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Novel classes of replication-associated transcripts discovered in viruses
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ABSTRACT
The role of RNA molecules in the priming of DNA replication and in providing a template for telomerase
extensionhasbeen known for decades. Since then, several transcripts havebeendiscovered,whichplay diverse
roles in governing replication, including regulation of RNA primer formation, the recruitment of replication
origin (Ori) recognition complex, and the assembly of replication fork. Recent studies on viral transcriptomes
have revealed novel classes of replication-associated (ra)RNAs, which are expressed from the genomic locations
in close vicinity to the Ori. Many of them overlap the Ori, whereas others are terminated close to the replication
origin. These novel transcripts can be both protein-coding and non-coding RNAs. The Ori-overlapping part of
the mRNAs is generally either the 5ʹ-untranslated regions (UTRs), or the 3ʹ-UTRs of the longer isoforms. Several
raRNAs have been identified in various viral families using primarily third-generation long-read sequencing.
Hyper-editing of these transcripts has also been described.
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DNA replication

The first step of eukaryotic DNA replication is the identifica-
tion of replication origin (Ori) through the origin recognition
complex (ORC), which is a multi-subunit structure composed
of Orc1-6p [1]. ORC serves as a landing platform for the
assembly of the replication forks. The unwinding of the dou-
ble stranded DNA molecule into two single strands is initiated
at the Ori. This process is carried out by the DNA helicase, an
enzyme disrupting the hydrogen bonds between the base pairs
of the complementary DNA strands. While the bacterial gen-
ome contains a single Ori, the replication of eukaryotic DNA
molecule is initiated at hundreds of thousands points.
Depending on the species, viruses have a single or a few
Oris. DNA viruses usually code for proteins that are respon-
sible for viral DNA replication [2–4]. However, in some cases,
such as the Epstein-Barr virus (EBV) during latency, viruses
can use the host replication proteins for viral DNA synthesis
[5]. The replication fork is the site for the assembly of the
replisome, a complex structure composed of the DNA poly-
merase (DNP), DNA helicase, topoisomerase, primase, DNA
gyrase, DNA ligase, and telomerase among others. First,
a short (11 ± 1bp long) RNA sequence is synthesized by the
primase enzyme, then this transcript is removed by an endo-
nuclease, which is followed by the elongation with the DNP
away from the origin of replication. Due to the 5ʹ to 3ʹ
directionality of the DNA synthesis, the leading strand is
continuously extended, whereas the lagging strand is synthe-
sized discontinuously from multiple RNA primers. The result-
ing Okazaki fragments are joined together by the DNA ligase
forming a single unified strand. In E. coli the termination of
DNA replication occurs at specific consensus sequences and
results in the disassembly of the replisome [6], while termina-
tion in eukaryotes is mostly not sequence specific [7]. Since

eukaryotes have linear DNA molecules, the DNP is unable to
synthesize the very ends of the chromosomes (telomeres), and
it leads to the shortening of telomeres in each replication
cycle. Telomeres act as protective caps to prevent chromoso-
mal integrity. In germ-line cells and in stem cells the telomer-
ase enzyme catalyzes the repair of the telomere sequences by
carrying a short complementary RNA molecule used for the
priming of this process.

Replication-associated transcripts in prokaryotes and
eukaryotes

The genomes of eukaryotic organisms are mostly comprised
of non-coding DNA. Transcriptomic studies have revealed
that the major parts of these genomic regions are transcrip-
tionally active, producing non-protein coding RNAs
(ncRNAs) [8]. These transcripts possess a wide range of
functionality at practically all levels of the genetic regulation,
including epigenetics, transcription, and post-transcriptional
processes [9]. Evidence is also emerging that certain ncRNAs
participate in the regulation of DNA replication. Besides the
RNA primers and the telomerase RNA component – which
were discovered decades ago, many replication-associated (ra)
RNAs have been identified in the past few years. A recent
genome-wide analysis has demonstrated that 72% of mamma-
lian ORC1s are associated with active promoters, 46.5% of
which controls the expression of protein coding genes,
whereas 53.5% controls ncRNA genes [10].

Regulation of RNA primer synthesis by raRNAs

The vast majority of bacterial plasmids encode the Rep pro-
tein, the function of which is to separate the two DNA strands
at the Ori region [11]. An alternative mechanism based on the
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regulation of replication by ncRNAs has been demonstrated
in a few cases. It has been shown that the Ori region of ColE1
plasmids of Enterobacteriaceae encodes two ncRNAs: RNA
I and RNA II [12,13]. RNA II acts as a pre-primer by hybri-
dizing with the DNA followed by being processed with RNase
H. The resulted RNA fragments tend to initiate the synthesis
of the leader DNA strand. RNA I is complementary to a short
region of RNA II, and functions as a modulator of RNA II by
binding to it, and thereby preventing the formation of RNA
II/DNA hybrid that is needed for the initiation of replication.
Besides the ColE1 family, a very similar RNA-mediated repli-
cation initiation mechanism has also been described in the
marine RNA-based (MRB) plasmid family of Vibrionaceae
[14]. Intriguingly, the sequences of MRB RNA I and RNA II
transcripts are evolutionarily unrelated to those of ColE1-
regulatory transcripts.

Inhibition of Rep synthesis by raRNAs

The expression of Rep protein itself is regulated in order to
control the copy number of the plasmids. The R1 plasmids
use, among others, an antisense RNA, termed CopA, for this
control. CopA acts at the post-transcriptional level through
binding RepA mRNA. The resultant double-stranded RNA is
digested by RNase III, thereby preventing RepA synthesis
[15]. Antisense RNAs also participate in the control of repli-
cation in ColIb-p9 plasmids. For the efficient translation of
Rep protein, a pseudoknot has to be formed on the Rep
mRNA. The Inc RNA has a complementary structure to the
Rep mRNA, and therefore, it can block the replication
through hybridization to the Rep mRNA [16].

raRNAs mediate ORC recruitment to the Ori

The mechanism of ORC recruitment to the Ori in eukaryotes
varies in the different species. The ORC lacks sequence-
specific DNA binding motives (except in yeast [17]), and so
far, it has been unclear what factors control ORC binding to
the DNA. One of the candidates are the non-coding raRNAs
as they can provide sequence-specificity for the origin forma-
tion. In the protozoa Tetrahymena thermophile ribosomal
DNA (rDNA) is amplified ~9,000 times during development.
The 26T RNA has been shown to mediate the recruitment of
ORC to the Ori region during the rDNA amplification
through base pairing with the rDNA Ori [18]. It has also
been demonstrated in mammalian systems that G-rich RNA
mediates ORC recruitment to telomeres and to AT-rich het-
erochromatin [19,20]. Vertebrate genomes express the evolu-
tionarily conserved Y RNAs, which are non-coding stem-loop
transcripts, and they play a role in the initiation of replication
[21,22]. The precise mechanism through which Y RNAs med-
iate their effects is unknown at present; however, it has been
shown that these transcripts are recruited to the chromatin by
the ORC.

Replication control by miRNAs

In addition to the above mechanisms, microRNAs (miRNAs)
have also been described to control DNA replication through

fine-tuning this process. The miRNAs normally target the
complementary mRNAs for translational repression or degra-
dation. For example, in human cells, miR-29a targets the
mRNA of Cdc7/Dbf4 kinase, which plays an essential role in
the initiation of DNA replication. DNA damage leads to the
up-regulation of Cdc7/Dbf4, which is accompanied by the
repression of miR-29a in order to maximize the efficiency of
repair processes [23].

Replication-associated RNAs in viruses

Replication-associated transcripts have also been identified in
viruses. For example, a small replication-regulating (sr)RNA
has been recently described in human BK polyomavirus
(BKV) isolated from murine mammary tumor cells [24].
This transcript binds simultaneously to both sense and anti-
sense DNA strands within the Ori region of the virus. The
srRNA dramatically inhibits the replication of the poliovirus
through interfering with the RNA primer synthesis, which
changes the structure of the initiation complex even when
the regulatory RNA is ectopically expressed in human cells
[24]. BKV has an additional RNA-based mechanism for the
control of replication: a miRNA targets the mRNA of the
large T antigen during the early stage of infection that helps
to establish persistence in the host cells [25]. Another example
for the viral raRNAs is a highly structured GC-rich transcript
of EBV, the function of which is to help for the viral proteins
EBNA1 and HMGA1a proteins in ORC recruitment, and the
origin formation at various chromosomal locations [26]. The
miR-BART2 is a miRNA encoded by the EBV genome, and it
binds to the mRNA of BALF5, which is the catalytic subunit
of the EBV DNP. Repression of DNP blocks lytic replication,
and it this leads to the establishment of latency in the
human [27].

nroRNAs – novel replication-associated transcripts in
herpesviruses

Next-generation short-read sequencing (SRS), and recently,
third-generation long-read sequencing (LRS) have identified
several novel raRNA molecules that are expressed from the
genomic regions mapped in close vicinity to the replication
origins in various viruses. These transcripts designated as
near-replication origin (nro)RNAs in herpesviruses and
further raRNAs in other viruses are supposed to be produced
by a mechanism that regulates the replication initiation and
the orientation of replisome progression, which is based on
the collision of the replication and transcription apparatuses
[28]. The herpesvirus family is subdivided into three subfa-
milies: alphaherpesviruses, including the human pathogenic
Herpes simplex virus type 1 (HSV-1) and the Varicella-zoster
virus (VZV) as well as the veterinary pathogen Pseudorabies
virus (PRV); betaherpesviruses, such as the Human cytome-
galovirus (HCMV); and gammaherpesviruses, including the
Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated
virus (KSHV). Alphaherpesviruses have two genera:
Varicellovirus (e.g. VZV and PRV) and Simplexvirus (e.g.
HSV-1). The genome of alpha- and betaherpesviruses are
composed of a unique long (UL) and a unique short (US)
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region, which are either both bracketed by inverted repeats
(IRs) such as in HSV-1, VZV and HCMV, or only the US
region is surrounded by IRs such as in PRV (Fig. 1).
Alphaherpesviruses express a variety of nroRNAs from the
DNA segment around their Oris. PRV contains three Oris,
one in its UL region (OriL), and two on the two copies of the
IRs (OriS). CTO-S (Fig. 2A), a 286bp ncRNA, is first
expressed at the onset of DNA replication (at 4 h post-
infection) [28,29]. Despite being the most abundant PRV
transcript, CTO-S is practically not expressed at all during
the early stage of viral infection [30], which is very rare even
among late viral transcripts. CTO-S has a transcription end
site (TES) isoform (CTO-AT) which overlaps the conver-
gently-oriented longer UL22 TES variant. CTO-L is a very
long TES isoform of UL21 transcript. CTO-M is transcribed
using the poly(A) signal of UL21 as a promoter. Except the
low-abundance CTO-AS, the rest of the CTO transcripts have
a common transcript start site (TSS). The CTO-M and CTO-L
transcripts overlap the OriS. The PTO and the PTO-US1
transcripts are encoded by the genomic segments located
near the PRV OriLs. The PTO is an ncRNA and it does not
overlap the Ori, whereas the PTO-Us1 (which can be consid-
ered as a very long TSS isoform of US1, or alternatively, a TES
variant of PTO) overlaps the OriLs. PTO-US1 contain an
intact open reading frame (ORF) of us1 gene, but it is
unknown whether this coding potential is realized in transla-
tion or not.

VZV contains two OriSs, one in each IR region, but it lacks
OriL. The VZV NTO transcripts are similar to those of the
PRV PTOs regarding their locations; however, the sequences
of these transcripts are non-homologous (Fig. 2B) [31]: for
example, the transcripts NTO1-3 overlap the ORF62 mRNA
in an antiparallel manner, which is not the case for PTO; it
does not overlap the ORF62-homologue IE180. The NTO2-4
RNAs are all non-coding. The NTO2-3 transcripts do not
overlap the OriS, whereas the spliced NTO1 (expressed in
two TES isoforms) does overlap it. Furthermore, the longer
TSS variants of ORF63 (ORF63-L) and ORF63-64 (ORF63-
L-64) are initiated very closely to the OriS (ORF63 is homo-
logous to the US1 gene of PRV and HSV-1). Intriguingly, two
closely-related organisms have evolved in parallel a distinct set
of transcripts around their OriSs with presumably identical
functions. The sequence of the nroRNAs appears to be irre-
levant, only the Ori-proximal location seems to be important.
A peculiar feature of the NTO3 transcript is that it is A to
I hyper-edited, which has not been observed in any other
VZV RNAs [31]. Hyper-editing has been shown to play
a role in inhibiting RNA interference through making the
mRNAs resistant to Dicer cleavage [32]. The function of this
nucleotide modification in VZV and the importance of its
proximity to the viral replication origin remain to be
explored.

Unlike in PRV, the HSV-1 us1 gene is located in the US
region but it also produces OriS overlapping transcripts: the
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Figure 1. The genomic structure of various herpesviruses. The genomes of herpesviruses are composed of varying number of unique and repeat regions. The
replication origins can be located either in the unique, or in the repeat regions, or in both.
Abbreviations: PRV: Pseudorabies virus; VZV: Varicella-zoster virus; HSV-1: Herpes simplex virus type 1; HCMV: Human cytomegalovirus; EBV: Epstein-Barr virus;
KSHV: Kaposi’s sarcoma herpesvirus; UL: unique long region; US: unique short region; TRL: terminal repeat of UL region; TRS: terminal repeat of US region; TR:
terminal repeat; IR: internal repeat; LUR: long unique coding region; Ori: replication origin.
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Figure 2. The locations of herpesvirus nroRNAs and replications origins. The replication-associated transcripts can overlap the Ori, or they can be in close vicinity to it.
An Ori-overlapping nroRNA can be a non-coding transcript, or alternatively they can be the 5ʹ-UTR, or 3ʹ-UTR region of a longer TSS or TES isoform of a mRNA.
Transcription initiation or termination in the proximity of the Ori can also affect the replication.
Coloring black rectangle: Ori; yellow arrow-rectangle: open reading frame (ORF); blue arrow-rectangle connected with a line: intron; blue arrow-rectangle: mRNAs;
red arrow-rectangle: non-coding RNA; red dashed rectangle: uncertain TSS and red rectangle with three black dots: transcript end terminating out of view.
Abbreviations: PRV: Pseudorabies virus; VZV: Varicella-zoster virus; HSV-1: Herpes simplex virus type 1; HCMV: Human cytomegalovirus; EBV: Epstein-Barr virus;
KSHV: Kaposi’s sarcoma herpesvirus
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5ʹ-coterminal ncRNA pairs, the OriS-RNA1 and the OriS-
RNA2 (Fig. 2C). The OriS-RNA1 has been shown to be
expressed with an early kinetics, whereas OriS-RNA2 is
a late transcript [33]. Moreover, the longer isoform of the
US1 transcript partially overlaps the OriS with its 5ʹ-UTR
[33]. Similarly, the 5ʹ-UTRs of the US12 transcript variants
also overlap the OriS. The OriL is located at a different
position than in the PRV, but this genomic location also
expresses an nroRNA, the OriL-RNA. In HSV, some
nroRNAs also overlap with each other in an antiparallel
fashion.

The OriLyts of HCMV [34], EBV [35] and KSHV [36]
contain binding sites for the transactivator proteins (IE2,
Zta and Rta respectively). In HCMV, a bidirectional pro-
moter in the OriLyt region has been shown to regulate
replication (Fig. 2D). This promoter could be functionally
substituted with an SV40 promoter. Further, IE2 activation
has been found to be required both for promoter activity
and for DNA replication [37]. The numerous 3ʹ-isoforms of
the small replicator transcript (SRT) overlap the essential
pyrimidine-rich region of the OriLyt, and therefore, they
have been implicated in the regulation of replication. SRT
is expressed from 2 h post-infection, and its expression
increases throughout the viral replication cycle. RNA4.9,
one of the most abundant transcripts of HCMV, also ori-
ginates in the OriLyt region [38]. It has recently been
shown that RNA4.9 regulates lytic replication both in cis
and in trans [39]. Two virion-associated RNA (vRNA)
species, one 300bp and another 500bp long, have also
been discovered in the OriLyt region forming RNA-DNA
hybrids. Such molecules have been supposed to be essential
for the initiation of viral replication [40,41].

Lytic gammaherpesvirus DNA replication is dependent on
the transcription in the viral Ori. The binding of KSHV Rta to
the Rta responsive element has been shown to be essential for
viral replication [36]. The produced OriLyt (T1.5) transcript,
an early polyadenylated transcript [42], is indispensable for
DNA replication [43]. The replication of EBV has also been
reported to be dependent on Zta-induced transcription in the
OriLyt [35]. The promoters and the transcription start sites of
both LF3 and BHLF1 are found in the right and left lytic
origins, respectively; however, no study has examined whether
the transcription of these specific transcripts are required for
the DNA replication.

Replication-associated transcripts in other viruses

Baculoviruses

The baculovirus Oris reside in the AT-rich repeat sequences,
which are homologous within the members of Baculoviridae
family [44,45] (Fig. 3A). The number and position of these
homologous regions (hrs) varies greatly between the taxa [46].
The most studied baculovirus, Autographa californica multiple
nucleopolyhedrovirus (AcMNPV) carries nine hrs [44,45].
Although the hrs have been identified as the main initiators
of viral replication, other studies suggest that non-hr sequences
[47,48] and promoters [49] can also act as origins of the DNA
synthesis. It has been previously shown that the whole

AcMNPV genome is transcriptionally active [50,51], resulting
in considerable read-through activity across all the hrs. LRS
studies have revealed that the main source of overlaps is the
very long transcripts spanning multiple oppositely-oriented
ORFs (complex transcripts): 15 out of the 29 overlaps are
formed by complex transcripts, seven by the most abundant
isoforms, four by polycistronic transcripts, two by longer 5ʹ-
UTR isoforms, while only a single overlap is formed by a longer
3ʹ-UTR isoform [50,51] (Fig. 3). Despite being the most numer-
ous among the raRNAs by sort, complex RNAs are represented
in low abundance [51], which indicates a much lower fre-
quency of read-through events than in core and polycistronic
transcripts as well as in UTR isoforms. Fourteen of the tran-
scripts overlap the hrs with their 3ʹ-UTRs, eleven with their 5ʹ-
UTRs, whereas in five transcripts (ORF114, PIF3-ORF114,
ORF57-C, FP5K-ORF60-59–58 and FP25-K), the first protein-
coding ORF overlaps the hr [50,51].

Poxviruses

The DNA primase-helicase encoded by Vaccinia virus
(VACV) has been suggested to use RNA primers for the
initiation of lagging-strand synthesis [52,53], although former
studies proposed a model of rolling hairpin mechanism for
viral replication [54,55]. The VACV DNA synthesis is
initiated near the genome termini, where a repeat region
forms a hairpin end acts as a conserved replication initiation
site [56,57]. SRS analysis have revealed multiple potential
replication start sites. The start positions of the leading strand
are located around the Apex of the junction of concatenated
VACV telomeric region within a near 400bp region, and
putative Okazaki fragments have been mapped throughout
the entire genome [58]. It has been demonstrated that
VACV telomeres contain promoters for late RNA production,
which may involve in concatemer resolution or in replication
[59,60]. Some of these late telomeric transcripts (lateRNAs)
bridge the entire Ori region. The 3ʹ ends of the lateRNAs vary
in length, and some of them encompass the entire telomeric
hairpin, which contains the Ori (Fig. 3B). It has been pro-
posed that the late transcription within the concatemer junc-
tion might play a role in opening up the DNA duplex during
the initiation of the replication [58].

Circoviruses

A stem-loop structure in the intergenic region serves as the
origin of replication for the small circular genome of circo-
viruses [61]. In the porcine circovirus type 1 (PCV-1), the 5ʹ-
UTR region of the core CAP transcript and of its two length
isoforms form a full overlap with the Ori. Similarly, the 5ʹ-
UTR region of the three REP length isoforms form a full
overlap, whereas the eight REP isoforms and the core REP
transcript overlap the Ori with 5bps. Additionally, the 3ʹ-
UTR of the Atr transcript, encoding the putative ORF3
protein, overlaps the Ori with 18bps, while the two very
long non-coding CTR and CTR’ transcripts fully overlap
the Ori [62–65] (Fig. 3C).
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Figure 3. Replication-associated transcripts in a baculovirus, a poxvirus and a circovirus. These transcripts, similarly to the nroRNA-s of herpesviruses, are located in
the close proximity of the replication origin, or they can overlap the Ori. a. Both ncRNAs and mRNAs have been described to start or terminate relatively close to the
Ori of AcMNPV and VACV, while many of these overlap the Ori. b. All transcript isoforms of the PCV-1, except the CTR, overlap the Ori with their 5ʹ-UTRs. c. The
concatemer junction region of the Vaccinia virus encloses multiple replication origins [58], which are overlapped by many non-coding transcripts expressed in low
abundance. The TSS and TES of these ncRNAs are highly variable.
Coloring: black rectangle: Ori; yellow arrow-rectangle: open reading frame (ORF); blue arrow-rectangle connected with a line: intron; blue arrow-rectangle: mRNAs;
red arrow-rectangle: non-coding RNA. The highly variable ncRNAs of VACV are shown by red arrow-rectangles.
Abbreviations: AcMNPV: Autographa californica Multiple Nucleopolyhedrosis Virus, VACV: Vaccinia virus, PCV-1: Porcine circovirus type 1; NR: nonrepeated sequences
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Interactions between the transcription and
replication machineries

It is debated whether eukaryotic cells efficiently separate
transcription and replication [66–68]. Concurrent tran-
scription and replication can lead to the confrontation of
the replication fork and the RNA polymerase. Using an
in vitro system, Liu et al. [69] have demonstrated that
RNA polymerase can continue elongation meanwhile the
replication fork progresses on the other strand, parallel to
it. In vivo experiments on a replicating plasmid in E. coli
have shown that head-to-tail collision does not impede the
progression of the replication fork, whereas head on colli-
sion does [70]. It has been demonstrated that crashes of the
replication fork with the transcription machinery cause
genetic instability in yeast and bacteria [71,72]. It has
been described that RNA:DNA hybrids formed at sites of
transcription-replication clashes, and that RNase H1 acts to
suppress the instability of DNA breakage hot spots known
as common fragile sites (CFSs) [73]. The authors suggest
that replication and transcription are spatially and tempo-
rally separated in eukaryotic cells in order to avoid the
confrontation of the polymerase molecules. DNA instability
has been shown to be dependent on the length of the genes
at a given genomic location because transcription of the
longer genes takes more time. Helmrich et al. [73] have
demonstrated that interference between the replication fork
and the transcription complex is inevitable in the longest
genes because of the inability of the two processes to be
separated at large transcription units during the replication.
This results in the formation of CFS, which is prone to
genomic instability. Altogether, the authors argue that the

ongoing replication negatively regulates the transcription
initiation in the long genes. The co-directional arrangement
of the replication and transcription in prokaryotic [74] and
eukaryotic [75] genomes may also serve to preclude the
collision of these machineries. An alternative explanation
for the separation of the transcription and replication is
that the interaction between these processes causes this
phenomenon, that is, the two processes may be under
a common control.

Transcription replication interference network (TRIN)

It has been observed that the overall transcription rate of the
individual PRV genes declines following the onset of DNA
replication [76]. Similar to other organisms, the expression
kinetics of herpesvirus genes is mainly governed by tran-
scription factors acting on the promoters of these genes.
Nevertheless, it is also possible that the process of replication
affects the gene expression, and vice versa, the transcription
exerts an effect on the progress of the replication fork. The
discoveries of raRNAs in herpesviruses, baculoviruses and
circoviruses [28,29,33,50,51,62,77,78], along with the general
repressive effect of DNA synthesis on the transcription sug-
gest that the two processes interact with one another on both
the replication origins and across the entire genome. We
present the proposed mechanism of the effects of nroRNAs
on the determination of the orientation of the replication
fork progression as well as the facilitatory effect of these
transcripts on the DNA synthesis (Fig. 4). It is assumed
that the RNP transcribing the CTO-M and CTO-L collides
with the replisome (at the OriL) progressing in two
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directions (θ-type manner), and as a result, it renders the
replication to be unidirectional (σ-type). In the meantime,
CTO-S transcription unwinds the DNA strands, thereby
helping the unidirectionality of the DNA replication. The
transcription of CTO-AT is supposed to reduce the expres-
sion of the convergent ul22 gene, thereby eliminating
a potential inhibitory effect of transcription on the replica-
tion and also advancing the DNA synthesis in a σ -type
manner. All in all, the CTO transcripts are thought to have
a role in the switch from the θ-type to the σ-type of replica-
tion. Alternatively, this mechanism may impede the initia-
tion of bidirectional replication. In this scenario, no θ-type
replication occurs in herpesviruses at all. We assume that the
interactions between the transcriptional machinery and the
replication fork form a transcription and replication inter-
ference network (TRIN), which regulates the gene expression
globally and determines the rate of the DNA synthesis in
a mutually interdependent manner. It is very likely that the
nroRNAs and the related raRNAs are not mere byproducts
of this interference mechanism, but they also have functions
as transcripts. This hypothesis is supported by the polyade-
nylation of these RNA molecules, the general function of
which is to protect the RNA integrity. The viral raRNAs may
direct the replication by forming R-loops [79].

Conclusions

It has become evident by now that all of the examined viruses
express transcripts or transcript isoforms, which overlap the
replication origin, or alternatively they start or end in close
vicinity of the Ori. Altogether, we can distinguish four types
of raRNAs on the basis of their coding potency and position
to the Ori: (1) non-coding transcripts that do not overlap the
Ori (such as CTO-S, CTO-S-AT, and PTO of PRV; NTO2,
NTO3 and NTO4 of VZV; as well as SRT and RNA4.9 of
HCMV); (2) non-coding transcripts that do overlap the Ori
(such as CTO-M of PRV); (3) mRNA isoforms with very long
3ʹ-UTR (such as CTO-L of PRV); and (4) mRNA isoforms
with very long 5ʹ-UTR variant [such as PTO-US1 of PRV,
OriS RNA1 of HSV-1, as well as NTO1v1 and NTO1v2 of
VZV]. The baculovirus raRNAs are all coding, two of them
exhibit ORFs-Ori overlapping. The VACV lateRNAs are all
non-coding. The difference between the size, location, expres-
sion characteristic, and posttranscriptional modification of the
various viral raRNAs do not necessarily means that they
would influence viral replication through distinct mechan-
isms. On the contrary, the expression of non-homologous
transcripts near the Ori suggests that the same function can
be solved in different ways, which are the result of convergent
evolution. The mechanistic details of how these replication-
associated transcripts exert their effects on the DNA synthesis
have not yet been ascertained. We hypothesize that these
transcripts are produced as byproducts of a mechanism reg-
ulating the DNA synthesis through the interaction between
the replication and transcription machineries, but these tran-
scripts very likely also function as RNA molecules. The inhi-
bition of replication initiation through intervening in raRNA
synthesis can be a useful approach for developing effective
antiviral therapies. Even though the proteins responsible for

replication differ in viruses and eukaryotes, the mechanistic
interactions between the replisome and the transcriptosome
may be universal.
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