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Background and Purpose. Ferroptosis, a mechanism of cell death that is iron-dependent, participates in various pathologies of cancer
(CC). Nevertheless, the specific function that ferroptosis plays in the onset and progression of cervical cancer (CC) is yet uncertain.
This research sought to examine the value of ferroptosis-related genes (FRGs) in the progression and prognosis of CC. Methods.
Datasets containing RNA sequencing and corresponding clinical data of cervical cancer patients were obtained from searching
publicly accessible databases. The “NMF” R package was conducted to calculate the matrix of the screened prognosis gene
expression. Ferroptosis-related differential genes in cervical cancer were detected using the “limma” R function and WGCNA. The
least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were conducted to develop a novel
prognostic signature. The prediction model was verified by the nomogram integrating clinical characteristics; the GSE44001 dataset
was used as an external verification. Then, the immune status and tumor mutation load were explored. Finally,
immunohistochemistry as well as quantitative polymerase chain reaction (RT-qPCR) was utilized to ascertain the expression of
FRGs. Results. Two molecular subgroups (cluster 1 and cluster 2) with different FRG expression patterns were recognized. A
ferroptosis-related model based on 4 genes (VEGFA, CA9, DERL3, and RNF130) was developed through TCGA database to identify
the unfavorable prognosis cases. Patients in cluster 1 showed significantly decreased overall survival in contrast with those in cluster
2 (P < 0:05). The LASSO technique and Cox regression analysis were both utilized to establish the independence of the prognostic
model. The validity of nomogram prognostic predictions has been well demonstrated for 3- and 5-year survival in both internal and
external data validation cohorts. These two subgroups showed striking differences in tumor-infiltrating leukocytes and tumor
mutation burden. The low-risk subgroup showed a longer overall survival time with a higher immune cell score and higher tumor
mutation rate. Gene functional enrichment analyses revealed predominant enrichment in various tumor-associated signaling
pathways. Finally, the expression of each gene was confirmed by immunohistochemistry and RT-qPCR. Conclusion. A novel and
comprehensive ferroptosis-related gene model was proposed for cervical cancer which was capable of distinguishing the patients
independently with high risk for poor survival, and targeting ferroptosis may represent a promising approach for the treatment of CC.

1. Introduction

Cervical cancer (CC) represents the third major contributor
to cancer-related fatality in women worldwide [1, 2]. Radical

hysterectomy and radiotherapy with or without chemother-
apy led to a favorable prognosis in early-stage CC patients.
However, follow-up data have shown that recurrent or
metastatic cervical cancer remains refractory with only
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17% of a 5-year survival rate after the above treatment [3].
Platinum-based first-line chemotherapy and anti-PD-L1
immunotherapy showed a less than satisfactory effect [4,
5]. It will be helpful to develop a novel prognostic model
considering we lack predictive biomarkers for cervical can-
cer and the limited treatment strategies available.

Accumulating data suggest that ferroptosis is crucial for
the development and treatment of resistance in a variety of
malignancies [6–9]. It is currently considered that the
functional mechanism of ferroptosis is related to four pro-
cesses, including intracellular iron metabolism level, lipid
peroxide content, and glutathione peroxidase [10]. Chemo-
therapy, radiotherapy, molecular targeted therapy, immuno-
therapy, traditional Chinese medicine treatment, and
nanotechnology treatment can result in tumor ferroptosis
in different ways [11, 12]. Tumor therapies targeting ferrop-
tosis contribute to overcoming the resistance of existing
therapies and can restore the sensitivity of tumor cells to
therapeutic drugs. For example, Song and coworkers found
that using nanoparticle-induced ferroptosis and blockade
of programmed death ligand 1 (PD-L1) at the same time effi-
ciently restrains the size of melanoma cells and lung metas-
tasis of breast cancers, implying the application prospect of
ferroptosis combined with immune checkpoint inhibitors
[13]. In addition, Yao and his colleagues found induction
of ferroptosis by anti-LCN2 inhibits the growth of liver can-
cer [14]. Also, Tso and coworkers found that drugs inducing
ferroptosis displayed an orthogonal therapeutic approach
which increased the differentiation plasticity of melanoma
and improved the efficacy of antitumor treatment [15].
Therefore, ferroptosis-based therapy shows important pros-
pects in combination therapy of cancers [16].

Hence, we created a prognostic model premised on the
FRGs [17–19] and verified its prognosis-predictive efficacy
in CC. Then, we studied the relationship of the two sub-
groups in the model with immune status in CC. This
research is aimed at presenting the role of ferroptosis in
the prognosis of patients with CC and offering novel insight
into the targeted treatment of CC.

2. Materials and Methods

2.1. Data Collection and Processing. The RNA-seq data and
the related clinical data of CC and normal specimens were
retrieved from TCGA database, GTEx database, and
GSE44001 dataset in the GEO database; somatic mutation
datasets of tumor samples were acquired from TCGA data-
base. In particular, TCGA database included the RNA-seq
data as well as related clinical data of 306 CC patients and 3
normal specimens, the GTEx database included the RNA-
seq data of 78 normal samples, and the GEO dataset included
RNA-seq and clinical data of 300 tumor specimens. 60
ferroptosis-related genes constructed by the risk model were
retrieved from the previous research [20–22].

2.2. Identification of Molecular Subtypes of FRGs in Cervical
Cancer and Differentially Expressed Genes (DEGs). The
FRGs obtained in TCGA dataset were incorporated into
the univariate model, and the prognosis-related genes were

screened according to the following cutoff value: P < 0:01.
The “NMF” R function was utilized to derive and unsu-
pervised the matrix of the screened prognosis gene expres-
sion. The molecular subtypes of ferroptosis-related genes
in cervical cancer were identified utilizing cluster analysis.
The relevant parameters were selected as follows, the
method adopts “brunet,” the number of iterations (nrun)
is adjusted to 10, and the ranks are set to 2 to 10.

The differential expression genes with different ferropto-
sis genotyping were identified with the “limma” R function
with the threshold values of FDR < 0:05, log2 ∣ fold change ð
FCÞ ∣ ≥2. The coexpression network between genes and clin-
ical characteristics was generated utilizing the “WGCNA” R
program [23], and significant models were identified. The
subtype-related hub genes of the significant modules were
detected utilizing the “VennDiagram” R program.

2.3. Creation and Verification of a Prognostic Model
Premised on Differential Molecular Subtype-Related Genes.
The dataset of cervical cancer in TCGA database was catego-
rized into the training and testing sets in a 7 : 3 ratio. To search
for subtype-related hub genes having prognostic values in the
training set, the univariate Cox regression analysis was exe-
cuted (P < 0:05). To determine which genes had the most pre-
dictive significance, a LASSO regression analysis using the R
program “glmnet” was done on the genes listed above, and a
prognostic model was generated. Then, to determine the risk
prediction model, a multivariate Cox regression analysis was
undertaken, and the regression coefficients of every gene
included in the model were determined. Below is the equation
utilized to generate each patient’s risk score in the training set:
riskScore = ∑1

nCoefðmRNAnÞ × ExprðmRNAnÞ. The
median value was taken as the standard for classifying patients
into high- and low-risk groups. The Kaplan-Meir (K-M) sur-
vival curve and ROC curve were plotted using “Survival” and
“timeROC” R packages, respectively, to determine the stability
of the model. Next, the “Regplot” R package was used to incor-
porate clinical features (including age, grade, stage, and BMI)
into the model and construct a nomogram. The nomogram
was verified for stability with the ROC curve and calibration
curve. Test sets were utilized to internally validate the

Table 1: Forward and reverse sequences of primers for VEGFA,
CA9, DERL3, RNF130, and GAPDH.

Primer Sequence (5′ to 3′)
VEGFA-F ATCGAGTACATCTTCAAGCCAT

VEGFA-R GTGAGGTTTGATCCGCATAATC

CA9-F GAAGAAAACAGTGCCTATGAGC

CA9-R TGTAGTCAGAGACCCCTCATAT

DERL3-F CTCACTTTCCAGGCACCGTTCC

DERL3-R GTAGTAGATATGGCCCACCGCAATC

RNF130-F TCAACATTGCAGTAACAAGTGG

RNF130-R TACATGTCCAAAGAAGGTTCGA

GAPDH-F CAGGAGGCATTGCTGATGAT

GAPDH-R GAAGGCTGGGGCTCATTT
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Figure 1: Continued.
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Figure 1: Identification of ferroptosis-associated subtypes using nonnegative matrix cluster analysis. (a) The optimal k value was determined
to be 2, and TCGA cervical cancer samples could be divided into two subgroups, C1 and C2. (b, c) K-M survival curves of overall survival
(OS) and disease-free survival (PFS) in C1 and C2 subgroups. (d) Heat map of age, stage, grade, BMI, and ferroptosis-related gene
expression across subgroups.
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Figure 2: Identification of differential molecular subtype genes associated with ferroptosis. (a, b) mRNA-seq differential analysis of cervical
cancer and normal tissue heat maps and volcano plots, with red for highly expressed genes and green for lowly expressed genes. (c) Based on
the hierarchical clustering analysis of TCGA dataset, genes with similar characteristics are assigned to modules of the same color. (d) Heat
map of correlations between eigenvalues and individual modules, red indicates positive correlation and blue indicates negative correlation.
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performance of the risk model. The GSE44001 dataset then
was utilized for external verification.

2.4. Consensus Clustering Analysis of Ferroptosis-Related
Differential Expressed Genes (DEGs) between Different
Molecular Subtypes. Ferroptosis-related DEGs between
different molecular subtypes were obtained by the “limma”
R package, filtered by the cutoff values of discovery rate
(FDR < 0:05) and ∣logFC ∣ ≥1. Consensus clustering analysis
of ferroptosis-related DEGs was performed with the
“ConsensusClusterPlus” package. The proportion parameter
of resampled samples (pItem) was 80%, the maximum eval-
uated category number (maxK) was 9, and the clustering
distance was selected as “Euclidean.” The optimal number
of clusters was selected as a k value, and different subgroups
were divided according to the k value. Besides, for
dimensionality reduction analysis between these subgroups,
principal component analysis (PCA) by the “Boruta” pack-
age was conducted.

2.5. Functional Annotation of GO and KEGG. The functional
enrichment analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) was under-
taken to investigate fundamental mechanisms. Adjusted P
< 0:05 denoted a significant difference.

2.6. Analysis of the Association of Risk Score for Cervical
Cancer with Immune Infiltration. When comparing high-
and low-risk groups, we conducted a single-sample GSEA
(ssGSEA) using the “GSVA” R function to determine the rel-
ative infiltration levels of 28 distinct types of immune cells in
the tumor microenvironment (TME). ESTIMATE algorithm

via the “estimate” function was utilized to evaluate the TME
in the high- and low-risk subgroups from three aspects of
tumor purity, stromal score, and immune score.

2.7. Collection of Somatic Alteration Data. To determine the
tumor mutation burden (TMB) in various ferroptosis types
of CC, nonsynonymous mutations were calculated. The
somatic alteration data of each tumor sample was down-
loaded from TCGA database. After that, we identified driver
genes through the R “maftool” program according to the
subtypes and compared the somatic alterations. We used
the top 20 mutation frequency as a proxy for the total muta-
tion rate.

2.8. Analysis of Quantitative Reverse Transcription-
Polymerase Chain Reaction (qRT-PCR). Both cervical cancer
and adjacent noncancerous tissues used in this study were
obtained from postoperative patients with cervical cancer
from 2021 to 2022 in Zhongnan Hospital of Wuhan Univer-
sity. All samples were obtained through review by the ethics
committee, and the patients’ informed consent was acquired.
We extracted RNA from specimens by utilizing the TRIzol
reagent (Invitrogen, USA), followed by reverse transcription
into cDNA utilizing the QuantiTect Reverse Transcription
Kit (Qiagen, Germany). Quantitative PCR (qPCR) is a tech-
nique for measuring the amount of DNA present in a sample
in real time. With the aid of SYBR-Green (Takara, Japan),
real-time qPCR assays were carried out, and expression
levels were standardized to GAPDH levels. Table 1 consists
of a collection of primer sequences utilized in this study.
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Figure 3: Screening of prognostic model factors. (a) Univariate Cox regression analysis screened out 4 prognostic related genes. (b)
Trajectory changes of 4 genes. (c) Confidence interval for each λ value. (d) Multivariate Cox regression analysis. (e–h) K-M survival
curves of 4 genes with independent prognostic potency.
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2.9. Immunohistochemical Validation. After fixing cervical
cancer specimens in 10% formalin followed by embedding
in paraffin, samples were processed into 5μm thicknesses
sequential segments. To suppress endogenous peroxidase
activities, tissue segments were deparaffinized using ethanol
and subsequently blocked. The next step involved heating

the samples in a boiler to collect antigens and subsequent
cooling to ambient temperature and blocking with goat
serum at 37°C for 30 minutes. After that, the specimens were
subjected to overnight incubation at 4°C with rabbit anti-
VEGFA (bs-20393R), anti-CA9 (bs-4029R), anti-DERL3
(bs-14281R), and anti-RNF130 (bs-9252R) (Beijing Boaosen
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Figure 4: Construction and validation of ferroptosis typing-related gene signatures. (a, c, e, g) K-M survival curves of high- and low-risk
groups in training set, validation set, GEO cohort, and TCGA total cohort. (b, d, f, h) ROC curves of 1, 3, and 5 years for training set,
validation set, GEO cohort, and TCGA total cohort.
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Biotechnology Co., Ltd., China). They were again incubated
for 30 minutes with horseradish peroxidase-coupled goat
anti-rabbit secondary antibody (bs-40295G-HRP, Beijing
Boaosen Biotechnology Co., Ltd., China) at 37° C. In
the next step, the specimens were, respectively, stained
with 3,3′-diaminobenzidine (DAB). After that, the spec-
imens were subjected to dehydration, clearing in xylene,
and mounting.

2.10. Statistical Analysis. R (version 3.6.2) was utilized to
analyze all statistical data. The Kaplan-Meier technique
was utilized to analyze the link between the prognoses of
each eigenvalue. The survival curve was examined utilizing
the log-rank test. Multivariate and univariate Cox and Cox
regression analyses were carried out to find out indepen-
dent prognostic factors and used LASSO regression for
overfitting screening to convert continuous variables (such
as age) into dichotomous variables. Methods: data analysis
between the two subgroups was performed utilizing a two-
tailed t-test, and Welch’s t-test was used when necessary.
The statistical significance of all analyses was determined
at P < 0:05.

3. Results

3.1. Clustering of Molecular Subtypes of Cervical Cancer. 291
CC patients were included based on TCGA database, who
had been partitioned into C1 and C2 subtypes by the NMF
cluster analysis of 60 FRGs (Figure 1(a)). The results of sur-
vival analysis suggested that the PFS and OS of patients with
the C2 subtype were considerably higher as opposed to those
of patients with C1 subtypes (Figures 1(b) and 1(c)). And the
heat map demonstrated the differential expression of rele-
vant clinical information between C1 and C2 subtypes,
including age, BMI, tumor stage, and grade (Figure 1(d)).

3.2. Identification of DEGs in Cervical Cancer and
Construction of Ferroptosis-Related Modules by WGCNA.
In total, 2355 DEGs were detected between cervical cancer
and adjacent nontumorous samples, including 1083 upmo-
dulated and 1272 downmodulated genes (Figures 2(a) and
2(b)). Based on the soft-thresholding power equal to 9
(β = 9), we stratified the DEGs to obtain a hierarchical
clustering tree by WGCNA analysis (Figure 2(c)). And a
total of 11 coexpressed modules were detected according to
similar characteristics of DEGs. The grey and blue modules

were related to the ferroptosis-related phenotype in CC.
The grey module illustrated the strongest correlation
(R = 0:25, P < 0:001) (Figure 2(d)). To construct a prognos-
tic model associated with ferroptosis, ∗∗ genes in the grey
module were taken to intersect with 1789 genes in the blue
module, and finally, 180 key genes were obtained.

3.3. Construction of a Prognostic Model Related to
Ferroptosis. CC specimens in TCGA cohorts were random-
ized and classified to obtain 206 specimens in the training
set and 85 specimens in the test set. Four genes were linked
to the prognosis of ferroptosis in cervical cancer, namely,
RNF130, CA9, DERL3, and VEGFA, which were obtained
by univariate Cox regression analysis in the training set
(Figure 3(a)). To eliminate the overfitting of this model,
the training cohort was subjected to LASSO regression anal-
ysis and multivariate Cox regression analyses (Figures 3(b)–
3(d)). And the K-M curves of the four genes were obtained
(Figures 3(e)–3(h)). Finally, the prognostic model for
cervical cancer was established based on above genes
(riskScore = 0:297 ∗VEGFA + 0:196 ∗ CA9 + ð−0:391Þ
∗DERL3 + ð−0:804Þ ∗ RNF130). Based on the K-M curves
for the training cohort, it was illustrated that patients in
the high-risk group experienced unfavorable prognostic out-
comes in contrast with the low-risk group (Figure 4(a)).
Additionally, after plotting the receiver operating character-
istic (ROC) curves, we found that the values of the area
under the curve (AUC) were 0.737, 0.734, and 0.706 over
1, 3, and 5 years correspondingly (Figure 4(b)). The result
showed that the ferroptosis-related prognostic model had
good diagnostic efficacy in cervical cancer.

We carried out test cohort validation as well as external
validation to additionally confirm the robustness of the
model. In the test cohort and GEO database, a poor
prognostic outcome remained strongly comparable to the
findings from the training cohort (Figures 4(c) and 4(e)).
The AUC at 1, 3, and 5 years was 0.720, 0.587, and 0.675
in the test cohort (Figure 4(d)) and 0.595, 0.613, and 0.613
in the GEO external validation cohort, correspondingly
(Figure 4(f)). In addition, we also performed validation on
the entire dataset of TCGA, which yielded highly similar
results (Figure 4(g)). The AUC was 0.727, 0.704, and 0.706
over 1, 3, and 5 years correspondingly (Figure 4(h)). In both
the internal and external validation cohorts, it was shown
that the ferroptosis-related prognostic model exhibited good
performance.

Table 2: Univariate and multivariate Cox regression analysis of clinically relevant factors.

Univariate Cox Multifactor Cox
HR 95% CI P HR 95% CI P

Age 2.81 1.48~5.33 <0.01 2.44 1.28~4.64 <0.01
Stage 1.73 1.32~2.26 <0.01 1.60 1.21~2.11 <0.01
Grade 1.00 0.61~1.66 0.99

BMI 0.70 0.45~1.10 0.12

riskScore 1.66 1.32~2.08 <0.01 1.53 1.21~1.92 <0.01
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3.4. Analysis of the Relationship of Risk Score with
Clinicopathological Parameters. In univariate and multivari-
ate Cox regression analyses, the risk score and clinical char-
acteristics, including, age, BMI, stage, and grade, were taken
into consideration. The findings of a univariate Cox regres-
sion analysis illustrated that age, risk score, and tumor stage
were all substantially linked to overall survival (OS) in CC
and were all independent prognostic variables in this disease
(Table 2). Survival analysis illustrated that the OS of CC
patients with different ages, tumor grades, and stages were
significantly different (Figure 5). We created a nomogram
to anticipate the OS of CC patients based on clinical features
and risk scores (Figure 6(a)). Additionally, the calibration
curve and ROC curve were used to examine the nomogram’s
performance (Figures 6(b) and 6(c)). The findings illustrated
that the model was capable of accurately predicting the OS
of CC patients.

3.5. Consistent Cluster Analysis of Differential Genes of C1/
C2 Subtypes of Cervical Cancer. The ferroptosis-related
DEGs between C1 and C2 subtypes of cervical cancer were
obtained by the “limma” R program. Unsupervised cluster
analysis was conducted on the DEGs associated with ferrop-
tosis, and k = 2 was chosen as the grouping optimal value
(Figure 7(a)). PCA was applied to the different subgroups
to compute each subgroup’s risk score. Depending on their
median risk scores, all patients were categorized into two
groups: high- and low-risk groups. The K-M curves illus-
trated that the OS of patients in the low-risk group was con-

siderably elevated in contrast with the high-risk group
(Figure 7(b)). Additionally, the expression of four key genes
had significant differences (Figure 7(c)).

3.6. Enrichment Analysis of Differential Genes by GO and
KEGG. We performed GO and KEGG enrichment analyses
among the ferroptosis-related DEGs (Figures 8(a) and
8(b)). The GO enrichment results are mainly reflected in
three aspects, including biological function (BP), cellular
components (CC), and molecular functions (MF). In this
work, BP was found to be relevant to the process of collagen
decomposition, cell component decomposition, disassembly,
extracellular matrix, and positive regulation of organisms.
CC exhibited predominant enrichment in collagen-contain-
ing, extracellular matrix and laminin complex. A consider-
able enrichment of MF was found in the extracellular
matrix, structural constituent, serine-type endopeptidase,
CXCR chemokine receptor, etc. KEGG was shown to have
predominant enrichment in NF-kappa B signaling pathway,
TNF signaling pathway, L-17 signaling pathway, and VEGF
signaling pathway.

3.7. Analysis of the Association of Risk Score of Cervical
Cancer with Immune Infiltration. In view of the negative link
of risk score with cervical cancer prognosis, we performed
GSEA between low- and high-risk groups of the C1 and
C2 subtypes. 16 distinct types of immune cells and 13 types
of immune-associated mechanisms in cervical cancer were
obtained by the ssGSEA algorithm. The findings illustrated
that the infiltration level of immune cells in the low-risk
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Figure 5: Survival analysis of clinically relevant factors. (a–e) Age (<65), grade (G1-G2, G2-G3), and stage (stage I-II, stage III-IV) K-M
survival curves of high- and low-risk groups.
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group was largely elevated in contrast with the high-risk
group (Figures 9(a) and 9(b)). It suggested that the content
of immune cells in cervical cancer might affect the patients’
survival duration to some degree. By utilizing the ESTI-
MATE algorithm of the “estimate” R package, the heat
map showed that the expression levels of stromal score,

immune score, and estimate score in low-risk groups were
substantially elevated as opposed to the high-risk group
(P < 0:05) (Figure 9(c)).

3.8. Analysis of the Relationship of Ferroptosis-Related
Phenotype with TMB in Cervical Cancer. The TMB was a
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Figure 6: Construction and validation of a prognostic model for cervical cancer patients. (a) Nomogram for predicting cervical cancer
patients at 1, 3, and 5 years based on TCGA total cohort. (b) ROC curve containing age, stage, grade, BMI, risk score, and nomogram.
(c) Calibration curves for nomogram 1-, 3-, and 5-year predictive power tests.
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way for somatic cells to increase the types of antigens by
mutation and thus resist cancer. Numerous researches have
suggested that TMB might be a potential biomarker that
can determine the patients’ responsiveness to the immune
checkpoint blockers. We calculated the two risk groups’
TMB by “maftools” packages separately (Figures 10(a) and
10(b)). Higher TMB could generate more mutations and
be more conducive to the body’s resistance to the develop-
ment of cancer. In this study, The waterfall diagrams illus-
trated that TTN and PIK3CA genes in the low- and high-
risk groups had the highest mutation rates. TDN accounted
for 36% of mutations in the high-risk group and 24% of
mutations in the low-risk group, whereas PIK3CA
accounted for 32% of mutations in the high-risk group and
22% of mutations in the low-risk group.

3.9. Real-Time Quantitative Reverse Transcription PCR
(qRT-PCR). The findings obtained from qRT-PCR illus-
trated that the expression levels of VEGFA, CA9, and
DERL3 in cervical cancer specimens were dramatically ele-
vated in contrast with those in normal specimens, whereas
the expression levels of RNF130 were lower contrasted to
those in normal specimens (Figure 11).

3.10. Immunohistochemical (IHC) Experiments. The IHC
data revealed that the expression of VEGFA, CA9, and
DERL3 in CC specimens was more obvious as opposed to
that in normal samples, while the expression of RNF130
was decreased in tumor tissues (Figure 12).

4. Discussion

In the current study, the novel designed model with four
genes (RNF130, CA9, DERL3, and VEGFA) yielded high
specificity and sensitivity in identifying prognosis in the cer-
vical cancer. Functional analyses revealed that immune-
related pathways were enriched. Unlike previous studies
only with selection operator (LASSO) algorithm and Cox
regression analysis, we also adopted internal and external
data in validation in order to screen specificity as possible
for the creation of the prognostic signature. The most
important thing is that we verified the results of our first step
difference analysis through qRT-PCR and immunohisto-
chemical studies, which is of great significance to our subse-
quent research and conclusions.

Firstly, in our study, we performed NMF cluster analysis
on the genes of ferroptosis-related cervical cancer and
defined two subtypes with different clinical characteristics
in 291 cervical cancer cases of TCGA (Figure 1). Then, we
used differential analysis and WGCNA analysis to screen
the differentially expressed genes and select the intersection
genes (Figure 2). The NMF-based strategy guaranteed the
high homogeneity of clinical characteristics and diagnosis
of patients with different molecular characteristics of cervical
cancer ferroptosis, which reflect the characteristics of cervi-
cal cancer ferroptosis more accurately. Based on the above
intersection genes, a novel prognostic model integrating 4
ferroptosis-related genes (RNF130, CA9, DERL3, and
VEGFA) was firstly constructed (Figure 3). RNF130 is a pro-
tein that has E3 ubiquitin ligase activity and is implicated in
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Figure 7: Consistent clustering analysis of C1 and C2 subtype differential genes. (a) Clustering results of differential genes between the two
subtypes. (b) K-M survival curve of high and low PCA score groups of differential genes. (c) Differential expression box plots of the four
modeled genes in the high and low PCA scoring groups. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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the modulation of biological activities, including, apoptosis,
gene transcription, intracellular signal transduction, and
DNA repair. Additionally, the overexpression of RNF130
has been identified in numerous cancers while the opposite
expression was reported in other cancers [24]. Carbonic
anhydrase IX (CA9), which belongs to the carbonic anhy-
drase family and is associated with hypoxic cancer cells, per-
forms an instrumental function in the balance between
intracellular and extracellular pH through chemical reac-
tions and further produces an acidic extracellular microenvi-
ronment [25, 26]. DERL3 is closely associated with the
degradation of misfolded proteins in the endoplasmic retic-
ulum, which is responsible for regulating epithelial-
mesenchymal transition [27, 28]. VEGFA is well known for
its role in promoting tumor angiogenesis [29, 30]. However,
CA9, DERL3, and VEGFA genes were all upregulated while
the opposite was reported for RNF130 in cervical cancer and
was linked to unsatisfactory prognosis in the present
research. It remains unclear whether the 4 genes affect the
cervical cancer patients’ prognoses by influencing the pro-
cess of ferroptosis since there were few studies focusing on
these genes.

Secondly, we used Cox regression analysis and LASSO
algorithm to construct nomograms to predict the 1-, 3-,
and 5-year survival rates of patients. In this constructed

nomogram (Figure 6(a)), in terms of weighted scores, the
ferroptosis-related gene signature had the greatest score,
followed by clinical stage and grade. Three-year and five-
year survival rates were used to illustrate the effectiveness
of nomogram-based prognostic prediction, and these results
were verified across both the internal and external data val-
idation cohorts. In summary, this study uses a variety of
methods to comprehensively verify the validity of the model
and demonstrated the predictive effectiveness of the prog-
nostic model.

Thirdly, though the mechanism of tumor susceptibility to
iron intoxication has become a hot topic in the past few years
[15], the probable modulatory mechanisms between tumor
and iron intoxication remain uncertain. The GO and KEGG
pathway enrichment analyses of the differential genes have
shown that the differential genes were not only in cellular
component (CC) but also in molecular function (MF), biolog-
ical process (BP), and so on. All three are enriched and are also
associated with various signaling-related pathways in cervical
cancer (Figures 8(a) and 8(b)). Consequently, given the critical
role of ferroptosis in tumorigenesis, we have improved our
understanding of the mechanisms of the tumor progression
and prognosis of cervical cancer.

Furthermore, the association between ferroptosis and
immune cell infiltrating of cervical cancer is yet to be
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Figure 9: Immune infiltration correlation analysis. (a, b) Analyze the immune differences between high- and low-risk samples from 16
immune cells and 13 immune-related functions. (c) Heat map of stromal score, immune score, and estimate score in high- and low-risk
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Figure 10: TMB. (a) Waterfall plot of somatic mutation status in high-risk samples. (b) Waterfall plot of somatic mutation status in a
low-risk population.
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illustrated even though numerous research reports have
focused on the process of ferroptosis in cancers in recent
years [31, 32]. We discovered enhanced infiltration levels
of CD8+ T cells in the low-risk group and so did the other
15 immune-associated cells as opposed to the high-risk
group (Figures 9(a) and 9(b)). This directly demonstrated
that immune cell infiltration was linked to a favorable prog-
nosis in CC patients [33], consistent with numerous previ-
ous studies [34, 35]. Meanwhile, the activation of
antitumor immune response including the activation of
CD8+ T cells and IFNα cascade immune response repre-
sented lower risk scores. Therefore, improved antitumor
immunity in patients with cervical cancer at low risk might
explain the favorable prognosis.

Of note, tumormutation burden (TMB) was typically con-
sidered the number of somatic nonsynonymousmutations per
megabase pair (Mb) in a specific genomic region, and the
number of tumor somatic mutations is positively correlated
with immune and radiotherapy efficacy [36–38]. The results

showed that TMBwas enhanced in the high-risk group in con-
trast with the low-risk group (Figures 10(a) and 10(b)), and
the two most frequently mutated genes were TTN and
PIK3CA. A higher proportion of patients with TTN and
PIK3CA somatic mutations was detected in the high-risk
group in the cohort. We thought that variant TTN and
PIK3CAwas the driving factor of the tumorigenesis of cervical
cancer. And contributed to increased cancer risk, we could use
the mutation as a marker for predicting immune efficacy. In
conclusion, ferroptosis of cervical cancer may be closely
related to TMB, and further study was expected for its
underlying mechanism in the future.

Finally, we carried out qRT-PCR and immunohisto-
chemical studies on the four ferroptosis genes linked to the
cervical cancer patients’ prognoses. The findings illustrated
that VEGFA, CA9, and DERL3 were highly expressed while
the opposite was reported for RNF130 in CC (Figures 11
and 12). These results showed the accuracy of our first
step differential analysis and improved the credibility of
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Figure 11: qRT-PCR. (a–d) The results showed that the expression of VEGFA, CA9, and DERL3 in cervical cancer was significantly higher
than that in normal samples, while the expression of RNF130 in cervical cancer was lower than that in the normal group. ∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001.
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subsequent studies and also confirmed the association of
risk genes with ferroptosis, further verifying the predictive
power of our model.

Therefore, a novel and comprehensive ferroptosis-
related gene model was proposed for cervical cancer that is
capable of identifying patients independently at high risk
for poor survival. We propose that targeting ferroptosis
might be a promising approach for treating CC. To thor-
oughly comprehend the function performed by ferroptosis
in the tumor or the TME and the mechanism through which
it influences the cervical cancer patients’ prognoses, further
research is warranted.
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