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Abstract: Pyridine-based ring systems are one of the most extensively used heterocycles in 
the field of drug design, primarily due to their profound effect on pharmacological activity, 
which has led to the discovery of numerous broad-spectrum therapeutic agents. In the US 
FDA database, there are 95 approved pharmaceuticals that stem from pyridine or dihydro-
pyridine, including isoniazid and ethionamide (tuberculosis), delavirdine (HIV/AIDS), abir-
aterone acetate (prostate cancer), tacrine (Alzheimer’s), ciclopirox (ringworm and athlete’s 
foot), crizotinib (cancer), nifedipine (Raynaud’s syndrome and premature birth), piroxicam 
(NSAID for arthritis), nilvadipine (hypertension), roflumilast (COPD), pyridostigmine 
(myasthenia gravis), and many more. Their remarkable therapeutic applications have encour-
aged researchers to prepare a larger number of biologically active compounds decorated with 
pyridine or dihydropyridine, expandeing the scope of finding a cure for other ailments. It is 
thus anticipated that myriad new pharmaceuticals containing the two heterocycles will be 
available in the forthcoming decade. This review examines the prospects of highly potent 
bioactive molecules to emphasize the advantages of using pyridine and dihydropyridine in 
drug design. We cover the most recent developments from 2010 to date, highlighting the 
ever-expanding role of both scaffolds in the field of medicinal chemistry and drug 
development. 
Keywords: nitrogen heterocycles, pharmaceuticals, bioactive compounds, current trend, 
substituent effect

Introduction
Heterocycles are intricately woven into basic processes of life and play a crucial 
role in the pharmaceutical and agrochemical industries.1 In terms of pharmacolo-
gical, physicochemical, pharmacokinetic, and toxicological properties, heterocyclic 
structures are found in >90% of newly synthesized and marketed drugs.2 Medicinal 
chemistry has evolved from an empirical practice involving the synthesis of novel 
substances and then gauging their biological activity.3 A plethora of synthetic 
compounds with heterocyclic structural frameworks have been identified — with 
privileged six-membered N-containing pyridine and dihydropyridine rings — 
linked to a diverse range of bioactivity.4–7 In the realm of six-membered hetero-
cyclic structures, they have unique and interesting characteristics. Owing to their 
therapeutic potential, medicinal chemists have recently become drawn toward 
scaffolds in order to synthesize a wide range of novel bioactive molecules.8

In pharmaceutical targets, pyridine and its precursor molecule dihydropyridine are 
among the most prevalent structural units.9,10 In plants, they are mostly found in the 
alkaloids.11 In biological systems, redox reactions of nicotinamide adenine dinucleotide 
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(NAD) reduces its pyridine ring into dihydropyridine, render-
ing NADH. Similar redox reactions are also present in ana-
bolic reactions involving NAD phosphate (NADP+/NADPH) 
interconversion.12 A glance at the US Food and Drug 
Administration (FDA) database reveals that pyridine- and 
dihydropyridine-containing drugs constitute nearly 14% and 
4% of N-heterocyclic drugs approved by the agency 
(Figure 1). For these 18% of drugs, the major therapeutic 
areas of focus are infectious diseases, inflammation, the ner-
vous system, and oncology.

Substitution-type analysis of pyridine-containing drugs 
revealed that the ring is mostly monosubstituted (60%) in 
the database, whereas di-, tri-, and tetrasubstitution repre-
sented 22%, 12%, and 6%, respectively (Figure 2A). For 
dihydropyridine-containing drugs, neither mono- nor disub-
stitution was observed for the N-heterocyclic ring. However, 
trisubstitution of the dihydropyridine ring was the most 
abundant substitution type for this class of drugs. Tetra-, 

penta-, and hexasubstitution on the N-heterocyclic ring 
were 11%, 21%, and 5%, respectively (Figure 2B).

In recent years, synthetic chemists have been focusing on 
developing new analogues that employ pyridine or dihydro-
pyridine templates in their molecular design, in order to study 
their mechanisms of action to discover new pharmaceutical 
leads. The importance of the two heterocycles in medicinal 
chemistry and chemical sciences can be seen by the sheer 
number of publications appearing between 2010 and 2020 
(Figure 3).

Most reviews on this topic have concerned synthetic stra-
tegies to prepare pyridine- or dihydropyridine-containing 
compounds.2,10,13–16 For either of the two scaffolds, one can 
also find many reviews delineating their therapeutic potential 
concerning a specific malady.17–28 Most reviews on pyridine- 
containing compounds have examined only their anticancer 
potential.21,22 Likewise, several reviews on dihydropyridine- 
containing compounds typically scrutinized their calcium 

Figure 1 Distribution of N-heterocyclic drugs in the FDA database.
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channel–blocking abilities for the treatment of hypertension 
and associated ailments.19,24,26–28 The neuroprotective ability 
of dihydropyridine derivatives has also been examined.23 

Lapidot et al summarized the antibacterial activity of dihydro-
pyridine-containing peptidomimetics.25 For substituted 1,4- 
dihydropyridine, medicinal versatility and anticipable thera-
peutic effects have been the focus of past reviews,29–31 eg, 
Khedkar et al briefly discussed the pharmacological impor-
tance of this type of molecule.30 To the best of our knowledge, 
a review focusing on the therapeutic potential of pyridine- and 

dihydropyridine-containing compounds has never been pub-
lished. Herein, we present commercially available drugs while 
discussing the major therapeutic potential of synthetic bioac-
tive molecules with either of the two scaffolds. The review 
covers a sizable period in the scientific literature, including the 
publications from 2010 to date, thereby providing a broad 
picture of approved drugs and bioactivity reported for pyridine- 
or dihydropyridine-containing compounds, and is valuable 
material for those interested in exploring this class of com-
pounds for further medicinal and clinical applications.

Figure 2 Substitution-type analysis of pyridine- (A) and dihydropyridine (B)-containing FDA-approved drugs.

Figure 3 Publications on pyridine- and dihydropyridine-containing compounds, 2010–2020 (source: Scopus and SciFinder).
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Pyridine and Dihydropyridine 
Scaffolds in Natural Products and 
Commercially Available Drugs
Pyridine and dihydropyridine generate a suite of versatility 
when it comes to creating libraries of compounds with 
different functional groups for screening against different 
biological targets. Many natural products contain pyridine- 
based rings (Figure 4), including the vitamins (niacin and 
vitamin B6), coenzymes (NAD, NADP), alkaloids (trigo-
nelline, [–]-oxirene, [+]-anabasine, huperzine A, paecilo-
mide, cystine), antibiotics (nikkomycin, collismycin), and 
many more compounds.11

In pharmaceuticals, nitrogen-containing heterocycles are 
considered instrumental structural constituents.32 The pre-
sence of pyridine or dihydropyridine ring systems can have a 
substantial impact on pharmacological profiles of drugs and 
bioactive molecules.33 For example, a pyridine motif in a drug 
improves its biochemical potency and metabolic stability, 
enhances permeability, and fixes protein-binding issues.33 

Some interesting examples of the pyridine effect are high-
lighted in Figure 5: Vanotti et al were able to develop the 
potent Cdc7 kinase inhibitor 2 by substituting the phenyl 
group of 1 with pyridine.34 Similarly, metabolic stability of 
thiourea-based nicotinamide phosphoribosyltransferase inhi-
bitor 3 is improved 160-fold when its terminal phenyl ring is 
replaced with pyridine in 4.35 A heterocyclic pyridine ring in a 
molecule is also capable of enhancing its cellular permeability. 
For example, Doller et al identified a pyridine-containing 
positive allosteric modulator 6 with 190-fold the cellular per-
meability of 5.36 For the treatment of schizophrenia, protein- 
binding issues of positive allosteric modulator 7 were resolved 
by the introduction of an additional pyridine ring in 8.37 It is 
thus pertinent to say that substitution of nitrogen-containing 
heterocyclic rings profoundly affects the physicochemical 
properties of the bioactive molecule.33

There is a plethora of commercially available drugs in the 
market which contain pyridine rings, such as abiraterone for 
prostate cancer,38 enpiroline for malaria,39 nicotinamide for 
pellagra,40 nikethamide as a respiratory stimulant,41 piroxi-
cam for arthritis,42 isoniazid for tuberculosis,43 pyridostig-
mine for myasthenia gravis,44 tropicamide as an 
antimuscarinic,45 doxylamine for allergies,46 omeprazole 
for ulcers,47 delavirdine as an antiviral against HIV/ 
AIDS,48 enisamium iodide for influenza,49 and tacrine as an 
inhibitor of the AChE enzyme50 for Alzheimer’s disease 
prevention (Figure 6).

Dihydropyridine ring–containing drugs mostly act as 
calcium-channel blockers,51 and are frequently employed 
for the treatment of hypertension and heart-related 
problems.52 Such drugs include nilvadipine, nifedipine, 
amlodipine, azelnidipine, clevidipine, felodipine, and pra-
nidipine. Some of these drugs are also used to cure many 
other therapeutic conditions.53 For example, nifedipine is 
being used for Raynaud’s syndrome and premature birth.54 

Dihydropyridine-containing huperzine, a natural product, 
acts as an AChE inhibitor and is employed in the treatment 
of Alzheimer’s disease, whereas ciclopirox is widely used 
as an antifungal agent to cure ringworm and athlete’s foot 
disease (Figure 7).

Milrinone and amrinone are the two commercially avail-
able vasodilators,55 and contain both pyridine and dihydro-
pyridine ring systems in their structures (Figure 8). In 
general, pyridine- and dihydropyridine-containing drugs are 
mostly used as antimicrobial, antiviral, anticancer, antioxi-
dant, antihypertensive, antidiabetic, antimalarial, and anti- 
inflammatory agents, psychopharmacological antagonists, 
and antiamebic agents.56–62 A comprehensive list of com-
mercially available drugs containing pyridine and/or dihy-
dropyridine scaffolds and their mechanism of action is 
summarized in Table 1.

Analysis of the substitution pattern in FDA-approved 
drugs has revealed that the 1,4-dihydropyridine ring in the 
drugs was mostly substituted at the para-position (4). 
Disubstitution at both ortho-positions (2 and 6) were 
observed in eleven drugs, while one drug had monosubstitu-
tion at the ortho-position (2). Similarly, three drugs had 
monosubstitution at the meta-position (3), whereas ten 
drugs had disubstitution at meta-positions (3 and 5) of the 
1,4-dihydropyridine ring. For brevity, the substitution pat-
terns of pyridine and dihydropyridine ring systems in FDA- 
approved drugs are illustrated in Figure 9.

Pharmacological Activity
On the therapeutic front, pyridine- and dihydropyridine-con-
taining compounds possess versatile bioactivity, due to 
which they are the integral in numerous drugs. The literature 
revealed many examples wherein this class of compounds 
demonstrated promising pharmacological properties.

Cardiovascular Drugs and Bioactive 
Compounds
Hypertension is among the main risk factors of cardiovas-
cular disease. Many different types of antihypertensive 
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drugs are employed to treat the problem. Main classes of 
such drugs include α- and β-adrenergic inhibitors, renin 
inhibitors, vasodilators, diuretics, calcium-channel block-
ers, angiotensin converting–enzyme inhibitors, and many 
more (Figure 10). Pyridine-containing torsemide is an 

FDA-approved drug that promotes diuresis, thereby low-
ering the blood pressure of the patient. Pyridine- and 
dihydropyridine-containing amrinone and milrinone are 
beta-adrenergic blockers, also called β-blockers, to help 
manage hypertension via vasodilation and ultimately save 

Figure 4 Pyridine and dihydropyridine ring system in medicinally important natural products.
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the patient from a second heart attack. Disruption of cal-
cium movement through cellular channels is another strat-
egy to lower blood pressure. Most of the calcium 
antagonists in the FDA database contain dihydropyridine 
scaffolds, with penta-substitution pattern observed for the 
ring (Figure 11).

In 2014, N-propargyl–substituted derivatives of 1,4- 
DHP derivatives were synthesized by Rucins et al, who 
incorporated pharmacophore moieties into their structures 
and investigated their calcium channel–blocking activity. In 
SH-SY5Y–type neuroblastoma cells (which contain Ca2+ 

channels of L-and N-type) and A7r5 cells (which are rat 
aortic muscle cells expressing L-type Ca2+ channels), and 
impact of newly synthesized compounds on intracellular 
concentration of calcium [Ca2+] was studied. Among the 
series, compounds 9 and 10 with n-dodecyl pyridinium 
moiety as an amphiphilic group exhibited the strongest 
calcium antagonistic activity in SH-SY5Y neuroblastoma 
cells (IC50 = 5–14 mM), and A7r5 type lines (IC50 = 0.6–0.7 
mM). These compounds demonstrated moderately effective 
antioxidant activity. Compound 10 had no effect on mito-
chondrial function at dosages comparable to that used to 
block L-type calcium channels, and no damage was seen in 

vivo. As a consequence, this compound can be regarded as 
safe up to 100 mg/kg, with no toxicity. It was observed that 
the 1,4-DHP ring–bearing propargyl group at position 1 did 
not significantly influence the bioactivity of the tested deri-
vatives. Therefore, compounds with n-dodecyl pyridinium 
moiety at the para-position (Figure 11) might be the lead 
molecules for subsequent modifications and in vivo studies 
of cardiovascular and neurological disorders.176

Nitrendipine 11 is a DHP-type calcium antagonist with a 
simple structure, but low potency. Antihypertensive actions 
of nitrendipine analogues can be improved by increasing the 
alkyl-chain length at the 3 or 5 position.177,178 Zhou et al 
synthesized nitrendipine analogues, and their antihyperten-
sive properties were assessed in spontaneously hypertensive 
rats by means of intravenous immunoglobulin administra-
tion. S- and R-enantiomers had different calcium antagonistic 
activity in various studies.179 It was found that theS-enantio-
mer had 100-fold the antihypertensive properties of the 
R-enantiomer (Figure 12). Moreover, the efficacy of nitren-
dipine analogues was further enhanced by elongating carbon 
chain-length. These findings suggest that alkyl-chain length 
at position 5 is closely linked to the antihypertensive effects 
of nitrendipine analogues. DHP’s antihypertensive effects 

Figure 5 Effect of pyridine on key pharmacological parameters.
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were attenuated by extra-long or extra-short alkyl chains at 
position 5. On position 5 of DHP, an alkyl chain containing 
seven carbon atoms is the most appropriate length. 
Therefore, the strongest antihypertensive effect was observed 
for 5-n-heptyl-3-methyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4- 
dihydropyridine-3,5-dicarboxylate [(±)-12]. Antihypert 
ensive effects of (±)-12 and +-12 were compared, with +-iso-
mer being 1.79 times more potent at a dosage of 2 mg/kg than 
the raceme.180

Calcium channel–antagonistic activity of phenyl amino 
imidazolyl–bearing 1,4-dihydropyridines were also inves-
tigated by Zarghi et al. His research group replaced the 
ortho-nitrophenyl group at the para-position of nifedipine 
with a 2-methylthio-1-phenylamino-5-imidazolyl substitu-
ent. Then, calcium channel–antagonist activity (IC50) were 
determined in guinea pigs, which revealed that the con-
tractile responses elicited by these novel dihydropyridine- 
containing compounds inhibited higher K+ concentrations 

Figure 6 Some commercially available drugs containing the pyridine scaffold.
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in a dose-dependent manner. In the muscular membrane, 
these effects were comparable to those shown by nifedi-
pine and might be attributed to the suppression of Ca2+ 

entry via voltage-dependent calcium channels. However, it 
should be noted that the gut features a complex network of 
tissue, and we cannot rule out the potential of these com-
pounds acting differently on distinct muscular and neuro-
nal sites. A comparison of the activity of alkyl ester series 
in these compounds shows that by increasing the chain 
length of methylene at C3 and C5 ester substituents, activ-
ity reduces. For example, the t-butyl ester–containing 
compound was the least active among the series. Overall 

results suggested that most of the compounds had activity 
comparable to those of nifedipine, with the exception of 
two compounds, 13 and 14, being more active than nife-
dipine (Figure 13). As such, they can be potential leads for 
the design of calcium-channel blockers.181

Kumar et al reported anticoagulant activity for dihy-
dropyridine-containing compounds, which was assessed 
using activated partial thromboplastin time and prothrom-
bin time coagulation assays. Compound 15 (Figure 14) 
had a coagulation time of 720.35 seconds at 30 mg/mL. 
The standard drug heparin was used at s similar 
concentration.182

Figure 7 Some commercially available drugs containing the dihydropyridine scaffold.

Figure 8 FDA-approved vasodilators containing both pyridine and dihydropyridine scaffolds.
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Dyslipidemia is a complex disease that promotes ather-
osclerosis and cardiovascular problems.183 In 2001, the 
pyridine-containing drug cerivastatin was withdrawn 
from the market due to rhabdomyolysis risk. Later, another 
drug in the statin class, pitavastatin, was developed for 
lowering blood cholesterol (Figure 15).

In 2016, antihyperlipidemic compounds of type (ben-
zoylphenyl)pyridine-3-carboxamide were reported 
(Figure 16), and 16–17 demonstrated excellent in vivo 
activity.184 The antidyslipidemic activity of the com-
pounds were tested in vivo.

These compounds were able to lower total cholesterol 
(TC) from 11.0% to 24.8%. The compounds showed 
plasma phospholipid–lowering (PL) activity ranging from 
5.7% to 28.5%. The most active compound in the series 
was 17 (−28.5%), whereas gemfibrozil (39.1% PL- 
decreasing activity) was the least active. The scavenging 
capability of compounds was also tested against the pro-
duction of superoxide ions (O2–) using 100 and 200 mg/ 
mL allopurinol. Antioxidant activity of the compounds in 
the series was substantial, and those with tert-butyl ester 
functionality were found to be the most active. 
Compounds 18–22 demonstrated potential antidyslipi-
demic potential, but compounds 21–22 exhibited consider-
able antioxidant activity (Figure 17). It can tentatively be 
assumed that the ester group plays a key role in differen-
tiating antidyslipidemic and antioxidant activity. 
Antidyslipidemic potential was shown by those com-
pounds that contained methyl/ethyl ester groups, whereas 
antioxidant activity was displayed by compounds with 
tert-butyl ester functionality.185

Although many dihydropyridine-containing drugs are 
commercially available to manage hypertension, we, 
believe that further research in the pyridine–dihydropyri-
dine class of compounds will lead to the discovery of new 
pharmaceuticals to handle complications associated with 
cardiovascular diseases.

Anti-Infectious Drugs and Bioactive 
Compounds
Antibacterial Agents
Antibiotic resistance is a serious threat to public health, 
driving the search for novel inhibitors of bacteria. Most 
antibiotics are being resisted by bacterial pathogens, ren-
dering the development of novel, more effective antibac-
terial drug candidates a critical requirement. In the last 10 
years, the FDA has approved many pyridine-containing 11
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antibiotics, such as ceftaroline fosamil, tedizolid, ceftazi-
dime, and delafloxacin (Figure 18).

Jo et al synthesized oxazolidinone-bearing pyridine 
derivatives, which had potent antibacterial activity. In 
vitro and in vivo antibacterial studies were performed 
against troublesome Gram-negative and Gram-positive 
strains of bacteria and two antibiotic-resistant strains. 
Several substituted (hetero)aromatic rings were tolerated 
on the pyridine moiety, and the presence or orientation of 
the methyl group in the (hetero)aromatic rings had a pro-
found effect on antibacterial activity. The most active 
derivatives, 23–25 (Figure 19), displayed potent activity 
against a wide range of drug-resistant bacteria, as well as 
Moraxella catarrhalis and Haemophilus influenzae, and 
had longer half-lives in vivo than linezolid. They had 
4–16 fold the in vitro activity of linezolid, and and double 
the in vivo efficacy.186

In another study, oxazolo[4,5-b]pyridine derivatives 
were synthesized to derive antimicrobial agents. These 
compounds had excellent activity against methicillin-resis-
tant Staphylococcus aureus, which is responsible for wide-
spread hospital-acquired infections. Compounds 28 and 31 
were the most potent, with MIC values of 1.56–25 µg/mL, 
while 26, 27, 29, 30, 32, and 33 showed moderate activity 
(6.25–50 µg/mL) in comparison to the conventional drugs 
streptomycin and ampicillin (Figure 20). Further studies 
revealed that oxazolo[4,5-b]pyridine analogues were more 
active against Gram-positive bacteria than Gram-negative 
bacteria. Compounds 28 and 31 had potent activity against 
S. aureus methicillin-resistant strains, with activity of 
1.56–3.12 µg/mL, while standard drugs (ampicillin and 
streptomycin) had MIC values of 6.25–12.5 µg/mL. 
These compounds were also found to be active against 
other bacterial strains. Furthermore, the synthesized com-
pounds were docked in the enterotoxin protein of S. aur-
eus, which is a type A staphylococcal enterotoxin. 
Significant antibacterial activity for 28 and 31 in 

comparison to the standard drugs ampicillin and strepto-
mycin was further validated by in vitro and in silico 
studies. The compounds were then tested for ligand–pro-
tein binding (MRSA protein) affiniy toward S. aureus, 
wherein the compounds had higher ligand–protein binding 
affinity than the stand drugs.187

Novel pyrazolo[3,4-b]pyridine derivatives of 4-thiazo-
lidinone Schiff bases, and azetidin-2-ones have also been 
synthesized and screened for antimicrobial activity.188 

Most compounds exhibited moderate–high activity at 
0.12–62.5 µg/mL, wherein amphotericin B, ampicillin, 
and gentamicin were used as standard antimicrobial 
agents. Against the Fusarium oxysporum fungal strain, 
compound 37 had an MIC of 0.98 µg/mL, comparable to 
that of the standard antimicrobial drug amphotericin B. 
Significant cytotoxic activity was observed for these com-
pounds against the HepG2 cell line, with IC50 of 0.0158– 
71.3 µM in comparison to doxorubicin (IC50 = 0.008 µM). 
Compounds 34–38 also had antiproliferative activity (IC50 

= 0.0001–0.0211 µM) against the MCF7 cell line 
(Figure 21). Specifically, highly significant antiprolifera-
tive efficacy was displayed by compound 37 against 
MCF7 cells and HepG2, with IC50 of 0.0001 µM and 
0.0158 µM, respectively. These results suggest that these 
compounds might lead toward the development of promis-
ing and novel antimicrobial and antiproliferative drug 
candidates. These compounds undoubtedly hold great 
potential in the quest to develop novel antiproliferative 
and antimicrobial agents.188

Dihydropyridines bearing thiazole derivatives were 
initially assessed with in silico molecular docking simula-
tions to investigate their possible DNA gyrase inhibitory 
activity. Antibacterial activity was then assessed to vali-
date the results of computational studies, wherein com-
pound 39 demonstrated the highest efficacy against 
Aspergillus flavus and compound 40 had significant 
potency against C. albicans and A. flavus (Figure 22). 

Figure 9 Substitution-pattern analysis in pyridine and dihydropyridine in FDA-approved drugs.
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Because of the phenyl ring’s size and inductive impact, the 
presence of an electron-withdrawing group might be 
responsible for excellent activity.189

Pyridine rings containing 1,3,4-oxadiazole derivatives 
were explored by Lak et al.190 All synthesized compounds 
were evaluated for their antibacterial activity against 

Figure 10 Dodecylpyridinium moiety containing dihydropyridines with potent calcium antagonism in the A7r5 cell line.
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Figure 12 Highly potent calcium-channel antagonists.

Figure 13 Calcium-channel antagonists.

Figure 11 FDA-approved drugs containing pyridine or dihydropyridine scaffolds for the treatment of hypertension.
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Pseudomonas aeruginosa, S. aureus, Staphylococcus epider-
midis, Escherichia coli, Bacillus cereus, and Gram-positive 
bacteria showed greater inhibitory activity than Gram-nega-
tive bacteria. Most of the synthesized compounds were 
highly potent against S. aureus and S. epidermidis. 
Compounds 41 and 42 had strong antibacterial effects with 
excellent MIC and selectivity-index values (Figure 23). The 
key point in this study was the single-step synthesis of 
oxadiazole-pyridine derivative. This approach with sufficient 
molecular modification could be adopted as a cost-effective 
strategy to produce potent antimicrobial agents.190

In another study, 1,3,4-oxadiazole derivatives con-
taining indole and pyridine waere synthesized and eval-
uated against two strains of Mycobacterium tuberculosis 
— H37Ra and BCG — both in dormant and active 
conditions. Compound 43–45 showed remarkable anti-
tubercular activity (Figure 24). Antiproliferative activity 
of the synthesized compounds weas also tested on HeLa, 
PANC1, and A549 cell lines using modified MTT 
assays. Most were acytotoxic. Based on MIC values 
and cytotoxicity results, the selectivity-index values 
determined for 43–45, which were highly potent against 
Mycobacterium bovis BCG, while the compounds had 
index values ≥10. In addition, molecular docking studies 
were performed at the active site of enoyl reductase 
(InhA) for compounds 43–45. The encouraging results 
substantiated by selectivity, potency, and low cytotoxi-
city indicate these derivatives as potential antitubercular 
lead agents.9

In the FDA database, one can find many pyridine- 
containing drugs, such as isoniazid, ethionamide, and 
prothionamide, that are highly effective against mycobac-
teria for the treatment of tuberculosis (Figure 25).

Further efforts to discover new bioactive compounds 
resulted in the synthesis of 2-(1-adamantylthio) pyridine 

Figure 15 Cholesterol-lowering drugs in the statin class.

Figure 16 Antihyperlipidemic (benzoylphenyl)pyridine-3-carboxamide compounds.

Figure 14 N-aryl-1,4-dihydropyridines containing thiosemicarbazone.

Drug Design, Development and Therapy 2021:15                                                                             https://doi.org/10.2147/DDDT.S329547                                                                                                                                                                                                                       

DovePress                                                                                                                       
4307

Dovepress                                                                                                                                                              Ling et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 18 Pyridine-containing antibiotics approved by the FDA during the last decade.

Figure 17 Cholesterol-lowering compounds (18–22) containing dihydropyridine rings.
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derivatives, which were screened for antibacterial activity 
against 27 strains, antimalarial activity against 
Plasmodium falciparum, and anticancer activity against 
HepG2, A549, HuCCA1, and MOLT3 cell lines. The 
results suggested that 2-(1-adamantylthio)pyridine–type 
compounds constituted a new class of antibacterial, anti-
malarial, and anticancer agent with potential therapeutic 
applications. All the compounds were highly active against 
streptococci, showing antigrowth activity of 15–30 µg/mL. 
Compounds 46–49 were potent antimalarial, anticancer, 

and antibacterial agents (Figure 26). Surprisingly, 6-(1- 
adamantylthio)nicotinonitrile 49 had selective antimicro-
bial activity against β-hemolytic streptococcus, 
Edwardsiella tarda, Vibrio parahaemolyticus, and Vibrio 
cholerae. These findings suggest that compound 49 could 
be a promising antibacterial agent with potential ofor 
further improvement in its therapeutic properties.191

In summary, pyridine-containing compounds hold 
great promise for the development of pharmaceuticals 
against drug-resistant bacteria, since they exert 

Figure 19 Oxazolidinone–pyridine-substituted antibacterial agents.

Figure 20 Oxazolo[4,5-b]pyridines containing antibacterial agents with remarkable activity.
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significant inhibitory effects on pathogens. However, 
more research is needed to find a viable solution to 
drug-resistant pathogens.

Antifungal Agents
The recent rise in multidrug-resistant (MDR) fungal infec-
tions has led researchers to find new antifungal agents. 

Figure 21 Pyrazolo[3,4-b] pyridine–bearing compounds with significant effect against various Gram-positive and Gram-negative bacterial strains.

Figure 22 Antibacterial dihydropyridines with thiazole moiety.

Figure 23 Highly potent antibacterial agents against staphylococcal infections.
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Pyridine-containing triazolo derivatives demonstrate remark-
able antifungal properties. For example, thiadiazole-contain-
ing triazolopyridines have been found to display antifungal 
activity against Pseudoperonospora cubensis, Pseudomonas 
syringae pv. Lachrymans, and Corynespora cassiicola.192 In 
2016, Mu et al reported a series of hydrazone-containing 
triazolopyridine derivatives with significant antifungal activ-
ity against Stemphylium lycopersici, Botrytis cinerea, and F. 
oxysporum.193 In 2019, Wei et al designed inulineSchiff 
bases bearing pyridine rings and evaluated their in vitro 
antifungal properties against Phomopsis asparagi, F. oxy-
sporum f. sp. niveum, and Botrytis cinerea.194 Pyridine- 
grafted chitosan polymers have also been reported with 
improved antifungal properties.195 Pyridine has beeno 
grafted onto starch to control different fungi.196 In summary, 
fusing triazole and pyridine derivatives may lead to the 

development of broad-spectrum antifungal agents against 
MDR fungal infections.

Antimalarial Agents
A series of novel pyridyl–indole hybrids were described 
by Heba et al, which were designed using a fragment- 
based strategy. The compounds were tested for antimalar-
ial activity against chloroquine-sensitive (D6) and chloro-
quine-resistant (W2) strains of P. falciparum. Compounds 
50–55 (Figure 27) displayed the most potent antimalarial 
activity (IC50 =1.47–9.23 μM for D6 and IC50 =1.16–7.66 
μM for W2). Selectivity-index values were 1.47–8.3 for 
D6 and 1.7–10 for W2. Compounds 50, 51, and 54 demon-
strated antimalarial activity against D6 and W2. The dis-
tinctive feature of these compounds was the absence of 
substitution at the C2 position of the pyridine ring. 

Figure 24 Highly potent antitubercular compounds (43–45) with MIC values (µg/mL) against M. bovis BCG.

Figure 25 Pyridine-containing drugs against mycobacteria.

Figure 26 2(1-adamantylthio) pyridine derivatives with potent antimicrobial activity.

Drug Design, Development and Therapy 2021:15                                                                             https://doi.org/10.2147/DDDT.S329547                                                                                                                                                                                                                       

DovePress                                                                                                                       
4311

Dovepress                                                                                                                                                              Ling et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Furthermore, binding interactions of these compounds 
with quadruple mutant P. falciparum dihydrofolate reduc-
tase enzyme were investigated via molecular docking stu-
dies. Compounds 50–52 were the most active at the 
binding cavities of quadruple-mutant Pf DHFR-TS–active 
sites, indicating suitable binding associations that might be 
the mechanism influencing their activity as antimalarial 
agents.197

Xue et al reported fosmidomycin derivatives contain-
ing the pyridine scaffold that inhibited P. falciparum DXR 

with Ki values of 1.9–13 nM. The most potent compound 
(Figure 28) was elevenfold as active as fosmidomycin.198

We believe that pyridine-based compounds have 
immense potential for the development of antimalarial 
drugs, since they exhibit antimalarial effects due to hydro-
gen-bond interactions between pyridine nitrogen and 
cysteine of target proteins in the pathogen, thereby render-
ing such compounds highly effective against chloroquine- 
resistant strains.198

Antiviral Agents
For the treatment of HIV infection, the FDA data-base 
contains many pyridine- and dihydropyridine-containing 
drugs, such as nevirapine, tipranavir, doravirine, and indi-
navir (Figure 29).

In the last decade, research into new antiviral agents has 
resulted in the synthesis of pyridotriazines, furopyridines, 
and pyridothiadiazepinthiones.199 Among the synthesized 
ones, a few molecules had appreciable efficacy against ade-
novirus type7 and the rotavirus Wa strain. Compound 56 
suppressed viral titers by 60% and 53.3% for the rotavirus 
Wa strain and adenovirus type 7, respectively, and compound 
57 demonstrated 50% and 53.3% reductions, respectively. 
These compounds (Figure 30) can potentially be used as 
therapies for rotavirus and adenovirus type 7, which currently 
have no adequate treatment options.199

Figure 27 Highly active antimalarial pyridyl–indole hybrids.

Figure 28 Highly potent antimalarial pyridine-containing fosmidomycin derivative.
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In recent years, antiviral drugs have been developed 
as a result of the search for viable viral therapeutic 
approaches. Click chemistry is one of the most effective 
ways for producing bioorganic molecules, such as anti-
viral therapeutics. In a recent study, pyridine derivatives 
were acquainted with propargyl group by 
O-propargylation 58–59 (Figure 31). Cu-catalyzed 
cycloaddition of azido-sugars with substituted (propar-
gyl)oxypyridines or propargyl sugars with azidoethoxy-
pyridine derivatives resulted in high yields of desired 
1,2,3-triazoles. MTT and plaque-reduction assays were 

performed against the H5N1 influenza strain to evaluate 
antiviral activity. High activity and low toxicity were 
demonstrated by triazolyl glycoside 58. The effect of 
pyridinyl fragment binding to glycosyl triazole moieties 
on antiviral activity was studied using SAR correlations. 
Most of the compounds had weakly active to moderately 
active inhibitory profiles at different concentrations, 
with the exception of compound 59, which had the 
strongest activity. All tested compounds showed dose- 
dependent inhibitory behavior. Low cytotoxicity was 
observed for compounds 58 and 59.200

Figure 29 Pyridine/dihydropyridine-containing drugs in the market for HIV/AIDS treatment.

Figure 30 Pyridine–furan hybrid compounds with 50% reduction in viral titer against adenovirus 7 strain.

Figure 31 Potent antiviral compound 59 with activity against H5N1 influenza virus.
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Auxilin 2, also known as cyclin G–associated kinase 
(GAK), has been demonstrated to impact both the initial and 
late phases of the viral life cycle, thereby functioning as the 
master regulator against viral infection. This host-specific 
strategy offers many advantages, such as development of 
broad-spectrum antiviral agents and high barriers to resistance. 
Asquith et al initially discovered SGC-GAK-1 60, which has 
excellent GAK affinity with a KD value of 1.9 nm.201 Later, 
Jonghe et al developed potent and selective GAK inhibitors 
61–62 that were basically isothiazolopyridine-type com-
pounds with morpholine residue (Figure 32). These 

compounds had high GAK affinity, but were moderately 
active against dengue and hepatitis C viruses.202 Subsequent 
research showed that the introduction of dimethyl groups to 
the morpholine residue of 62 had favorable antiviral effects, 
which led to the discovery of 63. The compound was active 
against chikungunya, dengue, and Zika viruses.203 However, 
replacing the morpholine residue with carboxamides, alkox-
ides, and amines resulted in weak antiviral effects.204,205

Further modifications to the pyridine core of 63 were done 
to further improve the antiviral effect. The new compounds 
were highly active against dengue, with GAK-binding affinity 

Figure 32 Antiviral GAK inhibitors containing isothiazolopyridine scaffold.

Figure 33 Antiviral compounds capable of targeting cyclin G–associated kinase of dengue virus.

Figure 34 Antiviral compounds with high GAK-binding affinity.
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in the nanomolar range. For example, compound 64 inhibited 
GAK strongly (Figure 33) and was equally potent against 
dengue.206

A novel series of isothiazolopyridines containing 3.4- 
dimethoxyphenyl residue was also synthesized,206 wherein 
GAK IC50 values were 0.1–0.5 µM. Compound 65 had the 
highest GAK affinity (IC50 = 0.124 µM), whereas compound 
66 containing N-morpholinyl residue was fivefold less active 
(Figure 34). Diverse structural modifications at the active site 
of the 6-phenyl moiety’s position 4 can, however, be 
employed to alter antiviral activity.206

Although many pyridine-containing drugs are commer-
cially available to manage HIV/AIDS, further research on 
the isothiazolopyridine class of compounds could lead to a 
viable solution for other types of viral infections, such as 
dengue.

Anti-inflammatory Drugs and Active 
Compounds
Oxicam compounds are used to treat musculoskeletal dis-
orders: acute and chronic inflammation via inhibition of 
the cyclooxygenase isoforms COX1 and COX2.207 The 
FDA-approved oxicam NSAIDs containing the pyridine 
moiety are shown in Figure 35. These drugs are mainly 
used to treat musculoskeletal disorders, such as osteoar-
thritis and rheumatoid arthritis, by relieving painful 
inflammatory conditions.208

Clonixin (Figure 36) is another FDA-approved drug 
and has analgesic and antipyretic effects in chronic 
arthritic conditions.69 For etoricoxib, the FDA needs addi-
tional safety data for the approval. It is, however, licensed 
in >80 countries worldwide. The drug, which is a COX2 
inhibitor, is mainly used for the treatment of gout, anky-
losing spondylitis, osteoarthritis, psoriatic arthritis, and 
rheumatoid arthritis.209

Recently, many bioactive molecules have been 
reported to deal with inflammatory markers.210,211 

Thirumurugan et al synthesized indole-bearing pyridine 
derivatives and evaluated their anti-inflammatory activity 
against rat-paw edema. All compounds had remarkable 
anti-inflammatory activity, particularly 67–68, which 
demonstrated significantly higher activity than the stan-
dard drug indomethacin (Figure 37). The analgesic activity 
of dihydropyridine derivatives was also compared with 
aspirin. Compounds 68–70 had considerably higher 
analgesic activity.212

In an attempt to broaden the scope of anti-inflammatory 
research, Liu et al designed thienopyridine derivatives 
(Figure 38). When subjected to NO-production assays, 
most of the compounds were able to inhibit NO production. 
The most effective analogue, 72, substantially reduced NO 
production at lower doses (IC50 = 3.30 µM). Anti-inflam-
matory profiles were further investigated by evaluating 
TNFα-inhibitory activity of the most potent compound — 

Figure 35 FDA-approved oxicam-class NSAIDs for musculoskeletal disorders, such as osteoarthritis and rheumatoid arthritis.

Figure 36 Commercially available NSAIDs containing the pyridine ring.
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Figure 39 Highly potent anti-inflammatory compounds.

Figure 38 Thienopyridine derivatives (72–75) with anti-inflammatory and immunomodulatory profiles. IC50 values correspond to inhibition of NO production on murine 
RAW264.7 macrophages.

Figure 37 Indolyl pyridines (67–68) and dihydropyridine-containing compounds (69–71) with remarkable anti-inflammatory activity in animal models.
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72. Interestingly, compounds with piperazine residue — 74 
and 75 — demonstrated comparable effectiveness. These 
results indicated that thienopyridine-containing compounds 
of 72–75 may represented a new class of anti-inflammatory 
drugs that necessitated more attention.213

Yaqoob et al recently reported on highly potent anti- 
inflammatory compounds designed by employing pyridine- 
containing isonicotinic acid (Figure 39). Remarkable ROS- 
inhibitory activity was observed for compounds 76–79. 
Compound 76 was one of the most potent anti-inflamma-
tory agents, with IC50 of 1.42±0.1 µg/mL.214

The antagonizing hormone glucocorticoid stimulates 
hepatic glucose synthesis while inhibiting insulin- 
assisted glucose absorption in skeletal muscles and adi-
pose tissue.215 Glucocorticoidal stimulation, which is 
coordinated by 11β-HSD2 and 11β-HSD1 enzymes, is 
often used to measure glucocorticoid target–tissue 
activity.216 Enzyme 11-HSD1 is considered to play a 
crucial role during lipid and glucose metabolism in 
adipose tissue. Therefore, inhibitors of 11-HSD1 are a 
novel family of drugs that are being developed to 
address diabetic complications. The role of 11-HSD1 
in the development of insulin resistance and obesity 
has been shown in several preclinical investigations. 
Recently, α-glucosidase–inhibitory activity was tested 
in vitro using a new set of triazole-containing dihydro-
pyridine derivatives. When compared to the acarbose 
standard (IC50 = 395.17 µM), these compounds showed 

considerable α-glucosidase–inhibitory activity (IC50 = 
72.71–283.41 µM). Compounds 80–82 (Figure 40) 
seemed to have the highest inhibitory action against 
the enzyme, with IC50 values of 72.71±1.09, 73.83 
±1.17, and 85.96±1.84 μM, respectively. To understand 
the mechanism of action, the most efficient compounds 
(80 and 81) of the series were evaluated using in vitro 
enzymatic tests to assess their 11β-HSD1 enzyme–inhi-
bitory activity. The mechanism of action of 80 and 81 
was further confirmed using molecular docking analysis, 
which showed that both compounds bound strongly in 
the cavity of 11β-HSD1 receptors, resulting in appreci-
able dock scores, electrostatic energy, and hydrogen- 
bond interactions for the desired molecular complex 
(both sides and back chain). Overall, compounds 80 
(−9.758) and 81 (−8.595) demonstrated highly stable 
binding patterns for 11β-HSD1 in molecular docking 
studies.217

Larijani et al reported excellent α-glucosidase activity 
for coumarin-fused pyridines (Figure 41). Most of their 
compounds had IC50 values in the range of 101.0±2.0 to 
227.3±1.4 μM, whereas the standard drug acarbose had an 
IC50 value of 750.0±1.5 μM. Compounds 83–85 were the 
most potent, with IC50 values of 101.0±2.0, 111.3±1.5 and 
114.3±1.8 μM, respectively.218

Although many pyridine-containing NSAIDs are com-
mercially available for musculoskeletal disorders, such as 
osteoarthritis and rheumatoid arthritis, further research on 

Figure 40 11β-HSD1 inhibitors against diabetes mellitus.
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pyridine- or dihydropyridine-containing oxicams may lead 
to the development of effective drugs for the cure of acute 
and chronic inflammation.

Neurogenic Drugs and Bioactive 
Compounds
Neuroprotection may be defined as the maintenance, preser-
vation, and stability of neuronal functions and structures. It is 
a mechanism for smooth working of the nervous system and 
prevention of neural damage.219 The brain is a very sensitive 
part of body, so remains highly vulnerable to pathogens and 
damage causing neurodegenerative disorders, such as 
Parkinson’s disease, amyotrophic lateral sclerosis, epilepsy, 
brain tumors, and Alzheimer’s disease.220,221 These illnesses 
are main cause of neuronal death, including neural strokes, 
which are a result of different complications like calcium- 
homeostasis loss, cytotoxicity, metabolic failure, and oxida-
tive stress.222 Many pyridine- or dihydropyridine-containing 
drugs are being evaluated for the treatment of neurodegen-
erative disorders223 (Figure 42).

Alzheimer’s Disease
Nimodipine is a wide-spectrum neuroprotective drug that 
is widely used in Alzheimer’s disease, migraine, and post-
hemorrhagic vasospasm as an anti-ischemic agent.224 

Nimodipine (Figure 43) is well known for its relaxing 
potential for cerebral vasculature.225

Alzheimer’s disease is a neurodegenerative disorder 
characterized by memory dysfunction and cognitive 
impairment. A number of compounds based on pyridine 

and dihydroxypyridine have been synthesized and evalu-
ated for their anti-Alzheimer’s activity. León et al devel-
oped a series of tacrine–dihydropyridine hybrids decorated 
with pyrin scaffolds.226 The series was evaluated for inhi-
bitory potential against acetylcholinesterase. Compound 
86 had tenfold the activity (IC50 = 0.0048±0.001) of the 
donepezil standard (0.049±0.005; Figure 44).

Huperzine A 94 (Figure 45) is well recognized for its 
neuroprotective properties, which result in enhanced NGF 
production and expression, which are involved in the 
functional enhancement of neurons, their survival, and 
protection against damage in neurodegenerative illnesses 
(such as Alzheimer’s). It protects neurons from glutamate 
toxicity by decreasing glutamate-induced calcium mobili-
zation. It also protects rat pheochromocytoma cells from 
oxidative stress caused by hydrogen peroxide. Because 
oxidative stress exacerbates Alzheimer’s neurodegenera-
tion, huperzine A 94 is widely used to treat Alzheimer’s 
complications.227

Recently, a dihydropyridine derivative with pyridinium 
moiety 87 was found to be highly active as a gene-trans-
fection agent and displayed excellent mitochondrion-tar-
geted antioxidant activity.228 It was found to play an 
important role in protection against neural injuy 
(Figure 46), and causeed increased expression of proteins 
in the hippocampus and cerebral cortex. It was found that 
increased expression of the GAD67 enzyme in hippocam-
pus converted the glutamate to GABA, and GABA was 
found to protect the brain from neural injury. It regulated 
the development of spatial memory, and via synthesis of 
GABA it balanced neurotransmitters, consolidation, and 
stability of memory. Owing to its memory-improvement 
and neural protection abilities, it can be used in the treat-
ment of Alzheimer’s disease.

Dihydropyridine derivatives with pyridinium moiety 
can be a viable solution for the cure Alzheimer’s, since 
they are able to enhance the expression of crucial proteins 
in the hippocampus and cerebral cortex. In coming years, 
extensive research in this type of compound is anticipated.

Parkinson’s Disease
Pyrazoline-containing pyridine derivatives have been 
reported to display antiparkinsonian activity.229 For exam-
ple, compounds 88 and 89 have significant antiparkinso-
nian activity, with 0.8 relative potency compared to the 
reference drugs benzatropine and voltaren (Figure 47).

Several dihydropyridines have amino acids in their 
structure and are peptidomimetic in nature. The most 

Figure 41 Coumarin-fused pyridines with potent α-glucosidase activity.
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studied are glutapyrone 90 and tauropyrone 91 
(Figure 48). Both these compounds protect cerebellar 
granule cells from damage by lowering lactate dehydro-
genase, thus avoiding ischemia/hypoxia (lack of oxygen 

and glucose) and glutamate excitotoxicity. Tauropyrone 91 
can be used for the treatment of Parkinson’s disease, as it 
suppresses the inflammatory process in rats in a 
Parkinson’s 6-hydroxydopamine model at 6.25 g/L per 
day for 7 and 14 days. Tauropyrone 91 (1 mg/kg) shows 
dual actions in the brain. In some cases, it shows inflam-
matory and proapoptotic effects, but in azidothymidine 
toxicity, it acts as anti-inflammatory and antiapoptotic 
agent. The amino acid–containing monocyclic dihydropyr-
idines represent a new atypical group of DHPs, and data 
have shown their neuromodulatory potential and normal-
izing effect on protein expression in the brain.230–233

Although pyrazoline-containing pyridine derivatives 
have been reported to display antiparkinsonian activity, 

Figure 43 Structure of the wide-spectrum neuroprotective drug nimodipine.

Figure 42 Pyridine- or dihydropyridine-containing drug-repurposing candidates for treatment of neurodegenerative diseases.
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many reports in the literature have suggested that non– 
calcium agonistic 1,4-dihydropyridine derivatives demon-
strate remarkable neuroprotective effects, thus holding 
great potential for future drug design against Parkinson’s 
disease.

Cerebral Ischemia
Cerebral ischemia is also a neuronal disorder in which 
many noxious by-products and free radicals are generated, 
resulting in enzymatic activity being altered, which results 
in a breakdown of cellular phospholipids, proteins, and 
nucleic acids. Cerebral edema is a complication that 
occurs due to the overexpression of AQP4 whereby abun-
dant water enters the brain and the swollen brain is com-
pressed against the skull. This increased pressure in the 
cranium causes herniation and brain ischemia, leading to 
death. This condition is treated with piroxicam 
(Figure 49), which has inhibitory effects on AQP4 (the 
most abundant water channel in the brain). Pyridine ring– 
containing piroxicam 92 binds with AQP4, and in this way 
regulates it in brain to avoid cerebral ischemia and 
edema.234

Schizophrenia
Schizophrenia is a mental condition marked by behavioral, 
neurochemical, and morphological disorders. Antipsychotics 
that operate on molecular targets other than monoaminergic 
receptors have not yet been produced, despite significant pro-
gress in medication development for schizophrenia. 
GABAergic dysfunction may be implicated in this disease.235 

Marcinkowska et al recently discovered the imidazopyridine- 
type neuroprotective agent 93 (Figure 50), which shows poten-
tial affinity for serotonin 5HT2 and 5HTx receptors and anti-
psychotic-like activity. Compound 93 also shows positive 
allosteric modulator properties, high metabolic stability, and 
no hepatotoxicity.235

Senna spp. are a celebrated source of natural alkaloids 
of the piperidine and pyridine classes.236,237 Francisco 
et al isolated five new pyridine-containing alkaloids 
(Figure 51) from Senna and Cassia spp.: 8′-multijuguinol 
95, 7′-multijuguinol 96, methyl multijuguinate 97, 12′- 
hydroxy-8′-multijuguinol 98, and 12′-hydroxy-7′-multiju-
guinol 99, which were isolated from Senna multijuga 
leaves. All these compounds had acetylcholinesterase-inhi-
bitory activity comparable to the standard drug physostig-
mine. SAR studies have suggested that hydroxypyridine 
moiety is the key interaction site responsible for this 
activity, whereas the alkyl side chain also influences the 
acetylcholinesterase-inhibitory effect of the alkaloids.236 A 
summary of the neuroprotective compounds with their 

Figure 44 Highly potent AChE inhibitor.

Figure 45 Structure of naturally occurring huperzine A.

Figure 46 Compound 87 is capable of increasing expression of the GAD67 enzyme 
in the hippocampus.
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potential applications and tentative mechanisms is pre-
sented in Table 2.

Anticancer Drugs and Bioactive 
Compounds
Cancer is considered a major challenge to public health. 
There are many pyridine-containing drugs in the FDA 
database (Figure 52), eg, axitinib — a tyrosine kinase 
inhibitor — developed by Pfizer. For the treatment of 
cancer, other kinase inhibitors containing the pyridine- 
ring system are shown in Figure 53.

Recently, the effectiveness of chemotherapeutic agents 
has been severely limited by tumor resistance.238,239 In a 
very recent study, pyridine–thiazole hybrid compounds 
were studied by Alqahtani et al. These hybrids contained 
(hydrazonomethyl)phenoxy-acetamide spacers, and novel 
compounds were evaluated for their cytotoxicity potential 
against normal fibroblast cells (WI38), breast cancer 
(MCF7), laryngeal carcinoma (Hep2), prostate cancer 
(PC3), and liver carcinoma (HepG2). The drug 5-fluorour-
acil (5-Fu) was employed as the standard during these 
experiments. Promising anticancer activity against the 
HepG2 and MCF7 cell lines was reported for compounds 

Figure 47 Antiparkinsonian activity of compounds 88and 89were comparable to reference drugs.

Figure 48 Structure of glutapyrone (left) and tauropyrone (right).

Figure 50 Neuroprotective agent.
Figure 49 Pyroxicam binds with water-channel AQP4 to prevent cerebral ischemia.
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100 and 101, with IC50 values of 5.36 and 8.76 µM, 
respectively (Figure 54). Interestingly, both compounds 
had weak cytotoxic effects on normal cell lines (WI38). 
Docking analysis revealed valuable information about the 
binding sites, wherein the synthesized compounds inter-
acted with ROCK1 protein–kinase cavity. It can be safely 
assumed that combining pyridine and thiazole moieties in 
one molecular platform via a phenoxyacetamide spacer 
potentially results in novel compounds with considerable 
synergistic anticancer effects.240

Schiff-based pyridine derivatives containing 4-thiazolidi-
nones and azetidin-2-ones bearing pyrazolo[3,4-b]pyridine 

moiety have also been prepared. Their antiproliferative activ-
ity was tested using sulforhodamine B assays. In hepatocellu-
lar carcinoma (HB8065) cells, the compounds exhibited 
remarkable cytotoxic effects. Among the compounds assayed, 
102–106 had exceptionally high antiproliferative activity (IC50 

= 0.0091–0.0211 µM) against breast carcinoma cells (MCF7), 
whereas the standard drug doxorubicin had an IC50 of 0.099 
µM. Compound 102 displayed significantly high antiprolifera-
tive effects against MCF7 and HB8065, with IC50 of 0.0211 
µM and 1.65 µM, respectively. These findings imply that these 
compounds (Figure 55) are highly promising leads in the 
pursuit of new antiproliferative agents.188

Table 2 Summary of neurogenic/neuroprotective compounds with pyridine or dihydropyridine scaffolds

Compound 
ID

Scaffold type Potential 
application

Tentative mechanism

86 Pyridine Alzheimer’s AChE inhibition

87 Pyridine and 
dihydropyridine

Alzheimer’s Increase expression of GAD67 enzyme in hippocampus converts glutamate 
to GABA

88 Pyridine Parkinson’s ND

89 Pyridine Parkinson’s ND

90 DHP Parkinson’s Enhances caspase 3+ cells in the brain

91 DHP Parkinson’s Enhances caspase 3+ cells in the brain

92 Pyridine Cerebral ischemia Binds with water-channel AQP4 to prevent cerebral ischemia

93 Pyridine Schizophrenia Potential affinity for serotonin 5HT2 and 5HTx receptors

94 DHP Alzheimer’s AChE inhibition

95 Pyridine Schizophrenia AChE inhibition

96 Pyridine Schizophrenia AChE inhibition

97 Pyridine Schizophrenia AChE inhibition

98 Pyridine Schizophrenia AChE inhibition

99 Pyridine Schizophrenia AChE inhibition

Abbreviation: ND, not determined.

Figure 51 Neurogenically active pyridine alkaloids isolated from Senna and Cassia spp.

https://doi.org/10.2147/DDDT.S329547                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2021:15 4322

Ling et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Enasidenib and ivosidenib (Figure 56) were recently 
approved by the FDA for leukemia.241 Both are pyridine- 
containing first-in-class drugs.

In 2015, Sailaja et al studied pyridine–indole hybrids 
and had promising cytotoxicity results,242 wherein com-
pounds 107–109 had promising activity against K562 leu-
kemia cells (Figure 57).

Viradiya et al synthesized a series of benzylpyridi-
nium-bearing dihydropyridines (Figure 58). In MTT 

assays, these compounds had excellent anticancer activity 
against colorectal adenocarcinoma Caco2, lung cancer 
A549, and glioblastoma U87MG cell lines. For these cell 
lines, compounds 110–113 showed better anticancer activ-
ity than the widely used drugs carboplatin, gemcitabine, 
and daunorubicin. Compound 112 was the most potent in 
the series, 3.6-fold as potent as carboplatin and 4.2-fold as 
active than gemcitabine. Tthe mechanisms of action 
showed that the tested compounds induced cell death via 

Figure 53 FDA-approved kinase inhibitors with pyridine scaffolds.

Figure 52 Pyridine-containing anticancer drugs in FDA database.
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Figure 55 Pyrazolo[3,4-b] pyridine- and dihydropyridine-derived compounds.

Figure 56 Oncology drugs for leukemia recently approved by the FDA.

Figure 54 Pyridine–thiazole hybrids with remarkable anticancer effect in MCF7 breast adenocarcinoma.
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Figure 59 Fused heterocyclic derivatives containing pyridine moieties.

Figure 57 Substituent effect on cytotoxicity by pyridine–indole hybrid compounds.

Figure 58 1,4-Dihydropyridine-containing benzylpyridinium moieties with remarkable anticancer activity.
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apoptosis. The excellent anticancer capabilities of benzyl-
pyridinium-bearing dihydropyridines might be helpful 
against MDR cancer strains. However, to gain better 
knowledge of their mode of action, further in-depth 
mechanistic validation is still needed for these types of 
compounds.243

Naglaa et al recently designed a series of pyridine- 
containing anticancer agents (Figure 59). The newly 
synthesized compounds were investigated for in vitro 
growth activity against mammary-gland carcinoma 
(MCF7) and human hepatocellular carcinoma (HepG2) 
cell lines. Doxorubicin, an anticancer drug, was employed 
as a comparative standard under the same conditions. 
Against HepG2 and MCF7, most of the newly synthesized 
compounds showed significantly potent anticancer activity. 
The derivatives 114–116 displayed remarkable activity. To 
further confirm the hypothesized mechanism, molecular 
docking studies were conducted to evaluate affinity 
between the compounds and their binding energy with 
the enzyme. For potent compounds, the calculated binding 

energies were in good agreement with their activity against 
the MCF7 and HepG2 cell lines.244

Recently, Eman et al reported an important contribution 
toward new anticancer agents by developing a series of 
tetralin–pyridine hybrids, starting from 2-(pyridin-2-yl 
[oxy])acetohydrazide in appreciable yields (Figure 60). 
MTT assays were employed to evaluate the cytotoxic activ-
ity of these compounds against human MCF7 and HCT116 
cells. IC50 values were 7.7–9.0 µM against HCT116 cancer 
cells, comparable to the standard drug doxorubicin (IC50 = 
8 µM). The derivative 117–119 showed IC50 values of 21.0, 
33.3, and 60.3 µM, respectively, against MCF7 cells. It can 
tentatively be assumed that a tetralin–pyridine backbone is 
an effective antitumor pharmacophoric moiety against 
MCF7 cells. These findings suggest that all the tested 
compounds are more active against human colon cancer 
cells than human breast cancer cells.245

Phosphodiesterases (PDEs) have been recognized as 
important targets in cancer therapy, due to their critical 
role in apoptosis induction and inhibition of tumor-cell 

Figure 60 Tetralin–pyridine hybrids.

Figure 61 Highly potent anticancer compound with PDE3-inhibitory effect.
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growth. Some nonselective PDE inhibitors, eg, aminophyl-
line and theophylline, have been recognized as growth 
regulators in various carcinoma cell lines, suggesting a 
potential role as anticancer drugs for PDE inhibition. A 
range of imidazoaryl-containing dihydropyridine com-
pounds and their 2-oxo isostere derivatives was synthe-
sized and evaluated as PDE inhibitors by Atieh et al. The 
cytotoxic effect was also checked for the HeLa and MCF7 
cell lines. An extraordinarily high PDE3A inhibitory effect 
was demonstrated by compound 120, with IC50 of 3.76 
±1.03 nM (Figure 61). Compound 89 also displayed sig-
nificantly high cytotoxicity effects against MCF7 and 
HeLa cells (IC50 50.18±1.11 and 34.3±2.6 µM, respec-
tively). The strong association between IC50 values of 
cytotoxicity and PDE3A inhibition support the notion 
that PDE3 inhibitors could be used as cytotoxic entities. 
According to SAR investigations and docking studies, 
hydrophobic interactions were found to be equally impor-
tant in the formation of hydrogen bonds intended for 
PDE3 inhibition and cytotoxic effects of proposed 
derivatives.246

The crucial role of telomerase in tumor growth makes 
it a promising target for cancer treatment and other age- 

related illnesses. Telomere and telomerase are known to be 
linked to the progression of gastric cancer. Xin-Hua and 
others synthesized flavone containing 2-chloro-pyridine 
derivatives for telomerase inhibition (Figure 62). 
Modified telomeric repeat-amplification protocol assays 
were used to evaluated the telomerase-inhibitory effect of 
the compounds, and 121 and 122 showed significant activ-
ity against the SGC7901 gastric cancer cell line, with IC50 

of 18.45±2.79 µg/mL and 22.28±6.26 µg/mL, respectively. 
In order to determine the probable binding mode, docking- 
simulation studies were performed at 3DU6-active sites. 
Compound 122 was a more effective inhibitor of telomer-
ase by binding with the telomerase-active site.247

Fatma et al also reported disubstituted pyridines 
(Figure 63) and studied their anticancer activity against 
the HepG2 cells. Compounds 123–125 were found to have 
promising activity comparable to standard drugs and 5- 
fluorouracil.248

In 2016, pyridine–pyrimidine hybrid ring system–con-
taining compounds were screened at 10 µM against var-
ious cancer-cell lines,249 ande compound 126 (Figure 64) 
showed promising inhibitory effects against the NCI60 
cell lines, with IC50 of 1.40 µM for UO31, 1.55 µM for 

Figure 62 Antitumor agents with telomerase-inhibitory effects.

Figure 63 Compounds with remarkable activity against HepG2 liver cancer cells.
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SNB75, 1.60 µM for M14, 1.62 µM for SKMEL5 and 1.77 
µM for Colo205 cells.

Süss-Fink et al reported highly potent pyridine-based 
compounds [14] and evaluated their anticancer potential in 

A2780 (ovarian cancer) and A2780cisR (cisplatin-resistant 
cancer) cells. Pyridine-4-carboxylate containing a lipophi-
lic chain of ten carbon atoms 127 was highly cytotoxic, with 
IC50 values of 5 µM and 11 µM for A2780 and A2780cisR 
cell lines, respectively (Figure 65). Surprisingly, the arene 
ruthenium complex of 127 had remarkably high anticancer 
activity against both lines, the IC50 (2 µM for A2780) of 128 
being fivefold that of 127.250

Interestingly, introduction of an OH group to 127 ren-
ders the new compound 129, which is almost inactive 
(IC50 = 162 µM for A2780 and IC50 = 208 µM for 
A2780cisR; Figure 66). However, the p-cymene ruthenium 
complex 130 shows very high anticancer activity in the 
submicromolar range, with IC50 of 0.18 µM.251

Pyridine hybrids of isatin have been found to demon-
strate antiproliferative effects in MCF7, HT29, and HepG2 
cells, wherein compounds 131–133 had noteworthy activ-
ity (Figure 67).252

Higher activity in MCF7, U87MG, and HCT116 
cells have recently been studied with [1,2,4]triazolo 

Figure 64 Pyridine–pyrimidine hybrid ring system containing compound 126 with 
inhibitory effects against NCI60 cell lines.

Figure 65 Isonicotinic ester containing compounds 127 and 128.

Figure 66 p-cymene–ruthenium complex 130 with submicromolar anticancer activity against ovarian cancer cell lines.
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[1,5-a]pyridinylpyridines.253 Compound 134 had 
remarkably high anticancer effects in these cell lines 
(Figure 68).

In diphenyl-1-(pyridin-3-yl)ethylphosphonates,254 the 
compounds 135 and 136 also demonstrated cytotoxic 
effect against MCF7 and HepG2 cells (Figure 69).

Pyridine and dihydropyridine are considered attractive 
scaffolds for anticancer drug development, since many drugs 
containing these moieties are already in the market, having 
shown remarkable results. Rational design of new anticancer 
drugs can be achieved by incorporating these scaffolds into the 
backbone of bioactive molecules, followed by their analysis 
with computational methods to predict highly potent 

candidates. Drug repurposing of existing pyridine- and dihy-
dropyridine-containing pharmaceuticals should also be 
explored to accelerate the discovery of new anticancer drugs.

Conclusion
The present review is a critical analysis of various drugs and 
research on the design and development of assorted derivatives 
of pyridine- and dihydropyridine-based compounds. They 
have been characterized on the basis of their pharmacological 
activity. Specific structural features pertinent to particular 
activity have also been discussed. The pyridine core has far 
greater tractability to produce anti-infectious and anticancer 
agents. This is evident from the fact that the FDA has recently 

Figure 67 Structure simplification in pyridine–isatin hybrids resulted in better IC50 values.

Figure 68 [1,2,4]Triazolo[1,5-a]pyridinylpyridine–containing highly potent antican-
cer agent. Figure 69 Diphenyl 1-(pyridin-3-yl)ethylphosphonate–containing anticancer agents.
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approved many pyridine-containing antibiotics, such as cef-
taroline fosamil (2010), tedizolid (2014), ceftazidime (2015), 
and delafloxacin (2017). In the database, one can also find 
isoniazid, ethionamide, and prothionamide, which are highly 
effective against mycobacteria for the treatment of tuberculo-
sis. Combination of pyridine scaffolds with oxazolidinone hold 
great promise in this regard, since many such compounds have 
recently appeared in contemporary literature with remarkable 
antibacterial effects. For example, the compounds 23–25 have 
potent activity against a wide range of drug-resistant bacteria, 
as well as M. catarrhoides and H. influenzae, both in in vitro 
and in vivo evaluations. The FDA database also contains many 
pyridine-containing antiviral drugs, such as nevirapine, tipra-
navir, doravirine, and indinavir, which are being employed to 
manage HIV infection. During the last 10 years, many isothia-
zolopyridine-based compounds, such as 61–66, were devel-
oped as selective GAK inhibitors to thwart the initial and late- 
stage viral life cycle. Pyridine-containing oxicam compounds 
were also found to be promising against musculoskeletal dis-
orders, such as osteoarthritis and rheumatoid arthritis. For the 
treatment of cancer, pyridine was the integral part of numerous 
FDA-approved kinase inhibitors, such as acalabrutinib, nerati-
nib, abemaciclib, alpelisib, lorlatinib, and pexidartinib, 
whereas many pyrazolo[3,4-b]pyridine–containing com-
pounds (102–106), ha exceptionally high antiproliferative 
activity (IC50 = 0.0091–0.0211 µM) against MCF7 cells, 
while the standard drug doxorubicin had an IC50 of 0.099 
µM. In arene–ruthenium complexes with pyridine scaffolds, 
Süss-Fink et al found highly potent anticancer effects, with 
IC50 values being in the submicromolar range. Pyridine-con-
taining ruthenium compounds hold great promise for the repla-
cement of cisplatin-based anticancer drugs. Dihydropyridine 
ring–containing drugs mostly act as calcium-channel blockers 
and ware frequently employed for the treatment of hyperten-
sion and heart-related problems. Such drugs include nimodi-
pine, ciclopirox, efonidipine, nifedipine, milrinone, and 
amrinone. Cholesterol-lowering compounds (18–22) contain-
ing dihydropyridine rings were developed due to different 
antidyslipidemic and antioxidant effects of such a scaffold. 
Dihydropyridine-containing 80–82 ware able to inhibit 11β- 
HSD1 for the potential cure of diabetes mellitus. In the litera-
ture, one can also find numerous pyridine- or dihydropyridine- 
containing compounds (86–94) for the potential treatment of 
neurodegenerative disorders, along with many drugs-repurpos-
ing examples, such as dolutegravir, mastinib, nilvadipine, nilo-
tinib, clioquinol, imatinibs. Despite years of research, further 
work is still warranted to optimize their effects and understand 

their mechanisms of action. In summary, pyridine- and dihy-
dropyridine-containing compounds combined with broadened 
chemical space will help medicinal chemists to design bioac-
tive molecules for specific targets. Briefly, in view of the 
colossal structural diversity of pyridine- and dihydropyridine- 
containing compounds, the existing literature barely scratches 
the surface of possibilities for their pharmacological applica-
tion. Therefore, the interest in them is unlikely to die out 
anytime soon. We will see an increase in the structure, applica-
tion, and diversity of pyridine- and dihydropyridine-containing 
compounds, with great potential for new cardiovascular, anti- 
inflammatory, anti-infectious, neurogenic, and anticancer 
drugs containing the two heterocycles in the forthcoming 
decade.
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