c) classification architectures, including B(c) and D(c), comprised
a single LSTM layer with 8 units activated by ReLU and followed by flatten layer, and then
one dense layer with 64 neurons activated by ReLU. The output of dense layer (dense1)
from X (EDA-D) modality architecture was concatenated with the output of dense layer
(dense1) from Y (FAD/EMG-D) modality. The final layer (dense2) had 7 neurons in B-Bi(c)
and 4 neurons in D-Bi(c). The configurations of A-Bi(r) regression architecture were similar
to A-Bi(c) and C-Bi(c), and the configurations of B-Bi(r) regression architecture were similar
to B-Bi(c) and D-Bi(c), except the output layer with one neuron.

Table 4. A summary of the LSTM/LSTM-SW architectures’ configurations using data from
FAD/EMG-D and EDA-D Bi-modality. A(c), B(c), C(c), D(c), A(r), and B(r) are LSTM/LSTM-SW
architectures in Table 3.

Layer Type Attribute

Architectures Configurations (Bi-Modality)

Classification Regression

A-Bi(c) B-Bi(c) C-Bi(c) D-Bi(c) A-Bi(r) B-Bi(r)

Concatenate
(after dense1)

Modality X A(c) B(c) C(c) D(c) A(r) B(r)
+ + + + + + +

Modality Y A(c) B(c) C(c) D(c) A(r) B(r)

Dense2
Activation: Softmax Sigmoid

No. of units: 7 7 4 4 1 1

Output
Continuous - - - -

√ √

Discrete
√ √ √ √

- -
7 levels 7 levels 4 levels 4 levels

Table 5 shows the overview of the Multi-modality experiments. All single modalities’
architectures using LSTM/LSTM-SW were combined by concatenating the outputs from
the dense1 layers using concatenate layer. The Multi-modality experiments were similar
to Bi-modality experiments, except the input were the time series data from all modali-
ties (FAD, Audio-D, ECG-D, EMG-D, and EDA-D). A-Mu(c) and C-Mu(c) classification
architectures of Multi-modality, including A(c) and C(c), comprised a single LSTM layer
with 4 units activated by ReLU and followed by a flatten layer, and then one dense layer
with 128 neurons activated by ReLU. The dense2 layer had 7 neurons in A-Mu(c) and
4 neurons in C-Mu(c). B-Mu(c) and D-Mu(c) classification architectures, including B(c)
and D(c), comprised a single LSTM layer with 8 units activated by ReLU and followed by
flatten layer, and then one dense layer with 64 neurons activated by ReLU. The dense2
layer has 7 neurons in B-Mu(c) and 4 neurons in D-Mu(c). The configurations of A-Mu(r)
regression architecture were similar to A-Mu(c) and C-Mu(c), and the configurations of
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B-Mu(r) regression architecture were similar to B-Mu(c) and D-Mu(c), except for the final
dense out-put layer with one neuron.

Table 5. A summary of the LSTM/LSTM-SW architectures’ configurations using Multi-modality.
A(c), B(c), C(c), D(c), A(r), and B(r) are LSTM/ LSTM-SW architectures using Uni-modality (see
Table 3).

Layer Type Attribute

Architectures Configurations (Multi-Modality)

Classification Regression

A-Mu(c) B-Mu(c) C-Mu(c) D-Mu(c) A-Mu(r) B-Mu(r)

Concatenate
(after dense1)

Modality 1 A(c) B(c) C(c) D(c) A(r) B(r)
+ + + + + + +

Modality 2 A(c) B(c) C(c) D(c) A(r) B(r)
+ + + + + + +

Modality 3 A(c) B(c) C(c) D(c) A(r) B(r)
+ + + + + + +

Modality 4 A(c) B(c) C(c) D(c) A(r) B(r)
+ + + + + + +

Modality 5 A(c) B(c) C(c) D(c) A(r) B(r)

Dense2
Activation: Softmax Softmax Softmax Softmax Sigmoid Sigmoid

No. of units: 7 7 4 4 1 1

Output
Continuous - - - -

√ √

Discrete
√ √ √ √

- -
7 levels 7 levels 4 levels 4 levels

The learning rate (lr) within A(c), A(r), A-Bi(c), A-Bi(r), A-Mu(c), A-Mu(r), C(c), C(r),
C-Bi(c), C-Bi(r), C-Mu(c), and C-Mu(r) using PD, HPD, and EPD is 10−5; using TD, HTD,
and ETD it is 10−6; and using RPD, RHPD, and REPD it is 10−4. The lr within B(c), B(r),
B-Bi(c), B-Bi(r), B-Mu(c), B-Mu(r), D(c), D(r), D-Bi(c), D-Bi(r), D-Mu(c), and D-Mu(r) using
RTD and RETD is 10−6. In the output layers, 7 levels indicate no pain versus heat and
electrical pain intensity recognition for one of two different (phasic/tonic), and 4 levels
indicate no pain versus heat/electrical pain intensity recognition for one of two different
(phasic/tonic).

4. Results

In this section, we introduce the comparison between the proposed methods (RF,
LSTM, and LSTM-SW) with the best single modality (EDA), best two fused modalities
(EMG and EDA), and fused all modalities (facial expressions, audio, ECG, EMG, and EDA).
The experimental data was used (EDA-D, (EMG-D and EDA-D), (FAD, Audio-D, ECG-D,
EMG-D, and EDA-D)). Section 4.1 shows the findings when evaluating the test set using
regression measures (Mean Squared Error (MSE) and Intraclass Correlation Coefficient
(ICC) [61]), whereas Section 4.2 shows the findings in terms of classification measures
when classification outperformed the regression in terms of regression measures. The
classification measures were Accuracy, Micro average precision (Micro avg. precision),
Micro average recall (Micro avg. recall), and Micro average F1-score (Micro avg. F1-score).

4.1. Classification vs. Regression

After comparing between single modalities models when applying baseline methods
(RFc and RFr), LSTM, and LSTM-SW with 11 datasets from the experimental data, we
found that EDA-D Uni-modality modality models performed the best with most datasets
regarding classification and regression. Tables 6 and 7 show the comparison of the best
Uni-modality, the best Bi-modality, and Multi-modality models in terms of MSE and
ICC measures, respectively. EMG-D outperformed EDA-D only with the TD dataset and
performed similarly to EDA-D with the HTD dataset regarding classification. In line with
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Uni-modality modality experiments, the best results were obtained when using EMG-D
and EDA-D Bi-modality with the same methods and all datasets except the HTD dataset,
and FAD and EDA-D Bi-modality were the best.

Table 6. Comparison of the best Uni-, Bi-, and Multi-modality models regarding classification and
regression tasks with MSE measure. Meas.: Measure. The cells with light grey background indicate
the models using LSTM, and cells with pink background indicate the models using LSTM-SW. The
bold font indicates the best results.

M
ea

s. Task Classification Regression

Dataset Uni-Modality Bi-Modality Multi-Modality Uni-Modality Bi-Modality Multi-Modality

M
SE

Su
bs

et
s

PD 0.09
EDA-D

0.08
EMG-D
EDA-D

0.08 0.06
EDA-D

0.06
EMG-D
EDA-D

0.06

HPD 0.10
EDA-D

0.09
EMG-D
EDA-D

0.10 0.08
EDA-D

0.07
EMG-D
EDA-D

0.09

EPD 0.06
EDA-D

0.06
EMG-D
EDA-D

0.05 0.05
EDA-D

0.04
EMG-D
EDA-D

0.04

TD 0.11
EDA-D

0.11
EMG-D
EDA-D

0.11 0.09
EDA-D

0.10
EMG-D
EDA-D

0.08

HTD

0.15
EDA-D

(LSTM-SW)
EMG-D
(LSTM)

0.13
EMG-D
EDA-D

0.15 0.11
EDA-D

0.10
EMG-D
EDA-D

0.10

ETD 0.11
(RFc)

0.08
EMG-D
EDA-D

0.08 0.07
EDA-D

0.06
EMG-D
EDA-D

0.06

STD 0.03 0.02 0.03 0.02 0.02 0.02
Mean 0.10 0.09 0.10 0.08 0.07 0.07

R
ed

uc
ed

Su
bs

et
s

RPD
0.05

EDA-D
(both LSTM)

0.05
EMG-D
EDA-D

0.05 0.04
EDA-D

0.04
EMG-D
EDA-D

0.04

RHPD 0.07
EDA-D

0.07
EMG-D
EDA-D

0.08
0.05

EDA-D
(both LSTM)

0.05
EMG-D
EDA-D

0.08

REPD
0.05

EDA-D
(both LSTM)

0.05
EMG-D
EDA-D

(both LSTM)

0.05
(both LSTM)

0.03
EDA-D

0.04
EMG-D
EDA-D

0.06

RTD 0.19
EDA-D

0.19
EMG-D
EDA-D

0.19 0.11
EDA-D

0.11
EMG-D
EDA-D

0.04

RETD 0.16
EDA-D

0.15
EMG-D
EDA-D

0.16 0.10
EDA-D

0.09
EMG-D
EDA-D

(both LSTM)

0.09

STD 0.07 0.06 0.07 0.04 0.03 0.02
Mean 0.10 0.10 0.11 0.07 0.07 0.05
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Table 7. Comparison of the best Uni-, Bi-, and Multi-modality models regarding classification and
regression tasks with ICC measure. Meas.: Measure. The cells with light grey background indicate
the models using LSTM, and cells with pink background indicate the models using LSTM-SW. The
bold font indicates the best results.

M
ea

s. Task Classification Regression

Dataset Uni-Modality Bi-Modality Multi-Modality Uni-Modality Bi-Modality Multi-Modality

IC
C

Su
bs

et
s

PD 0.40
EDA-D

0.45
EMG-D
EDA-D

0.46 0.43
EDA-D

0.51
EMG-D
EDA-D

0.49

HPD 0.30
EDA-D

0.41
EMG-D
EDA-D

0.39 0.32
EDA-D

0.41
EMG-D
EDA-D

0.40

EPD 0.50
EDA-D

0.53
EMG-D
EDA-D

0.57 0.53
EDA-D

0.58
EMG-D
EDA-D

0.58

TD 0.15
EDA-D

0.18
EMG-D
EDA-D

0.23 0.17
EDA-D

0.26
EMG-D
EDA-D

0.30

HTD

0.33
EDA-D

(LSTM-SW)
EMG-D
(LSTM)

0.42
EMG-D
EDA-D

0.35 0.30
EDA-D

0.32
EMG-D
EDA-D

0.38

ETD 0.14
(RFc)

0.22
EMG-D
EDA-D

0.26 0.21
EDA-D

0.31
EMG-D
EDA-D

0.33

STD 0.14 0.14 0.13 0.13 0.13 0.10
Mean 0.30 0.39 0.38 0.33 0.40 0.41

R
ed

uc
ed

Su
bs

et
s

RPD
0.83

EDA-D
(both LSTM)

0.83
EMG-D
EDA-D

0.82 0.84
EDA-D

0.85
EMG-D
EDA-D

0.82

RHPD 0.76
EDA-D

0.79
EMG-D
EDA-D

0.74
0.81

EDA-D
(both LSTM)

0.83
EMG-D
EDA-D

0.73

REPD
0.84

EDA-D
(both LSTM)

0.85
EMG-D
EDA-D

(both LSTM)

0.81
(both LSTM)

0.88
EDA-D

0.87
EMG-D
EDA-D

0.80

RTD 0.31
EDA-D

0.32
EMG-D
EDA-D

0.28 0.24
(EDA-D)

0.33
EMG-D
EDA-D

0.29

RETD 0.47
EDA-D

0.52
EMG-D
EDA-D

0.44 0.49
EDA-D

0.52
EMG-D
EDA-D

(both LSTM)

0.56

STD 0.24 0.23 0.24 0.28 0.24 0.22
Mean 0.64 0.66 0.62 0.65 0.75 0.62

Regarding regression, both FAD and EDA-D Bi- and Multi-modality models performed
similarly when using LSTM with the EPD dataset. The Multi-modality models were the
best when using TD, ETD, and RETD; they got MSE of 0.08, 0.06, and 0.09, and the ICC of
0.30, 0.33, and 0.56, respectively. Further, both LSTM and LSTM-SW Uni-modality models
outperformed the baseline Uni-modality model (RFc and RFr). Bi- and Multi-modality
models outperformed Uni-modality models except with the REPD dataset, and EDA-D
Uni-modality model when applying LSTM-SW was the best regarding regression (MSE
of 0.03 and ICC of 0.88). The results did not improve after fusing EDA-D as the best Uni-
modality with the other Uni-modality, possibly because the outlier rate was increased when
using more than one modality. The EMG-D and EDA-D Bi-modality models performed
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the best with the PD, EPD, RHPD, RPD, and RTD datasets regarding regression. With
HTD, Bi-modality models performed the best when applying LSTM-SW (MSE of 0.13
and ICC of 0.42) Classification performed better than regression with almost balanced
datasets (HTD). Classification and regression performed similarly when using LSTM-SW
and LSTM with HPD; they got MSE of 0.09 and 0.07, and ICC of 0.41 and 0.41, respectively.
Figure 2 shows the best models after comparing between Uni-modality modality models
(EDA-D modality), the best Bi-modality models (EMG-D and EDA-D Bi-modality), and
Multi-modality models. Finally, almost all the Bi- and Multi-modality models performed
the best regarding regression in terms of standard deviation (STD) and mean.

Figure 2. The best results of applying Uni-, Bi, and Multi-modality using RF, LSTM, and LSTM-SW
regarding classification and regression in terms of MSE and ICC measures. Numbers with the same
background color were used to easily highlight the improvement in the performance of each dataset
before and after the reduction strategy was applied.

4.2. Classification

Classification models got the superior performance to regression models with the
HTD dataset and performed similarly with the HPD dataset in terms of MSE and ICC
measures. Thus, we applied RFc (EDA Uni-modality), LSTM, and LSTM-SW with HPD
and HTD datasets regarding classification to introduce the best performance. Table 8 shows
that LSTM and LSTM-SW Uni-modality models with HPD and HTD successfully predicted
discrete pain intensity levels in sequences compared to Trivial and RFc in terms of Accuracy,
Micro avg. precision, Micro avg. recall, and Micro avg. F1-Score.

The EMG-D and EDA-D Bi-modality and Multi-modality models when applying
LSTM-SW with HPD and HTD were better than those models using LSTM in terms of
Micro avg. recall and Micro avg. F1-Score. The t-test as inferential statistic used to
determine if there is a significant difference between the means of two methods (RF and
LSTM/LSTM-SW). Further, EMG-D and EDA-D Bi-modality models when applying LSTM-
SW outperformed LSTM models with HTD in terms of Accuracy (49.8%) and Micro avg.
precision (48.7%). EDA-D Uni-modality model, when applying LSTM-SW with HTD,
performed the best in terms of Micro avg. recall (100%); however, the Bi-modality model
when applying LSTM-SW with the same dataset performed excellent (97%). Additionally,
the Multi-modality model, when applying LSTM-SW with HPD, performed the best in
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terms of Micro avg. recall (22.3%). In terms of F1-score, Bi-modality models, when applying
LSTM-SW with HPD and HTD, performed the best, at about 26.3% and 63.3%.

Table 8. Comparison of the best Uni-, Bi-, and Multi-modality models with HTD regarding classifi-
cation task. The Bi-modality models. * p < 0.05 when using paired t-test between RFc and LSTMs
(LSTM and LSTM-SW). The bold font indicates the best results.

Measure
Datasets HPD HTD

Model Triv. RFc LSTM LSTM-SW Triv. RFc LSTM LSTM-SW

Accuracy %

EDA-D
(Uni-modality) 78.5 78.1 79.8 * 79 * 20 41.0 48.4 47.7

FAD and
EDA-D

(Bi-modality)
78.5 - 80.5 * 80.2 * 20 - 47.4 * 49.8 *

Multi-modality 78.5 - 79.3 77.6 20 - 41.6 42.2

Micro avg.
precision%

EDA-D
(Uni-modality) 0 24.6 36.6 * 32.2 * 0 42.7 48.2 47.7

FAD and
EDA-D

(Bi-modality)
0 - 42.8 40.1 * 0 - 47.2 48.7

Multi-modality 0 - 34.9 * 29.2 0 - 41.8 42.0

Micro avg.
recall%

EDA-D
(Uni-modality) 0 3.4 9.9 * 10.9 * 0 71.0 94.6 * 100 *

FAD and
EDA-D

(Bi-modality)
0 - 16.3 * 21.4 * 0 - 92.9 * 97 *

Multi-modality 0 - 19.8 * 22.3 * 0 - 90.8 * 99.9 *

Micro avg.
F1-Score%

EDA-D
(Uni-modality) 0 5.9 15.2 * 15.5 * 0 52.9 62.3 * 62.5 *

FAD and
EDA-D

(Bi-modality)
0 - 22.3 * 26.3 * 0 - 60.7 * 63.3 *

Multi-modality 0 - 23.6 * 24 * 0 - 56 57.9 *

After closely investigating the correctly predicted samples from classification results
when applying RFc (EDA Uni-modality), LSTM, and LSTM-SW, we found that the models
with HPD performed the best in recognizing no pain and the highest pain intensity, whereas
models with HTD performed the best in recognizing intermediate pain (low and moderate);
see Table 9. The reason is that models may have difficulty in recognizing intermediate pain
intensity stimulation in large imbalanced datasets like HPD when HTD is less imbalanced
(no pain (about 20%), intermediate pain (about 27%), and the highest pain (about 26%)).

Additionally, Bi- and Multi-modality models improved the performance of Uni-
modality models when applying both LSTM and LSTM-SW with the imbalanced HPD.
Finally, the EMG-D and EDA-D Bi-modality models, when applying LSTM-SW with HPD
and HTD, performed the best based on calculating the average of the model performance
using HPD and HTD, which are 37.5% and 48.2%, respectively.
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Table 9. Recall% result of 4-Class continuous pain intensity recognition tasks of HPD and HTD on
testing set. Uni-modality refers to EDA-D Uni-modality, Bi-modality refers to EMG and EDA-D
Bi-modality. The bold font indicates the best results.

Model

Dataset

HPD HPD

BL PH1 PH2 PH3 Mean BL TH1 TH2 TH3 Mean

EDA-D
(Uni-modality)

Trivial 100 0 0 0 25 100 0 0 0 25

RFc 98.7 1.5 2 6.3 27.1 34.4 27.3 47 54.5 40.8

LSTM 99.3 5.2 5.4 15.2 31.3 9.4 73 35.1 67.8 46.3

LSTM-SW 98 3.1 1.7 23.3 31.5 0.30 72 39.8 68 45

FAD and EDA-D
(Bi-modality)

Trivial 100 0 0 0 25 100 0 0 0 25

RFc - - - - - - - - - -

LSTM 98.7 6.5 5.2 29.5 35 20.3 45.4 56.1 62.5 46.1

LSTM-SW 97.4 7.4 7.2 37.9 37.5 18.6 45.8 62.7 65.5 48.2

Multi-modality

Trivial 100 0 0 0 25 100 0 0 0 25

RFc - - - - - - - - - -

LSTM 96.8 6.2 4.6 36.2 36 11.2 56.3 28.9 63.5 40

LSTM-SW 94.1 5.9 6.3 39.5 36.5 2.7 40.4 55.2 61.8 40

5. Discussion

We conducted several experiments using three methods (RF, LSTM, and LSTM-SW)
regarding classification and regression in order to gain insights into monitoring continuous
pain intensity. Further, these experiments applied to compare the performance of proposed
methods when using single modalities (using RF, LSTM, and LSTM-SW), two fused modal-
ities, and all modalities (using LSTM and LSTM-SW) from the X-ITE Pain Database. The
data from each modality were split into 11 datasets to simplify the imbalanced database
problem, improve the results, and generalize the capability of the desired system. An addi-
tional reason for using these different datasets was to explore the generalization capability
of a continuous pain intensity monitoring system. For evaluation, MSE and ICC were used
to measure the performance of classification models versus regression models, and the best
classification models outperformed the regression models were further evaluated using
Accuracy, Micro avg. precision, Micro avg. recall, and Micro avg. F1-score. In this paper,
we introduced the best results from single modality (EDA-D Uni-modality) experiments,
two fused modalities (EMG-D and EDA-D Bi-modality) experiments, and all modalities
(Multi-modality) experiments. The obtained results were alongside to prior works on the
X-ITE Pain Database [14,16], the BioVid, and SenseEmotion databases [45,62,63]. EMG-
D Uni-modality performed similarly to EDA-D Uni-modality with the almost balanced
dataset (HTD); the changes in muscle activity (EMG) to heat tonic stimuli tend to be similar
intense as the changes in the superficial muscles of the skin of the hand (EDA).

As we saw in the quantitative results in Section 3, the reduction strategy reduced the
influence of outliers (unimportant samples) by reducing some no pain samples prior to
pain intensity sequences in a time series for each subject; the Subsets performances im-
proved after applying the reduction strategy (see Reduced Subsets results in Tables 6 and 7
and Figure 2). It is important to reduce the noise in imbalanced data than to keep hard
samples. Further, regression outperforms classification when using huge imbalanced
datasets, whereas classification was the best with the almost balanced dataset (HTD); see
Figure 2. Both classification and regression perform similarly with Heat Phasic Dataset
(HPD) in terms of ICC measure. Trivial failed to recognize pain intensity with HTD and
HPD, whereas the proposed methods are significantly better in terms of Micro avg. pre-
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cision, Micro avg. recall, and Micro avg. F1-score; see Table 8. Accuracy measure does
not a proper measure with imbalanced datasets, because it does not distinguish between
the numbers of correctly classified examples of different classes. After investigating the
HPD and HTD datasets further, we assumed that classification performed well when the
distribution of pain intensity samples was high in the imbalanced datasets (the majority
of samples experienced no pain), which was 26.7% with HTD, followed by HPD (7.71%)
based on the mean value; see Table 9. It shows also LSTM-SW is the best compared to
LSTM when fusing two modalities of EMG and EDA (EMG-D and EDA-D Bi-modality)
regarding classification with HPD and HTD datasets. Additionally, LSTM-SW increased
the performance compared to LSTM of several datasets; see Tables 6 and 7. The success of
LSTM-SW is based on downweighted samples in the training set with a less facial response
by using the sample weighting method; these samples might negatively affect the model
performance.

Models using the best two and all fused modalities (EMG-D and EDA-D Bi-modality
and Multi-modality) improved the continuous monitoring of pain intensity significantly
compared to those using the best single modality (EDA-D Uni-modality) in 10 out of
11 datasets. Only the performance of the EDA-D Uni-modality model did not improve
when using the REPD dataset, which might be due to the conflicts between modalities
in these datasets, especially because of the outliers. In line with [14,16], Multi-modality
models outperformed EDA-D Uni-modality models and EMG-D and EDA-D Bi-modality
models with imbalanced tonic datasets (TD, ETD, and RETD). The possible reason is that
the responses to tonic stimuli are more intense than the response to phasic stimuli for each
modality. Further, the response to electrical tonic stimuli tends to start earlier and more
rapidly than the response to heat for each modality. Thus, all modalities could significantly
benefit from this Multi-modality model when the responses in all modalities are more
intense. With EPD, both EMG-D and EDA-D Bi-modality and Multi-modality models
performed the same. The EMG-D and EDA-D Bi-modality models outperformed Multi-
modality models when using LSTM and LSTM-SW on six datasets: PD, HPD, HTD, RPD,
RHPD, and RTD; see the acronyms description in Table 2, probably because the outliers
in the worst modalities (audio and ECG). The ECG is sensitive to miscellaneous mixed
noises. The audio signal includes many label noises, possibly due to the vocalizations
responses when some subjects were stimulated with different pain intensities or when some
subjects talk or produce other vocal responses during no pain is experienced. A reliable
and trustworthy pain assessment is necessary for adequate pain management, changing
analgesic dose, and additional interventions if required. Additionally, good care requires
more than one pain intensity measure (self-report, external observations, or physiological
tests. Therefore, this work was introduced as a baseline study for future research regarding
continuous pain intensity monitoring systems using single or multiple modalities with the
X-ITE pain database. Further, we recommend using our data pre-processing strategy and
the proposed methods with other pain databases; considering the reliable results in this
paper, they will probably perform well.

6. Conclusions

As seen in Figure 3, the proposed system confirms that it is possible to monitor
continuous pain intensity using machine learning models with fused modalities (facial
expressions, audio, and physiological (ECG, EMG, and EDA)). The difficulties for any
model are the huge imbalance in the database and the outliers. The models failed to
recognize minority classes and deal with noise when using the database. Due to the
distribution of the classes being variants, we split the database into six datasets in terms
of four qualities of pain stimuli (phasic (short) and tonic (long) variants of each heat and
electrical stimuli). Further, we reduced the noise in the modalities data by removing some
no pain samples prior to pain intensity samples in a time series for each subject in each
of the six datasets. There are plenty of no pain labels, which are inconsistent with the
modalities’ responses. After applying different models with all datasets, we concluded that



Sensors 2022, 22, 4992 18 of 22

regression is better than classification with imbalanced datasets, which is the case with real
data. Regression reduces the effect of confounding variables by isolating the effect of each
variable by allowing for the role of each independent variable to learn without worrying
about other variables in the model. Further, LSTM and LSTM-SW successfully recognize
pain intensity compared to RF (used with single modalities). We also confirmed that EDA
is the best single modality, and EMG and EDA are the best two fused modalities. Two and
all fused modalities improved results further compared to a single modality with almost
all datasets. The fused modalities that use all modalities were the best with imbalanced
tonic datasets.

Figure 3. A performance example of the proposed automated system for continuous monitoring
pain intensity from test set, including results of the best models with RPD (see (a)) and RTD (see (b))
compared to Ground−Truth. RPD: Reduced Phasic Dataset. RTD: Reduced Tonic Dataset.

EMG and EDA fused modality performed the best with imbalanced phasic datasets
and balanced dataset (HTD); this result shows that EMG and EDA are very good options for
cost-effective pain monitoring; there is no need to use all modalities. However, there is some
limitation of using this system: (1) The database does not contain any of a vulnerable group;
however, this system can help to predict pain, particularly with vulnerable patients, but it
has not yet been implemented for them. (2) Although applying the proposed reduction
strategy to the imbalanced datasets helps to improve the performance, there are still plenty
of outliers that limit further performance improvement. (3) A larger dataset with more pain
intensities is necessary for more reliable automatic monitoring of continuous pain intensity.
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Abbreviations

ECG Electrocardiogram
EMG Electromyogram
AUs Action Units
Audio-D Audio Descriptor
two modalities Bi-modality
DDP delivered duty paid
ECG-D ECG Descriptor
EDA EDA Descriptor
EPD Electrical Phasic Dataset
ETD Electrical Tonic Dataset
EDA Electrodermal Activity
EMG EMG Descriptor
FACS Facial Action Coding System
FAD Facial Activity Descriptor
fps frames per second
HRV Heart Rate Variability
HPD Heat Phasic Dataset
HTD Heat Tonic Dataset
ICC Intraclass Correlation Coefficient
HNR logarithmic Harmonics to Noise Ratio
LSTM Long-Short Term Memory
LLD low-level descriptor
LSTM-SW LSTM using a sample weighting
MSE Mean Squared Error
MFCCs Mel Frequency Cepstral Coefficients
Micro avg. F1-score Micro average F1-score
Micro avg. precision Micro average precision
Micro avg. recall Micro average recall
all modalities Multi-modality
PD Phasic Dataset
RF Random Forest
RFc Random Forest classifier
RFr Random Forest regression
REPD Reduced Electrical Phasic Dataset
RETD Reduced Electrical Tonic Dataset
RHPD Reduced Heat Phasic Dataset
RHTD Reduced Heat Tonic Dataset
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RPD Reduced Phasic Dataset
RTD Reduced Tonic Dataset
RMS Root-Mean Square
SCL Skin Conductance Level
SCR Skin Conductance Response
STD Standard Deviation
SHS Subharmonic-Summation
SVR Support Vector Regression
TD Tonic Dataset
single modality Uni-modality
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