Supporting Information

Identification of inosine monophosphate dehydrogenase as a potential target for anti-mpox virus agents

Takayuki Hishiki^{1†}, Takeshi Morita^{1†}, Daisuke Akazawa^{1¶}, Hirofumi Ohashi^{1¶}, Eun-Sil Park², Michiyo Kataoka³, Junki Mifune¹, Kaho Shionoya^{4,5}, Kana Tsuchimoto¹, Shinjiro Ojima¹, Aa Haeruman Azam¹, Shogo Nakajima⁴, Madoka Kawahara^{1,6}, Tomoki Yoshikawa⁶, Masayuki Shimojima⁶, Kotaro Kiga¹, Ken Maeda², Tadaki Suzuki³, Hideki Ebihara⁶, Yoshimasa Takahashi¹, Koichi Watashi^{1,4,5,7#}

¹Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, ²Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, ³Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, ⁴Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, ⁵Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan, ⁶Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan, ⁷MIRAI, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

†¶These authors contributed equally to this work.

*Corresponding author: Koichi Watashi, Ph.D.

Research Center for Drug and Vaccine Development, National Institute of Infectious

Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan

Phone: +81-3-5285-1111; E-mail: kwatashi@niid.go.jp

Table of contents

Fig. S1, S2, S3, S4, and S5 Table S1 and S2

Fig. S1

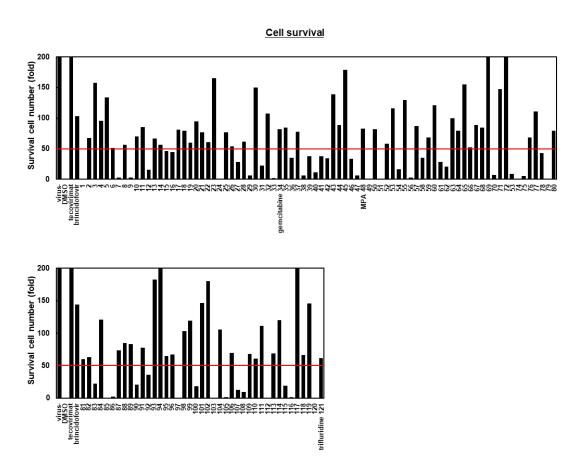


Fig. S1 Primary screening of the compound library in MPXV-infected VeroE6 cells. VeroE6 cells were infected with or without MPXV at an MOI of 0.1 and treated with compounds at 10 μ M (2 compounds treated at 2 μ M are shown in Table S1) or 0.1% DMSO. Tecovirimat and brincidofovir were used as positive controls. After 72 h of infection, the number of surviving cells was quantified by DAPI staining using a high-content imaging analyzer. The red line shows a 50-fold higher cell survival rate relative to that of the DMSO control in MPXV-infected cells. The numbers (1 to 121) in x-axis corresponds to the compounds listed in Table S1.

Fig. S2

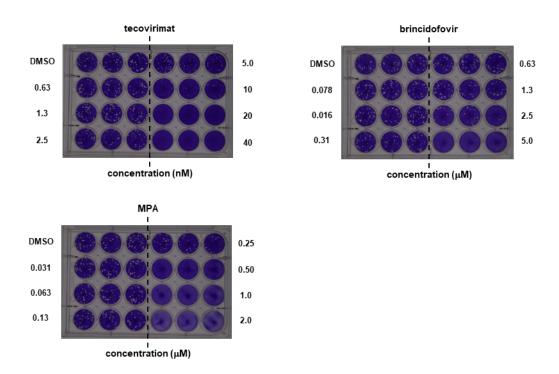
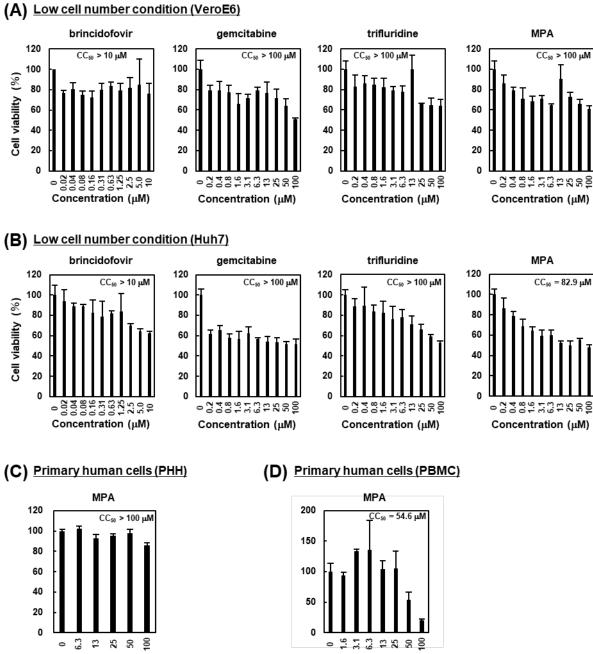



Fig. S2 Evaluation of antiviral activity by plaque reduction assay

VeroE6 cells were seeded at 1×10^5 cells/well in a 24-well plate. Cells were infected with MPXV together with the indicated concentrations of compounds. After 72 h of infection, cells were fixed and stained with crystal violet to count the plaque number.

Fig. S3

Cytotoxicity assay in various cells

Concentration (µM)

(A) VeroE6 and (B) Huh7 cells were seeded at 5 x 10³ cells/well in a 96-well plate as low cell number condition (normally, 2 x 10⁴ cells/well). (C) Primary human hepatocytes (PHH) were seeded at 7 x 10⁴ cells/well and (D) primary human peripheral blood mononuclear cells (PBMC) were seeded at 1 x 10⁵ cells/well in a 96-well plate,

Concentration (µM)

respectively. These cells were incubated with the indicated concentrations of compound for 72 h were subjected to the detection of cell viability. The y-axis shows values relative to that of the DMSO-treated cells as a control.

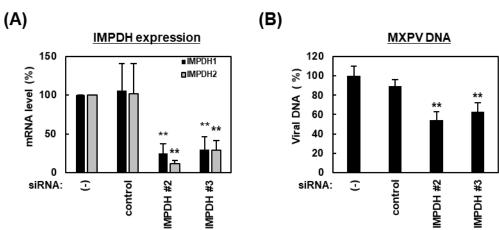


Fig. S4 Suppression of IMPDH expression reduces viral DNA

(A) Huh7 cells were transfected with or without [(-)] siRNA targeting IMPDH (IMPDH) or randomized control siRNA (control). At 48 h post-transfection, intracellular RNA for IMPDH1, IMPDH2, and actin were detected by real-time RT-PCR. The y-axis shows the value realtive to that for the untransfected cells. (B) Intracellular MPXV DNA levels at 72 h post-transfection with siRNA were quantified by real-time PCR and are shown as the percentage relative to that of the untransfected cells. Statistical significance is shown.

Fig. S5

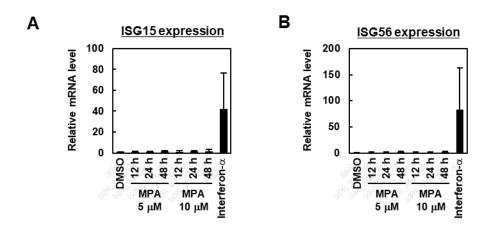


Fig. S5 Expression of interferon-stimulated genes (ISGs) upon MPA treatment.

Huh7 cells were incubated with MPA (5 or $10~\mu M$), interferon- α (1000 U/ml), or DMSO (0.1%). After incubation with MPA for 12, 24, and 48 h or with interferon- α or DMSO for 48 h, intracellular RNA was extracted and mRNA expression levels of ISG15 (A) and ISG56 (B) were measured by real-time RT-PCR. The Y-axis shows the value relative to that of DMSO-treated cells as a control.

Table S1 List of drugs in the library

1	
1	ABT-737
2	Linifanib
3	Dovitinib
4	Dasatinib
5	Gefitinib
6	Luminespib
7	MLN8054
8	Cabozantinib
9	Mocetinostat
10	BMS-754807
11	Tanespimycin
12	Delanzomib
13	Ganetespib
14	Onalespib
15	ABT-751
16	BIIB021
17	WZ8040
18	ENMD-2076
19	Cladribine
20	Methotrexate
21	Clofarabine
22	YM201636
23	OSI-930
24	Etoposide
25	KU-0063794
26	Vincristine sulfate
27	BX-912
28	Floxuridine
29	Genistein
30	SP600125
31	HMN-214
32	Fludarabine
33	Selisistat
34	Gemcitabine

2.5	4.1.C . D			
35	Adefovir Dipivoxil			
36	Azacitidine			
37	Cyclocytidine HCl			
38	Atorvastatin Calcium			
39	Gandotinib			
40	Ixazomib			
41	Ixazomib Citrate			
42	Avasimibe			
43	OSI-420			
44	UK 383367			
45	Apigenin			
46	Phloretin			
47	Tolbutamide			
48	Mycophenolic acid			
49	MG-132			
50	OSI-027			
51	URB597			
52	PF-04929113			
53	WYE-125132			
54	ICG-001			
55	Ibrutinib			
56	KW-2478			
57	Mardepodect			
58	KX2-391			
59	AMG-900			
60	MK-2461			
61	Nocodazole			
62	RITA			
63	Vistusertib			
64	Lonafarnib			
65	AZD4547			
66	TAE226			
67	TPCA-1			
68	StemRegenin 1			
69	Golvatinib			

70	ML130			
71	WHI-P154			
72	CCG 50014			
73	Niclosamide			
74	Anagrelide HCl			
75	Fexofenadine HCl			
76	Cabozantinib malate			
77	Nifuroxazide			
78	PD168393			
79	Oprozomib			
80	PP1			
81	XL888			
82	SC144			
83	KPT-185			
84	SKI II			
85	Skepinone-L			
86	KPT-276			
87	CNX-774			
88	NMS-E973			
89	Rociletinib			
90	TG003			
91	PTC-209			
92	Sorafenib			
93	CGP 57380			
94	AR-A014418			
95	VER-49009			
96	Triapine			
97	Afatinib Dimaleate			
98	Tenovin-1			
99	Tyrphostin AG 1296			
100	Butein			
101	Ivacaftor			
102	Vidarabine			
103	Teniposide			
104	Cyclosporin A			

105	Kaempferol
106	PAC-1
107	Azaguanine-8
108	Bergapten
109	NSC 319726
110	PD153035
111	Miconazole Nitrate
112	Navitoclax
113	Cytarabine
114	Erlotinib HCl (2 μM)
115	Torin 1 (2 μM)
116	Drospirenone
117	Idoxuridine
118	Ciclopirox
119	Econazole nitrate
120	Norethindrone acetate
121	Trifluridine

Compounds were treated at 10 μ M, with the exception of 114 and 115, which were treated at 2 μ M.

Table S2 Comparison of antiviral activity determined by plaque assay and that by viral DNA quantification

Compound	IC ₅₀ of plaque	IC ₅₀ of viral DNA	Significance
tecovirimat (nM)	8.97 ± 1.56	4.60 ± 1.41	N.S.
brincidofovir (μM)	2.58 ± 0.13	2.10 ± 0.69	N.S.
$MPA(\mu M)$	0.34 ± 0.09	0.26 ± 0.02	N.S.

Table S2

In comparison of IC₅₀ values between viral DNA levels and plaque reduction, the statistical analysis was performed using GraphPad Prism 9 software, and significance was determined using Mann-Whitney U test. N.S.; not significant.