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Abstract: Phenylpropanoids and flavonoids belong to a large group of secondary metabolites, and
are considered to have antioxidant activity, which protects the cells against biotic and abiotic stresses.
However, the accumulation of phenylpropanoids and flavonoids in bitter melon has rarely been
studied. Here, we identify ten putative phenylpropanoid and flavonoid biosynthetic genes in bitter
melon. Most genes were highly expressed in leaves and/or flowers. HPLC analysis showed that rutin
and epicatechin were the most abundant compounds in bitter melon. Rutin content was the highest
in leaves, whereas epicatechin was highly accumulated in flowers and fruits. The accumulation
patterns of trans-cinnamic acid, p-coumaric acid, ferulic acid, kaempferol, and rutin coincide with the
expression patterns of McPAL, McC4H, McCOMT, McFLS, and Mc3GT, respectively, suggesting that
these genes play important roles in phenylpropanoid and flavonoid biosynthesis in bitter melon. In
addition, we also investigated the optimum light conditions for enhancing phenylpropanoid and
flavonoid biosynthesis and found that blue light was the most effective wavelength for enhanced
accumulation of phenylpropanoids and flavonoids in bitter melon.
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1. Introduction

Momordica charantia, commonly known as “bitter melon” or “bitter gourd”, is a medicinal plant
belonging to family Cucurbitaceae. Traditionally, it has been used to treat diseases such as HIV,
diabetes, cancer, arthritis, liver disorders, and gastric problems [1–6]. Researchers have found that the
important components of bitter melon with respect to its pharmaceutical application are phenolic acids,
flavonoids, triterpenes, and carotenoids [7]. Phenolic compounds (such as phenylpropanoids and
flavonoids) belong to the largest group of secondary metabolites produced by plants, and are known
to have antioxidant activity, protecting the cells against biotic and abiotic stresses including infections,
wounding, UV irradiation, exposure to ozone, pollutants, and herbivores [8–10]. Considering these
biological characteristics and functions, phenylpropanoids and/or flavonoids have been studied in
many plants such as Fagopyrum esculentum [11,12], Fagopyrum tartaricum [13–15], Fragaria ananassa
Duch. [16], Morus alba L. [17], Scutellaria baicalensis [18], Scutellaria lateriflora [18], and Astragalus
membranaceus [19,20]. The phenolic compound content and antioxidant properties of bitter melon
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were described previously by Horax et al. [21]. However, little is known about the genes involved
in phenylpropanoid and flavonoid biosynthesis pathways in bitter melon. Phenylpropanoids and
flavonoids belong to a large class of plant phenols that are produced through the shikimic acid pathway.
The biosynthesis of phenylpropanoids and flavonoids and the various catalyzing enzymes involved
are shown in Figure 1.

Molecules 2017, 22, 469 2 of 14 

 

Astragalus membranaceus [19,20]. The phenolic compound content and antioxidant properties of bitter 

melon were described previously by Horax et al [21]. However, little is known about the genes 

involved in phenylpropanoid and flavonoid biosynthesis pathways in bitter melon. 

Phenylpropanoids and flavonoids belong to a large class of plant phenols that are produced through 

the shikimic acid pathway. The biosynthesis of phenylpropanoids and flavonoids and the various 

catalyzing enzymes involved are shown in Figure 1. 

 

Figure 1. Proposed phenylpropanoid and flavonoid biosynthetic pathway in bitter melon. The red 

color denotes the phenylpropanoids and flavonoids measured in this study by HPLC analysis and 

the blue color indicates genes monitored via real time-PCR. PAL—phenylalanine ammonia-lyase; 

C4H—cinnamate 4-hydroxylase; C3H—coumarate 3-hydroxylase; COMT—caffeic acid 3-O-

methyltransferase; 4CL—4-coumaroyl CoA ligase; CHS—chalcone synthase; CHI—chalcone 

isomerase; F3H—flavanone 3-hydroxylase; F3′H—flavonoid 3′-hydroxylase; FLS—flavonol synthase; 

DFR—dihydroflavonol-4 reductase; 3GT—flavonoid 3-O-glucosyltransferase. 

Recently, irradiation by different wavelengths of light-emitting diodes (LEDs) is being used as 

source of artificial lighting in plant production systems and is attracting much attention due to its 

high potential for commercial applications. LEDs have many advantages such as small size, long 

operating lifetime, wavelength specificity, low heat emission, high energy-conversion efficiency, and 

adjustable light intensity [22,23]. The use of LEDs has also allowed researchers to easily analyze the 

effects of different wavelengths and light intensities on the accumulation of secondary compounds 

in controlled environments. Irradiation by different wavelengths of light with light-emitting diodes 

(LEDs) has been reported to efficiently modulate phenolic and flavonoid biosynthesis in plants such 

as lettuce [24,25], buckwheat [26,27], and Chinese cabbage [28]. However, it has not been reported in 

bitter melon. 

In this study, we identified the genes involved in phenylpropanoid and flavonoid synthesis in 

bitter melon, using a transcriptome database reported in a previous study [29]. We also analyzed the 

expression profiles of these genes and the accumulation of phenylpropanoids and flavonoids in 

different organs and plantlets to investigate the relationship between phenylpropanoid and 

flavonoid contents and their gene expression levels. In addition, we investigated whether white, blue, 

and red light conditions could enhance phenylpropanoid and flavonoid accumulation in bitter 

melon. To the best of our knowledge, the present study is the first to apply transcriptome sequence 

Figure 1. Proposed phenylpropanoid and flavonoid biosynthetic pathway in bitter melon.
The red color denotes the phenylpropanoids and flavonoids measured in this study by HPLC
analysis and the blue color indicates genes monitored via real time-PCR. PAL—phenylalanine
ammonia-lyase; C4H—cinnamate 4-hydroxylase; C3H—coumarate 3-hydroxylase; COMT—caffeic
acid 3-O-methyltransferase; 4CL—4-coumaroyl CoA ligase; CHS—chalcone synthase; CHI—chalcone
isomerase; F3H—flavanone 3-hydroxylase; F3′H—flavonoid 3′-hydroxylase; FLS—flavonol synthase;
DFR—dihydroflavonol-4 reductase; 3GT—flavonoid 3-O-glucosyltransferase.

Recently, irradiation by different wavelengths of light-emitting diodes (LEDs) is being used as
source of artificial lighting in plant production systems and is attracting much attention due to its high
potential for commercial applications. LEDs have many advantages such as small size, long operating
lifetime, wavelength specificity, low heat emission, high energy-conversion efficiency, and adjustable
light intensity [22,23]. The use of LEDs has also allowed researchers to easily analyze the effects of
different wavelengths and light intensities on the accumulation of secondary compounds in controlled
environments. Irradiation by different wavelengths of light with light-emitting diodes (LEDs) has been
reported to efficiently modulate phenolic and flavonoid biosynthesis in plants such as lettuce [24,25],
buckwheat [26,27], and Chinese cabbage [28]. However, it has not been reported in bitter melon.

In this study, we identified the genes involved in phenylpropanoid and flavonoid synthesis in
bitter melon, using a transcriptome database reported in a previous study [29]. We also analyzed
the expression profiles of these genes and the accumulation of phenylpropanoids and flavonoids in
different organs and plantlets to investigate the relationship between phenylpropanoid and flavonoid
contents and their gene expression levels. In addition, we investigated whether white, blue, and red
light conditions could enhance phenylpropanoid and flavonoid accumulation in bitter melon. To the
best of our knowledge, the present study is the first to apply transcriptome sequence analysis in the
study of phenylpropanoid and flavonoid gene expression in bitter melon. It marks a first step towards
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possible bioengineering of bitter melon to increase the yield of these important phenylpropanoids
and flavonoids.

2. Results and Discussion

2.1. Expression of Phenylpropanoid and Flavonoid Genes in Different Organs of Bitter Melon

A previous study showed that approximately 88,703 unigenes have been identified in bitter melon
seedlings [29]. Among the unigenes from the bitter melon database, we could identify 10 candidate
genes (McPAL, McC4H, Mc4CL, McCOMT, McCHS, McCHI, McF3H, McFLS, McDFR, and Mc3GT) that
encode enzymes related to phenylpropanoid and flavonoid biosynthetic pathways (Table 1). Their
homology was confirmed by blastp and designed as follows: McPAL (416 amino acids (aa)), McC4H
(502 aa), Mc4CL (556 aa), McCOMT (369 aa), McCHS (402 aa), McCHI (252 aa), McF3H (370 aa), McFLS
(335 aa), McDFR (310 aa), and Mc3GT (462 aa) (Table 1). These genes were highly similar to those in
other species belonging to the Cucurbitaceae, such as Cucumis sativus and Cucumis melo.

Table 1. Comparison of phenylpropanoid and flavonoid biosynthetic genes of bitter melon with the
most orthologous genes.

Genes Description Orthologous Genes Identity (%)

McPAL (416 aa)
Phenylalanine
ammonia-lyase

Cucumis sativus (XP_004145752.1) 91
Cucumis melo (CAA53733.1) 88

Vitis vinifera (XP_002285277.1) 87

McC4H (502 aa)
Cinnamate

4-hydroxylase

Cucumis sativus (XP_004151467.1) 89
Cucumis melo (XP_008457287.1) 89
Salvia miltiorrhiza (ABC75596.1) 83

Mc4CL (556 aa) 4-Coumaroyl CoA ligase
Cucumis sativus (XP_004145532.1) 88
Cucumis melo (XP_008452936.1) 87

Ziziphus jujuba (XP_015884135.1) 77

McCOMT (369 aa)
Caffeic acid

3-O-methyltransferase

Ricinus communis (XP_002525818.1) 81
Ziziphus jujuba (XP_015878697.1) 81
Prunus mume (XP_008234634.1) 82

McCHS (402 aa) Chalcone synthase
Siraitia grosvenorii (ADF57184.1) 92

Cucumis sativus (XP_004145707.1) 91
Cucumis melo (XP_008449984.1) 92

McCHI (252 aa) Chalcone isomerase
Cucumis melo (XP_008456952.1) 86

Cucumis sativus (XP_011655047.1) 86
Ricinus communis (XP_002520870.2) 73

McF3H (370 aa) Flavanone 3-hydroxylase
Nierembergia sp. NB17 (BAC10996.1) 81

Hibiscus sabdariffa (ALB35017.1) 86
Litchi chinensis (ADO95201.1) 81

McFLS (335 aa) Flavonol synthase
Cucumis melo (XP_008445671.1) 85

Cucumis sativus (XP_004140862.1) 84
Theobroma cacao (XP_007018993.1) 76

McDFR (310 aa) Dihydroflavonol
4-reductase

Cucumis sativus (XP_011650548.1) 78
Cucumis melo (XP_008452320.1) 78
Cucumis melo (XP_008452321.1) 78

Mc3GT (462 aa)
Flavonoid

3-O-glucosyltransferase
Cucumis sativus (XP_004140708.1) 89
Cucumis melo (XP_008456146.1) 88

aa: amino acid.

The expression patterns of these genes were analyzed in roots, stems, young leaves, mature
leaves, male flowers, female flowers, and four fruit developmental stages using quantitative RT-PCR
(Figure 2). Figure 2A shows that McPAL, McCHS, McCHI, and McDFR were mainly expressed in male
flowers. The expression level of McC4H was the highest in young and mature leaves, followed by
female flowers and male flowers. Although the level of Mc4CL expression was found to be similarly
high in stems, male flowers, and female flowers, it was low in the roots and leaves. McF3H had a higher
expression in male flowers, young leaves, and mature leaves than in other organs. McFLS showed the
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highest levels of expression in mature leaves, followed by young leaves and female flowers, and low
expression in roots, stems, and male flowers. McCOMT was highly expressed in both male and female
flowers, intermediately expressed in stems, young leaves, and mature leaves, and expressed at low
levels in the roots. Mc3GT was expressed at high levels in leaves than in other organs. During fruit
ripening, the expression of McPAL, McCHI, McF3H, and McDFR declined gradually (Figure 2B). Taken
together, while the expression of McC4H, McCHS, and McFLS declined from stage 1 to stage 3 and
increased in stage 4, the expression of Mc4CL, McCOMT, and MC3GT increased from stage 1 to stage 2,
but it declined in stage 3 before increasing again in stage 4 after fruit development (Figure 2B).
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Figure 2. Expression levels of genes involved in phenylpropanoid and flavonoid biosynthesis pathway
in different organs (A) and four fruit stages (stage 1–4) (B) of bitter melon plants. The vertical axes
show the expression relative to cyclophilin and the height of each bar and the error bars indicate the
mean and standard error, respectively, from three independent measurements. Y-leaves: young leave;
M-leaves: mature leaves; F-flowers: female flowers; M-flowers: male flowers. Letters a–e indicate
significant differences (p < 0.05).
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2.2. Phenylpropanoid and Flavonoid Accumulation in Different Organs of Bitter Melon

Quantification of phenylpropanoid and flavonoid content is shown in Tables 2 and 3. We found
that phenylpropanoids and flavonoids were rarely biosynthesized in the roots, whereas abundant
phenylpropanoids and flavonoids were detected in the leaves and flowers of bitter melon (Table 2). The
observed distribution of phenylpropanoids and flavonoids was similar to that observed in other plants
such as L. chinense [30] and Fagopyrum esculentum [31]. The accumulation of 4-hydroxybenzoic acid,
caffeic acid, p-coumaric acid, and rutin was more concentrated in the leaves than in the other organs,
whereas benzoic acid was more abundant in the stems than in the other organs. Rutin was the most
abundant component in young and mature leaves (3970.83 and 2277.93 µg/g dry weight, respectively),
with concentrations 107- and 61-fold than that in the root (37.035 µg/g dry weight), respectively
(Table 2). Rutin content has also been reported to be the highest in leaves of Morus alba L. [17] and
Lycium chinense [30]. The accumulation of gallic acid, catechin hydrate, epicatechin, and trans-cinnamic
acid was only found in the flowers. Among phenolic compounds, epicatechin was the most abundant
component in female and male flowers (568.67 and 660.35 µg/g dry weight, respectively). The content
of chlorogenic acid was considerably higher in male flowers (58.7 µg/g dry weight) and female flowers
(49.39 µg/g dry weight) that in the other organs. Ferulic acid content was the highest in female flowers
(9.49 µg/g dry weight) and male flowers (10.27 µg/g dry weight), whereas only small amounts were
found in stems, young leaves, and mature leaves.

Phenylpropanoid and flavonoid content on the developed fruits was similar to that in the four
developmental stages (Table 3). The amount of the phenolic compounds varied highly from stage
1 (green color) to stage 4 (orange color). For example, epicatechin and p-coumaric acid were more
concentrated in stage 2 than in the other fruit stages. Caffeic acid accumulated only at the first stage of
fruit maturation (being 13.91 µg/g dry weight), while kaempferol accumulated only at stages 1 and 4.
The accumulation of rutin increased from stage 1 (12.49 µg/g dry weight) to stage 3 (20.7 µg/g dry
weight), and then decreased again at stage 4 (11.15 µg/g dry weight). The chlorogenic acid content
increased from stage 1 (37.89 µg/g dry weight) to stage 4 (40.47 µg/g dry weight). Similar contents of
ferulic acid were found in the four fruit stages (Table 3).

2.3. Expression of Phenylpropanoid and Flavonoid Genes in Different Developmental Stages of Bitter
Melon Plantlets

Expression analysis for the phenylpropanoid and flavonoid genes was carried out at different
developmental stages (0 days after sowing (DAS), 5 DAS, 10 DAS, and 15 DAS) using real-time PCR
(Figure 3). The expression of phenylalanine ammonia-lyase (McPAL) and dihydroflavonol 4-reductase
(McDFR) was the highest at 0 DAS, intermediate at 5 and 15 DAS, and the lowest at 10 DAS. The
expression patterns of McC4H, Mc4CL, McCHS, and McF3H were similar, with slightly more expression
observable at 5 DAS than at other developmental stages. McCHI showed higher expression levels at 5
and 10 DAS, and lower levels at 0 and 15 DAS. McFLS expression was the highest at 0, 5, and 15 DAS,
and the lowest at 10 DAS. The expression level of Mc3GT increased from 0 to 5 to 10 DAS, reaching its
highest level at 15 DAS.
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Table 2. Accumulation of phenolic compounds in different organs of bitter melon plants (µg/g dry weight).

Compound Roots Stems Y-leaves M-leaves F-flowers M-flowers

Gallic acid 0 b 0 b 0 b 0 b 38.34 ± 9.12 a 0 b

4-Hydroxybenzoic acid 0 c 0 c 29.49 ± 2.72 a 10.86 ± 2.93 b 2.85 ± 1.08 c 0 c

Catechin hydrate 0 b 0 b 0 b 0 b 239.06 ± 19.58 a 0 b

Chlorogenic acid 37.425 ± 0.83 c 40.62 ± 0.90 c 0 d 0 d 49.39 ± 0.57 b 58.7 ± 6.39 a

Caffeic acid 14.43 ± 1.02 c 12.01 ± 0.84 c,d 33.36 ± 2.19 a 24.18 ± 3.27 b 10.17 ± 0.04 d 9.54 ± 2.26 d

Epicatechin 0 c 0 c 0 c 0 c 568.67 ± 12.54 b 660.35 ± 85.84 a

p-Coumaric acid 7.65 ± 0.98 e 12.54 ± 0.16 d 54.68 ± 2.66 a 38.07 ± 1.36 b 19.47 ± 0.34 c 10.25 ± 2.94 d,e

Ferulic acid 0 c 4.76 ± 0.26 b 4.8 ± 0.26 b 6.105 ± 1.80 b 9.49 ± 0.23 a 10.27 ± 2.25 a

Benzoic acid 7.19 ± 1.51 b 15.4 ± 4.52 a 0 c 2.85 ± 0.08 b,c 0 c 1.59 ± 0.92 c

Rutin 37.04 ± 2.48 d 153.48 ± 3.12 c 3970.83 ± 27.27 a 2277.93 ± 71.62 b 204.19 ± 28.28 c 7.17 ± 2.76 d

trans-Cinnamic acid 0 b 0 b 0 b 0 b 0 b 9.13 ± 2.28 a

Kaempferol 0 d 0 d 1.89 ± 0.00 c 5.49 ± 0.13 a 4.67 ± 0.52 b 0 d

The roots, stems, Y-leaves (young leave), M-leaves (mature leaves), F-flowers (female flowers), M-flowers (male flowers), and four fruit stages (stage 1–4) of 3-month-old plants were
collected and used for HPLC analysis. Values are expressed as means ± SD (standard deviation) from three independent measurements. Letters a–e indicate significant differences
(p < 0.05).
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Table 3. Accumulation of phenolic compounds in the four fruit stages of bitter melon (µg/g
dry weight).

Compound Stage 1 Stage 2 Stage 3 Stage 4

Chlorogenic acid 37.89 ± 0.03 b 37.74 ± 0.82 b 40.39 ± 1.31 a 40.47 ± 1.65 a

Caffeic acid 13.91 ± 1.66 a 0 b 0 b 0 b

Epicatechin 380.71 ± 10.15 a 386.9 ± 4.75 a 333.22 ± 2.34 b 316.22 ± 9.27 c

p-Coumaric acid 0.98 ± 0.43 b 3.02 ± 0.52 a 0.94 ± 0.08 b 1.34 ± 0.44 b

Ferulic acid 4.74 ± 0.00 a 4.79 ± 0.96 a 4.69 ± 0.02 a 4.73 ± 0.06 a

Rutin 12.49 ± 1.09 b,c 13.66 ± 0.68 b 20.7 ± 0.29 a 11.15 ± 0.02 c

Kaempferol 2.66 ± 0.60 a 0 b 0 b 2.72 ± 0.66 a

Values are expressed as means ± standard deviation from three independent measurements. Letters a–c indicate
significant differences (p < 0.05).
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Figure 3. Expression levels of phenylpropanoid and flavonoid biosynthetic genes in different
developmental stages of bitter melon plantlets. The height of each bar and the error bars indicate
the mean and standard error, respectively, from three independent measurements. The vertical axes
show the expression relative to cyclophilin. Units on the horizontal axes indicate the days after sowing.
Letters a–d indicate significant differences (p < 0.05).

2.4. Phenylpropanoid and Flavonoid Accumulation in Different Developmental Stages of Bitter Melon Plantlets

HPLC analysis of bitter melon plantlets in different developmental stage identified nine
phenylpropanoid and flavonoid components, including caffeic acid, trans-cinnamic acid, ferulic acid,
benzoic acid, 4-hydroxybenzoic acid, and chlorogenic acid, p-coumaric acid, catechin hydrate, and
rutin, as shown in Table 4. The accumulated amounts ranged from undetectable to 6.79, 4.91 to 5.29,
0.58 to 5.14, 0.66 to 4.61, and 4.14 to 7.92 µg/g dry weight for caffeic acid, ferulic acid, p-coumaric
acid, trans-cinnamic acid, and benzoic acid, respectively. The accumulation levels of chlorogenic acid
at 0, 10, and 15 DAS were similar, but it was not detectable at 5 DAS. The level of 4-hydroxybenzoic
acid was the highest at 10 DAS (40.98 µg/g dry weight), followed by the levels at 15 DAS (18.82 µg/g
dry weight) and 0 DAS (0.375 µg/g dry weight), but it was undetectable at 5 DAS. High amounts of
rutin were found at 10 and 15 DAS (157.935 and 208.97 µg/g dry weight, respectively), whereas lower
amounts were found at 0 DAS (12.27 µg/g dry weight). Finally, high amounts of catechin hydrate
were found at 0 and 5 DAS (26.52 and 28.875 µg/g dry weight, respectively), and low amounts were
found at 15 DAS (13.12 µg/g dry weight).
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Table 4. Accumulation of phenylpropanoid and flavonoid compounds in different developmental
stages of bitter melon plantlets (µg/g dry weight).

Compound 0 DAS 5 DAS 10 DAS 15 DAS

4-Hydroxybenzoic acid 0.375 ± 0.15 c 0 c 40.98 ± 1.19 a 18.82 ± 0.54 b

Catechin hydrate 26.52 ± 2.54 a 28.875 ± 0.62 a 13.935 ± 0.40 b 13.12 ± 1.49 b

Chlorogenic acid 34.455 ± 0.23 a 0 ± 0 c 33.225 ± 0.15 b 33.25 ± 0.08 b

Caffeic acid 6.795 ± 0.06 a 6.585 ± 0.02 a 0 b 6.5 ± 0.21 a

p-Coumaric acid 2.19 ± 0.29 b 5.145 ± 0.36 a 0.585 ± 0.15 c 0.71 ± 0.03 c

Ferulic acid 4.965 ± 0.15 a 4.905 ± 0.11 a 5.295 ± 0.28 a 5.2 ± 0.15 a

Benzoic acid 4.14 ± 2.20 b 7.92 ± 0.93 a 4.665 ± 0.91 b 6.93 ± 0.24 a,b

Rutin 12.27 ± 0.00 d 27.72 ± 0.85 c 157.935 ± 0.91 b 208.97 ± 3.35 a

trans-Cinnamic acid 4.605 ± 0.40 a 1.74 ± 0.00 b 0.66 ± 0.08 c 0.85 ± 0.14 c

Whole bitter melon plantlets were sampled at 0, 5, 10, and 15 DAS and used for HPLC analysis. Values are expressed
as means ± standard deviation from three independent measurements. Letters a–d indicate significant differences
(p < 0.05). DAS: days after sowing.

The expression levels of Mc3GT increased from 0 to 15 DAS, corresponding to the rutin
accumulation levels. McDFR expression was high at 0 and 5 DAS, but low at 10 and 15 DAS,
corresponding to the catechinhydrate levels. Similarly, the expression of McCOMT was found to
correspond with ferulic acid content. We found that the expression levels of Mc4CL, McCHS, McCHI,
McF3H, and McFLS increased from 0 to 5 DAS, but then decreased at 10 DAS before increasing again
at 15 DAS. However, the content of phenylpropanoid and flavonoid did not change correspondingly.
These results suggest McPAL, McC4H, Mc3GT, McDFR, and McCOMT might be intimately related to
the phenylpropanoid and flavonoid content in bitter melon plantlets.

2.5. Effects of White, Blue, and Red Lights on the Expression of Phenylpropanoid and Flavonoid Genes

Expression patterns of phenylpropanoid and flavonoid biosynthetic genes in bitter melon were
investigated at 7, 14, and 21 days under white, blue, or red LED illumination, using real time-PCR
(Figure 4). Under white light, the expression of McC4H, McCOMT, McFLS, McDFR, and Mc3GT
increased gradually from 7 to 21 days, whereas that of McPAL and McCHI transcripts reached a peak
level at 14 days, and then declined. The expression of Mc4CL and McCHS was recovered at 21 days after
a decrease at 14 days. Expression of McF3H did not change significantly under white light illumination.
Under red light conditions, the expression of many phenylpropanoid and flavonoid genes, including
McPAL, Mc4CL, McCOMT, McCHS, McCHI, McF3H, McFLS, and Mc3GT, gradually decreased from 7
to 21 days, except for McC4H. Similarly, buckwheat seedlings exposed to red light showed a reduced
expression of most orthologous genes after two days of irradiation [27]. The expression of McDFR
recovered at 21 days after a decrease at 14 days under red light illumination. Compared with the
effects of white and red light illumination, bitter melon seedlings exposed to blue light showed greater
changes in the expression of phenylpropanoid and flavonoid biosynthetic genes. Expression of McPAL,
McC4H, Mc4CL, McCHS, McCHI, McF3H, McFLS, McDFR, and Mc3GT was considerably upregulated
compared with seedlings grown under white or red light. Under blue light conditions, the expression
of McC4H, Mc4CL, McCOMT, McCHS, McF3H, McFLS, McDFR, and Mc3GT was high at seven days,
decreased at 14 days, and then increased again at 21 days. Expression of McCHI increased dramatically
at 21 days under blue light illumination. However, blue light irradiation had no effect on the expression
of McPAL.
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Figure 4. Expression levels of phenylpropanoid and flavonoid biosynthetic genes in bitter melon
exposed to white, blue, and red LED. The height of each bar and the error bars indicate the mean
and standard error, respectively, from three independent measurements. The vertical axes show the
expression relative to cyclophilin. Units on the horizontal axes indicate the days after irradiation. Letters
a–g indicate significant differences (p < 0.05).

2.6. Effects of White, Blue, and Red Lights on Phenylpropanoid and Flavonoid Content

The contents of phenolic acids, including caffeic acid, rutin, and kaempferol, were measured in
seedlings grown under white, blue, or red light for 7, 14, and 21 days (Table 5). Under all light
conditions, the accumulation of rutin was the highest (up to 493.96, 433.9, and 87.47 µg/g dry
weight under blue, white, and red light irradiation, respectively), followed by that of caffeic acid and
kaempferol. However, the effects of white, blue, or red light illumination on caffeic acid, rutin, and
kaempferol content varied. Under white light illumination, caffeic acid content gradually increased
from 7 to 21 days. In contrast, the rutin content decreased from 433.9 µg/g dry weight at seven
days to 195.62 µg/g dry weight at 21 days, whereas kaempferol content reached a peak level at 14
days, and then declined. Under red light illumination, rutin and kaempferol content decreased by
about 3.8-fold and 1.8-fold, respectively, whereas caffeic acid content increased by about 2-fold under
red light irradiation. This result was congruent with the high expression of McPAL, Mc4LC, McCHI,
McCHS, McF3H, McFLS, and Mc3GT at initial stages, followed by a decrease, under red light irradiation.
Kaempferol content remained unchanged under blue light irradiation. The highest rutin and caffeic
acid content (493.96.54 and 36.36 µg/g dry weight, respectively) was observed at 21 days under blue
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light. This highest accumulation of rutin and caffeic acid under blue light irradiation coincided with
the increased expression of McC4H, McCHS, McCHI, McF3H, McDFR, and Mc3GT, suggesting that
blue light may induce the phelynpropanoid and flavoloid biosynthetic pathways, leading to increased
rutin content in bitter melon. Many previous studies have shown that blue light illumination can affect
the accumulation of phenolic compounds in plants. For example, blue light irradiation was effective in
increasing the concentration of most phenolic compounds, including p-hydroxybenzoic acid, ferulic
acid, quercetin, and kaempferol in Chinese cabbage [28]. Blue light caused a high accumulation
of polyphenol content in lettuce [24]. A study by Ki-Ho Son and Myung-Min Oh [25] indicated
that the ratio of blue to red LEDs is important for the morphology, growth, and the concentration
of phenolic compounds with antioxidant properties in green and red leaf lettuce cultivars. In this
study, our analysis established that blue light had the optimum wavelength for phenylpropanoid and
flavonoid biosynthesis in bitter melon. However, additional research is required to obtain a more
comprehensive assessment.

Table 5. Caffeic acid, rutin, and kaempferol content in bitter melon with white, blue, and red LED
(µg/g dry weight).

Light Days Caffeic acid Rutin Kaempferol Total

White
7 days 11.36 ± 1.11 e 433.9 ± 23.3 b 4.71 ± 1.47 b 449.97 ± 24.82 b

14 days 14.75 ± 0.58 d,e 103.6 ± 6.20 d 9.93 ± 0.41 a 128.28 ± 7.05 d

21 days 26.71 ± 0.36 b,c 195.62 ± 1.35 c 3.1 ± 0.05 b 225.43 ± 1.58 c

Blue
7 days 14.99 ± 0.50 d,e 457.07 ± 13.17 a,b 4.89 ± 0.59 b 476.95 ± 13.17 b

14 days 31.47 ± 11.67 a,b 221.39 ± 43.85 c 4.56 ± 0.94 b 257.42 ± 56.16 c

21 days 36.36 ± 0.89 a 493.96 ± 9.02 a 4.3 ± 0.26 b 534.62 ± 9.13 a

Red
7 days 11.1 ± 0.49 e 87.47 ± 25.18 d 8.58 ± 0.67 a 107.15 ± 25.56 d

14 days 20.94 ± 0.70 c,d,e 22.34 ± 0.75 e 3.67 ± 0.21 b 46.95 ± 0.89 e

21 days 21.67 ± 0.43 c,d 23.15 ± 4.5 e 4.67 ± 0.32 b 49.49 ± 4.64 e

Samples were harvested after 7, 14, and 21 days of irradiation and used for HPLC analysis. Values were expressed
as means ± standard deviation from three independent experiments. Letters a–e indicate significant differences
(p < 0.05).

In summary, we identify ten putative biosynthetic enzymes in Momordica charantia that have high
homology to enzymes involved in the biosynthetic pathway leading to phenylpropanoid and flavonoid
synthesis in other plants. Most genes were highly expressed in leaves and/or flowers. An HPLC
analysis showed that rutin and epicatechin were most abundant in bitter melon. The accumulation of
rutin was highest in leaves, while epicatechin was high accumulated in flowers and fruits. The
accumulation patterns of rutin and epicatechin coincide with the expression pattern of McC4H,
McFLS, and Mc3GT, and McPAL, Mc4CL, McCOMT, McCHS, McCHI, McF3H, and McDFR, respectively,
indicating that these genes play important roles in phenylpropanoid and flavonoid biosynthesis
in bitter melon. In contrast, the accumulation patterns of benzoic acid did not coincide with the
expression pattern of phenylpropanoid and flavonoid biosynthetic genes in Momordica charantia.
Other phenylpropanoid and flavonoid biosynthetic genes may be linked to the phenylpropanoid
and flavonoid synthetic pathway. In addition, we also investigated optimum white, blue, and red
light conditions for enhancing phenylpropanoid and flavonoid biosynthesis and found that blue light
was the most effective wavelength to enhance accumulation of phenylpropanoid and flavonoid in
bitter melon. These results will be of value for developing strategies to increase the yield of medicinal
compounds in bitter melon.

3. Material and Methods

3.1. Plant Materials

Bitter melon (Momordica charantia) seeds were purchased from Beijing Namo Tech.-Trade Co. Ltd.
(Beijing, China). After peeling, the seeds were surface-sterilized with 70% (v/v) ethanol for 30 s and
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1% (v/v) sodium hypochlorite solution for 10 min. The sterilized seeds were germinated using 1/2
MS medium as we described previously [32]. After sowing for 0, 5, 10, and 15 days (Figure 5A and
Table S1), the plantlets were harvested. For an LED irradiation experiment, after seeding in a growth
chamber at 25 ◦C for 10 days, bitter melon plantlets were transplanted under white (380 nm), blue
(470 nm), or red (660 nm) LED irradiation conditions at the Precision Agriculture Lab, Chungnam
National University (Daejeon, Korea). They were grown in a plant factory with the same growth
conditions of temperature (25 ± 1 ◦C), humidity (85–90%), electrical conductivity (1200 ± 90 µS/cm),
CO2 (1000 ± 100 ppm), light intensity (80–90 µmol·m−2·s−1), and photoperiod (16-h light/8-h dark)
under different LED irradiation treatments over a 21-day period. Whole plantlets were harvested at 7,
14, and 21 days after irradiation (DAI). In addition, bitter melon was grown at an experimental farm at
Chungnam National University (Daejeon, Korea) for three months, for harvesting the plant parts (roots,
stems, mature leaves, young leaves, male flowers, and female flowers) and fruits at four different
stages (Figure 5B and Table S2). Whole cultivations and irradiations were repeated three times. All
samples after harvest were immediately frozen in liquid nitrogen and used for RNA isolation and/or
high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis.
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3.2. RNA Isolation and cDNA Synthesis

Total RNA was isolated from the different plant parts using Easy BLUE Total RNA Kit (iNtRON,
Seongnam, Korea), and the quality was confirmed by running a 1.2% agarose gel at 100 W power.
ReverTra Ace-kit (Toyobo Co. Ltd, Osaka, Japan) procured from Japan was used for the synthesis of
cDNA from 1 µg of total RNA. The prepared cDNA was then diluted 20 times prior to performing
quantitative real-time PCR.

3.3. Quantitative Real-Time PCR Analysis

The primers of 10 genes involved in the phenylpropanoid and flavonoid pathways were designed
using the Primer3 website [33] (details provided in Table S3). For qRT-PCR, the reaction mixture
(20 µL) contained primers (0.5 µM), diluted cDNA (10-fold), PCR mixture of 2X SYBR Green (10 µL),
and water (5 µL). The PCR machine was run for 3 min (95 ◦C), 15 s (95 ◦C, 41 cycles), 15 s (56 ◦C), and
for a final extension of 20 s (72 ◦C). The cyclophilin gene (Accession number: HQ171897.1) was used as
the positive gene reference for quantifying the expression of the selected genes. The PCR products
were analyzed using the Bio-Rad CFX Manager 2.0 software (Bio-Rad Laboratories, Hercules, CA,
USA). The analysis was repeated three times.

3.4. High Performance Liquid Chromatography (HPLC) Analysis

Phenylpropanoid and flavonoid compounds were quantified using an HPLC connected to a
C18 column (250 mm × 4.6 mm, 5 µm). The samples were mixed with 80% (v/v) ethanol and
incubated at 25 ◦C for 60 min to complete the extraction of compounds. The samples were eluted in
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the HPLC system with an elution buffer consisting of methanol and water: acetic acid (98.5:1.5 v/v)
at 1 mL/min−1. The levels of phenylpropanoid and flavonoid compounds were calculated based on
the peak area of the standard compounds and the calibration curve. Quantification and analysis were
performed in triplicate.

3.5. Statistical Analysis

Statistical analysis was performed with Statistical Analysis System (SAS version 9.2, SAS Institute
Inc., Cary, NC, USA, 2009) using an analysis of variance (ANOVA) with Duncan’s honestly significant
difference test. All data are the mean values and standard deviation of triplicate experiments.

4. Conclusions

This study provides the first description of the correlation between the putative phenylpropanoid
and flavonoid biosynthetic genes and the altered phenylpropanoid and flavonoid contents found in
different organs and plantlets of bitter melon. We identified and isolated the cDNAs for 10 genes,
including McPAL, McC4H, Mc4CL, McCOMT, McCHS, McCHI, McF3H, McFLS, McDFR, and Mc3GT,
which encoded the phenylpropanoid and flavonoid biosynthetic genes in bitter melon. Most genes
were highly expressed in leaves and/or flowers. The accumulation patterns of phenylpropanoid and
flavonoid coincided with the expression pattern of McPAL, McC4H, McCOMT, McFLS, and Mc3GT,
indicating that these genes play important roles in phenylpropanoid and flavonoid biosynthesis in
bitter melon. In addition, we also investigated white, blue, and red light conditions with respect to
their effect on the accumulation of phenylpropanoids and flavonoids in bitter melon. The results of this
study demonstrate that blue light is an effective light source for the enhancement of phenylpropanoid
and flavonoid biosynthesis. These results will be of value for developing strategies to increase the
yield of medicinal compounds in bitter melon.

Supplementary Materials: The following are available online, Table S1: The development indicators of plantlet
of bitter melon. Data represents mean values ± SE (standard error) of three replicates. DAS—days after sowing,
Table S2: The size of four developmental fruit stages of bitter melon. Data represents mean values ± SE of three
replicates, Table S3: Sequences of specific primers used for quantitative real-time PCR.
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