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Mendelian randomization makes use of genetic variants as instrumental variables

to eliminate the influence induced by unknown confounders on causal estimation

in epidemiology studies. However, with the soaring genetic variants identified in

genome-wide association studies, the pleiotropy, and linkage disequilibrium in genetic

variants are unavoidable and may produce severe bias in causal inference. In this study,

by modeling the pleiotropic effect as a normally distributed random effect, we propose

a novel mixed-effects regression model-based method PLDMR, pleiotropy and linkage

disequilibrium adaptive Mendelian randomization, which takes linkage disequilibrium

into account and also corrects for the pleiotropic effect in causal effect estimation

and statistical inference. We conduct voluminous simulation studies to evaluate the

performance of the proposed and existing methods. Simulation results illustrate the

validity and advantage of the novel method, especially in the case of linkage disequilibrium

and directional pleiotropic effects, compared with other methods. In addition, by applying

this novel method to the data on Atherosclerosis Risk in Communications Study, we

conclude that body mass index has a significant causal effect on and thus might be a

potential risk factor of systolic blood pressure. The novel method is implemented in R

and the corresponding R code is provided for free download.

Keywords: causal effect, individual data, linkage disequilibrium, Mendelian randomization, mixed-effects

model, pleiotropy

1. INTRODUCTION

Conventional epidemiology has made enormous contributions to identifying certain significant
exposures associated with common diseases, like fine particle air pollution was found to increase
the risk of lung cancer mortality (Knowler et al., 2002; Pope et al., 2002). However, some
epidemiological findings have later been revealed to be misleading by randomized controlled
trials (RCTs) (Smith and Ebrahim, 2005). Furthermore, even if RCTs can correct the bias, despite
the high cost of RCTs, the randomization of some potential confounders like nutrition and
physical activity may be unfeasible (Smith and Ebrahim, 2003), thus some statistical methods were
developed and employed to infer the causal relationship of interested exposures and diseases in
epidemiology studies.

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.634394
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.634394&domain=pdf&date_stamp=2021-07-12
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yuehu@fudan.edu.cn
https://doi.org/10.3389/fgene.2021.634394
https://www.frontiersin.org/articles/10.3389/fgene.2021.634394/full


Wang et al. MR With Pleiotropy and LD

Mendelian randomization (MR) applies the method of
instrumental variables (IVs) to estimate the causal effect of
a non-genetic exposure on a disease outcome (Lawlor et al.,
2008). MR exceeds conventional observational epidemiology in
many aspects. Just as the role that IVs play in econometrics,
setting genetic variants, e.g., single-nucleotide polymorphisms
(SNPs), as instrumental variables, MR is capable of excluding
the unknown confounders which often interfere with the
conventional epidemiological analyses. What is more, not
like RCTs spending large amounts of time and money in
designing experiments and measuring physiological indexes, MR
is practical and economical in the sense of using statistical
methods. Methodological studies on MR in recent years have
facilitated the reuse of results from genome-wide association
studies (GWASs) (Burgess et al., 2013; Bowden et al., 2015, 2016).
The GWAS is able to detect association between genetic variants
and traits (Visscher et al., 2017). Immense results of GWASs are
available through various online databases, such as Gene ATLAS
and GWAS Catalog (Buniello et al., 2018; Canela-Xandri et al.,
2018), from where we can get summary statistics like effects
of SNPs on exposures and outcomes. To discover the causal
relationships between exposure-outcome pairs, these statistics
are necessary for MR methods. There are also some methods
developed to infer causal relationships in individual-level data
(Kang et al., 2016; Windmeijer et al., 2019), in addition to the
general two-sample MR methods, which can be easily conducted
and only require one-sample individual-level data.

Selecting a genetic variant as an IV, we must follow several
critical assumptions (Angrist et al., 1996), among which the
exclusion restriction assumption implies any effect of an IV on
the outcome must be via an effect of the IV on the exposure (i.e.,
no pleiotropy; Angrist et al., 1996). However, it is possible that
pleiotropy occurs in MR studies when taking multiple genetic
variants as IVs, as numerous conclusions from GWASs have
suggested (Soranzo et al., 2009; Lauc et al., 2013; Hu et al.,
2018; Parker et al., 2019; Watanabe et al., 2019). To correct
the bias in causal effect estimation produced by the latent
pleiotropy of IVs, MR-Egger was proposed and widely employed
in MR analyses, which viewed individual IV estimates as separate
study results in meta-analysis and applied Egger’s regression
for interpreting pleiotropy in causal inference (Bowden et al.,
2015; Yavorska and Burgess, 2017; Zhan and Fang, 2019).
The latest version of the package MendelianRandomization
(Yavorska and Burgess, 2017) allows MR-Egger to adjust for
the bias brought by the linkage disequilibrium (LD) between
genetic variants. However, MR-Egger (Bowden et al., 2015)
only considers correcting the average pleiotropic effect, ignoring
the potential variance of pleiotropic effects for invalid IVs,
which may also influence causal inference. Thus, whether MR-
Egger is able to handle LD and random pleiotropic effects
simultaneously needs to be verified. LDA MR-Egger (Barfield
et al., 2018) improves the performances of MR-Egger when
LD exists between genetic variants but still has problems when
the variance of pleiotropic effect is considerable. Other two-
sample MR methods such as MR-LDP (Cheng et al., 2020) and
RAPS (Zhao et al., 2020) are unable to correct the directional
pleiotropic effect.

TABLE 1 | Causal inference of BMI on SBP and GLU, respectively, in analyzing

ARIC dataset.

SBP GLU

Method β Standard

error

p-value β Standard

error

p-value

MR-LDP 0.0080 0.0051 0.1162 0.0055 0.0036 0.1349

RAPS 0.0104 0.0036 0.0042 0.0053 0.0025 0.0344

MR-Egger 0.0149 0.0098 0.1301 −0.0001 0.0066 0.9826

LDA MR-Egger 0.0136 0.0110 0.2280 −0.0012 0.0091 0.8919

LDMR 0.0143 0.0091 0.1330 −0.0019 0.0078 0.8108

PLDMRa 0.0163 0.0067 0.0244 −0.0007 0.0062 0.9146

PLDMR 0.0163 0.0067 0.0248 −0.0007 0.0062 0.9139

The threshold of p-value for selecting SNPs is 5 × 10−8. The total number of SNPs is 21.

In this paper, we first introduce the mixed-effects regression
model inherited fromMR-Egger (Bowden et al., 2015) and briefly
review MR-Egger method. Then we propose our novel method,
pleiotropy and linkage disequilibrium adaptive Mendelian
randomization (PLDMR), which models and corrects both the
mean and variance of pleiotropic effects, as well as LD between
genetic variants in causal effect estimation and statistical testing.
We also derive two approximations of PLDMR, i.e., LDMR when
the variance of pleiotropic effect is about zero and PLDMRa

when the sample size is sufficiently large. We further compare
the statistical properties of PLDMR against MR-Egger as well as
several two-sample summary-level data methods developed in
recent years, such as MR-LDP (Cheng et al., 2020), RAPS (Zhao
et al., 2020), and LDAMR-Egger (Barfield et al., 2018), in terms of
estimation and statistical testing in various simulation scenarios.
Furthermore, we apply PLDMR, LDMR, and PLDMRa to the data
of Atherosclerosis Risk in Communications Study (ARIC) and
identify the significant causal effect of body mass index (BMI) on
systolic blood pressure (SBP). We conclude that incorporating
the variance of the pleiotropic effects and LD into MR analyses
can efficiently estimate the causal effect and make more credible
causal inference.

2. MATERIALS AND METHODS

2.1. Mendelian Randomization and
Regression Models
Let us first recall the regression models used in MR-Egger
(Bowden et al., 2015). For n individuals, let the matrix G =

(Gij)n×m denote their centralized measurement of the m genetic
variants, where Gij is the genotype of individual i at the jth

variant, 1 ≤ i ≤ n, 1 ≤ j ≤ m. X = (X1,X2, ...,Xn)
T

and Y = (Y1,Y2, ...,Yn)
T are centralized measurements of the

exposure and outcome of the n individuals, respectively. The
exposure X is the linear combination of m genotypes and an
error term εX = (εX1 , εX2 , ..., εXn )

T , and the outcome Y is
the linear combination of m genotypes, the exposure and an
error term εY = (εY1 , εY2 , ..., εYn )

T . To simplify the model, we
reflect the influence of unknown confounders on X and Y in
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the correlatedness of the error terms εX and εY . The causal
effect of the exposure on the outcome is β in the model, which
is of interest. The coefficients γ = (γ1, γ2, ..., γm)

T represent
the effect of m genetic variants on the exposure, and α =

(α1,α2, ...,αm)
T is the pleiotropic effect of m genetic variants on

the outcome. Specifically,

X = Gγ + εX ,

Y = Gα + Xβ + εY ,

(
εX
εY

)
∼ N

((
0

0

)
,

(
σ 2
X ρσXσY

ρσXσY σ 2
Y

)
⊗ In

)
,

where σX ∈ (0,∞), σY ∈ (0,∞), ρ ∈ (−1, 1), α ∼

N(µα1, σ
2
α Im) is the random pleiotropic effect independent of

G, εX , and εY (Zhao et al., 2020), I is the identity matrix, ⊗ is
the Kronecker product, and 1 is all 1’s vector of lengthm. To take
genetic variants as valid IVs in the conventional MR studies, the
following assumptions should be satisfied (Angrist et al., 1996):
(i) The genetic variants are randomly assigned, thus independent
of unknown confounders; (ii) The genetic variants should be
associated with the exposure; (iii) Any effect of the genetic
variants on the outcome must be via an effect of that on the
exposure. Equivalently speaking, (i) assumes G is independent of
εX and εY ; (ii) requires γj 6= 0 for each genetic variant j, which
can be met by selecting genetic variants with methods like linear
regression; (iii) implies no pleiotropic effect, i.e., α = 0. Our aim
is to estimate the causal effect β and then make the statistical
inference on it. To this end, we employ the mixed-effects model
as described above to relax the requirement in (iii).

2.2. Revisit Egger Regression and
MR-Egger
Let Ŵ̃j and γ̃j denote the coefficient estimates of the simple linear
regression of the outcome Y and the exposure X on the genotype
G.j = (G1j,G2j, ...,Gnj)

T at variant j, respectively, and SE(Ŵ̃j)

denote the standard error of Ŵ̃j, 1 ≤ j ≤ m. An adaption of
Egger regression was proposed (Bowden et al., 2015) as follows
to estimate the causal effect,

Ŵ̃ = β0E1+ βEγ̃ + e
Ŵ̃
, e

Ŵ̃

∼ N(0, σ 2diag(SE2(Ŵ̃1), SE
2(Ŵ̃2), ..., SE

2(Ŵ̃m)),

where Ŵ̃ = (Ŵ̃1, Ŵ̃2, ..., Ŵ̃m)
T , γ̃ = (γ̃1, γ̃2, ..., γ̃m)

T .
Imposing the constraint of β0E = 0 on the above regression

model yields the inverse-variance weighted (IVW) estimate of
the causal effect (Burgess et al., 2013), which is also commonly
used in the meta-analysis. Notice that both MR-Egger and
IVW are applicable to the summary data that are accessible in
most GWASs.

2.3. PLDMR Adjusted for Pleiotropy and
Linkage Disequilibrium
With the rapidly increasing number of genetic variants involved
in Mendelian randomization studies, it is necessary to take the

correlation among variants into account in estimating the causal
effect of exposure on the outcome. Instead of the marginal
regression of exposure/outcome on the genotype, multiple linear
regression of Y on G, and X on G are employed to derive the

coefficient estimates Ŵ̂ and γ̂ , respectively. To be precise, Ŵ̂ =

(GTG)−1GTY and γ̂ = (GTG)−1GTX. Further, we have

Ŵ̂ = (GTG)−1GT(Gα + Xβ + εY )

= α + βγ̂ + (GTG)−1GTεY

= µα1+ βγ̂ + (α − µα1)+ (GTG)−1GTεY .

Based on the independence of α and εY and also their normality,
we have the following regression model

Ŵ̂ = µα1+ βγ̂ + ε
Ŵ̂
, ε

Ŵ̂
∼ N(0,W−1),

where W = [σ 2
α Im + σ 2

Y (G
TG)−1]−1. The corresponding

likelihood function is

L(µα ,β , σ
2
α , σ

2
Y ; Ŵ̂, γ̂ )

= (2π)−
m
2 |W|

1
2 exp

[
−
1

2
(Ŵ̂ − µα1− βγ̂ )TW(Ŵ̂ − µα1− βγ̂ )

]
.

Notice that both unknown parameters σ 2
α and σ 2

Y are involved in
W, which renders difficulty in the calculation of the maximum
likelihood estimates (MLEs). For the positive definite matrix
(GTG)−1, there exists an m × m orthogonal matrix Q and an
m × m diagonal matrix 3 such that (GTG)−1 = Q3QT . Let
r2 = σ 2

α/σ 2
Y , we then express W−1 as σ 2

Y (r
2Im + Q3QT) and

further diagonalize QTW−1Q as σ 2
Y (r

2Im +3). So the likelihood
function is transformed to

L(µα ,β , r
2, σ 2

Y ; Ŵ̂, γ̂ ) = (2πσ 2
Y )

−m
2 |r2Im + 3|−

1
2 ·

exp

[
−

1

2σ 2
Y

(QTŴ̂ − µαQ
T1− βQT γ̂ )T(r2Im + 3)−1(QTŴ̂

−µαQ
T1− βQT γ̂ )

]
.

We call the R package BB (Varadhan and Gilbert, 2009)
implementing the spectral projected gradient algorithm
(Varadhan and Roland, 2008) to get the MLEs µ̂α , β̂ , and r̂2. As

β̂ =
γ̂
T
W

1
2

(
Im − P

W
1
2 1

)
W

1
2 Ŵ̂

γ̂
T
W

1
2

(
Im − P

W
1
2 1

)
W

1
2 γ̂

∼ N


β ,

1

γ̂
T
W

1
2 (Im − P

W
1
2 1
)W

1
2 γ̂


 ,

where P
W

1
2 1

= W
1
2 11TW

1
2

1TW1
is the orthogonal projection onto

W
1
2 1. The plug-in method is invoked to get V̂ar(β̂), the
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estimate of the variance of β̂ . Based on these estimates, we
have approximately

β̂ − β√
V̂ar(β̂)

∼ t(m− 2),

which can easily yield the confidence interval of the causal effect
β or the p-value in testing the statistical hypothesis H0 :β = β0,
where t(m − 2) represents the t-distribution with m − 2 degrees
of freedom. We use PLDMR for the statistical inference of the
causal effect in the presence of pleiotropy and multiple SNPs in
LD in Mendelian randomization analyses.

Considering the sample size n is usually an order of tens of
thousands, we have GTG = O(n) and further W ≈ σ−2

α Im.
As an approximation in the situation of big n, the estimate
of the causal effect β and its variance are easily derived from
classical simple linear regression. We denote this approximation
as PLDMRa. The accuracy of this approximation is illustrated
in the simulation study for varied sample sizes from several
hundreds to several tens of thousands and varied σ 2

α .
Another special case of our interest is σ 2

α = 0, i.e., α = µα1, or
σ 2

α ≈ 0. We have W ≈ σ−2
Y (GTG) and then the estimates of the

causal effect and its variance can be derived approximately from
the following simple linear regression

Ŵ̂ = µα1+ βγ̂ + ε
Ŵ̂
, ε

Ŵ̂
∼ N(0, σ 2

Y (G
TG)−1).

So regressing Ŵ̂ on γ̂ yields

β̂LDMR =
γ̂
T

(
GTG− GTGJGTG

1TGTG1

)
Ŵ̂

γ̂
T

(
GTG− GTGJGTG

1TGTG1

)
γ̂
,

where J is all 1’sm×mmatrix, and further

β̂LDMR ∼ N


β ,

1

γ̂
T
(GTG)

1
2 (Im − P

(GTG)
1
2 1
)(GTG)

1
2 γ̂


 .

Again, we can use this normality to construct the confidence
interval of β or test the statistical hypothesis of β when the
variance of pleiotropic effect is about zero. We refer to this
method as LDMR. In contrast to PLDMR, the estimators of
LDMR and PLDMRa have closed forms and thus have no
computational burden.

2.4. The Design of Simulation Studies
To evaluate the proposed methods, a series of scenarios
of different parameter settings are designed to conduct the
simulation studies. We explore and compare the estimation
results and statistical properties of MR-LDP, RAPS, MR-Egger,
and LDA MR-Egger with PLDMR in nine combinations of three
patterns of pleiotropy (balanced, negative and positive) and three
magnitudes of linkage disequilibrium (no, low, and high). We

also vary n, the sample size, and σ 2
α , the variance of pleiotropic

effect, to illustrate whether PLDMR can be approximated by
LDMR and PLDMRa in the two situations, i.e., σ 2

α ≈ 0 and large
n, respectively. Additionally, we generate genotype data in LD for
every individual i as the steps listed below:

(i) Construct a Toeplitz m × m matrix 6g , i.e., the (j1, j2) cell

element is ρ
|j1−j2|
g , 1 ≤ j1, j2 ≤ m;

(ii) Randomly draw zi = (zi1, zi2, ..., zim)
T from MVN(0,6g )

and calculate 8(zij), where 8 denotes the cumulative
distribution function of N(0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m;

(iii) For the given minor allele frequency MAFj at the jth
locus, assign genotype Gij as the 8(zij) quantile of
Binomial(2,MAFj), 1 ≤ j ≤ m.

The Toeplitz matrix used in (i) is able to weaken the correlation of
genotypes at two loci j1, j2 with respect to their “relative distance”
|j1 − j2|. Also, we can control the relative strength of linkage
disequilibrium by tuning the magnitude of ρg .

3. RESULTS

3.1. Comparison of Statistical Properties
Between PLDMR and Existing Methods
All of the methods are implemented using R software (version
3.6.0). To evaluate the proposed methods comprehensively, we
choose MAFj ∼ Uniform([0.2, 0.4]), γj ∼ Uniform([0.5, 4]), 1 ≤

j ≤ m, and fix σX = σY = 2, ρ = 0.5. We further set ρg = 0, 0.3,
and 0.6 to represent no LD, low LD, and high LD; µα = 0,+0.1,
and −0.1 to represent balanced pleiotropy, positive pleiotropy,
and negative pleiotropy; σα = 0.01, 0.1 and 0.2 to represent
different strengths of the pleiotropic effect; n = 1,000, 5,000,
10,000, and 20,000 to represent a wide range of sample sizes. The
nominal significance level is 0.05 and the replications are 10,000
for each scenario. For brevity, results of the simulation study
with σα = 0.1 and m = 25 are shown in Figures 1, 2, and the
remainders are shown in Supplementary Material.

Four existing two-sample summary-level data methods, i.e.,
MR-LDP (Cheng et al., 2020), RAPS (Zhao et al., 2020), MR-
Egger (Bowden et al., 2015), and LDA MR-Egger (Barfield et al.,
2018), are also included in the comparison. Summary level data
is obtained by splitting the one-sample individual data into two
halves and then conducting simple linear regression in each part.
The reference LD correlation matrix needed for these methods is
generated from the genotypes of an additional independent 5,000
individuals. We use the R packages MendelianRandomization
(version 0.4.2) (Yavorska and Burgess, 2017), MR.LDP (version
1.0), mr.raps (version 0.3.1) to implement the above methods.
The code of LDA MR-Egger (Barfield et al., 2018) is downloaded
from the github homepage of the author. In addition to
PLDMR, LDMR, and PLDMRa, we also add PLDMRt, which
represents the PLDMR method evaluated at the true values
of σ 2

α and σ 2
Y instead of the estimated ones in weighted

linear regression.
Now let us look at the performances of the eight methods

mentioned above in terms of estimation and testing when the
true value of β is 0. As is shown in Figure 1, MR-LDP controls
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FIGURE 1 | Bar plot of the type I error rates of all methods under the null hypothesis of H0 :β = 0. Sample size (n = 1,000, 5,000, 10,000, 20,000), the number of

genetic variants m = 25, and σα = 0.1. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between

the genetic variants. The red dashed horizontal line indicates the nominal significance of 0.05.

type I error rate well in the scenarios of balanced pleiotropy
(left panel), but fails in the scenarios of directional pleiotropy
(mid and right panels). RAPS fails to control type I error rate
when LD or directional pleiotropy exists and only controls the
type I error rate in the top-left figure. The type I error rate
of MR-Egger method inflates as the sample size increases in
each scenario. The type I error rates of LDA MR-Egger and
LDMR behave similarly in each scenario, albeit there exists
some inflation in the scenarios of high LD (bottom panel).
No obvious inflation can be observed from the type I error
rates of PLDMR, PLDMRa and PLDMRt, although PLDMRa

shows some conservativeness in the scenarios of high LD.
Supplementary Figure 1 shows the estimation performance of
all methods. MR-LDP and RAPS are biased in the scenarios
of directional pleiotropy (mid and right panels). MR-Egger and
LDAMR-Egger behave similarly in each scenario, as they are both
severely biased in the scenarios of directional pleiotropy and high
LD (bottom-mid and bottom-right figures). LDMR, PLDMR, and
PLDMRa are unbiased in each scenario. However, the standard
errors of MR-LDP and RAPS are apparently smaller than
those of other methods in the scenarios of balanced pleiotropy
(left panel).

Figure 2 depicts the power of detecting the causal effect
when β = 0.05. The powers of MR-LDP are higher than
LDMR, PLDMR, PLDMRa, and PLDMRt in the scenarios of
balanced pleiotropy (left panel), but are invalid in the scenarios of
directional pleiotropy due to its failure in controlling type I error
rates. RAPS is the most powerful method for detecting the causal
effect in the scenario of balanced pleiotropy and no LD (top-left
figure), but is doubtful in other cases. MR-Egger can control type
I error rates only when sample size is small and the correlation
between SNPs is low (ρg = 0, 0.3), in which cases its power
is lower than LDMR, PLDMR, PLDMRa, and PLDMRt. LDA
MR-Egger performs better than LDMR, PLDMR, PLDMRa, and
PLDMRt when sample size is large and the correlation between
SNPs is low. Supplementary Figure 2 shows the performances
of estimations when β = 0.05, which exhibits a similar pattern
as when β = 0.

Figures 3, 4 show the performances of the eight methods
using different numbers of IVs. We fix sample size n at 5,000
in this simulation and the variance of the pleiotropic effect is
σα = 0.01.MR-LDP still fails to control the type I error rate in the
scenarios of directional pleiotropy and RAPS is unable to control
type I error rate either when LD exists or directional pleiotropy
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FIGURE 2 | Bar plot of the powers of all methods under the alternative hypothesis of H1 :β = 0.05. Sample size n = 1,000, 5,000, 10,000, 20,000, the number of

genetic variants m = 25, and σα = 0.1. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between

the genetic variants.

exists. It can be obviously observed that the type I error rates
of MR-Egger inflates when directional pleiotropic effect exists,
whereas LDA MR-Egger fails to control type I error rate in the
scenarios of directional pleiotropic effect and strong LD. LDMR,
PLDMR, PLDMRa, and PLDMRt control type I error rates at
0.05 and show no noticeable changes asm increases. In Figure 4,
the standard errors of all methods decrease with respect to the
number of IVsm, except for MR-LDP and RAPS in the scenarios
of directional pleiotropic effect.

In addition, we compare the type I error rates of all methods
under different settings of σα in Supplementary Figures 3, 5. In
Supplementary Figure 3 with σα = 0.01, MR-Egger can control
type I error rate at 0.05 in situations of balanced pleiotropy and
no LD but still fails in situations of directional pleiotropy, low
and high LD groups. LDMR, PLDMR, and PLDMRt control type
I error rates well at around 0.05, whereas PLDMRa obviously
is conservative, especially in high LD situations. Except for the
conservativeness showed by MR-LDP when sample size is small
in the scenarios of balanced pleiotropy, the behaviors of MR-
LDP and RAPS are almost the same as those when σα =

0.1. When σα = 0.2, the conclusion is similar to that when
σα = 0.1 (Supplementary Figure 5). Furthermore, the powers

of all methods when σα = 0.01 and 0.2 are also shown in
Supplementary Figures 7, 9, from where we can conclude that
the increasing magnitude of the powers of LDMR, PLDMR, and
PLDMRa with respect to sample size under large σα is much
slower than that with smaller σα . The behaviors of estimations
of all methods are shown by Supplementary Figures 4, 6, 8, 10.

3.2. Briefing and Preprocessing of ARIC
Data
Nowadays obesity has become a key issue of global concern (Xu
and Lam, 2018). In studying obesity, we usually use BMI to
define overweight and obesity. So it is an important factor to use
BMI in the relevant research. In order to investigate the causal
effect of BMI on SBP and glucose (GLU), we use data on 15,792
individuals from ARIC study. The ARIC study is one of the
largest multi-ethnic sampling frame studies in the United States.
Nearly 70% of the participants were European Americans, and
the rest were African Americans. ARIC includes 909,622 SNPs
and more than 450 phenotypes.

Regarding BMI as an exposure and choosing SNPs
significantly associated with BMI (p-value < 5 × 10−8)
with reference to GWAS Catalog database (We also choose
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FIGURE 3 | Bar plot of the type I error rates of all methods under the null hypothesis of H0 :β = 0. Sample size is n = 5,000, σα = 0.01, and the number of genetic

variants m = 50, 75, 100, 200. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between the

genetic variants. The red dashed horizontal line indicates the nominal significance of 0.05.

p < 1 × 10−4 as another threshold and the corresponding
results are shown in Supplementary Table 2), we identify 616
significant SNPs as instrumental variables from ARIC dataset
for MR analysis. We only consider individuals of white origin in
the following analysis for avoiding the population stratification
problem. After model checking, BMI follows normal distribution
and it is necessary to log-transform SBP and GLU. We adjust
for covariates including sex, age, and age2 by regressing BMI,
SBP, GLU on these covariates, respectively, and then use the
corresponding regression residuals as the adjusted BMI, adjusted
SBP and adjusted GLU for the subsequent analysis. After pruning
out SNPs with missing value proportion >20% and testing for
Hardy-Weinberg equilibrium of the candidate SNPs, multiple
linear regression is employed to select genetic variants positively
associated with the exposure BMI. Finally, 21 SNPs (see details
in Supplementary Table 1) and 6,782 individuals are included in
this study after the preliminary processing of data.

3.3. Causal Inference of BMI on SBP
The results of Ŵ̂ and γ̂ of 21 SNPs are depicted in Figure 5,
and the estimated causal effects, standard errors, and p-values

are listed in Table 1. The estimate of r2 is about 0.015, which
implies that pleiotropy may exist for those 21 SNPs. The point
estimate of the causal effect is 0.0162 with the standard error
0.00677. The result of PLDMRa is similar to that of PLDMR,
with estimator 0.0163 with standard error 0.00666 for causal
effect of BMI on SBP, while the MR-Egger and LDMR methods
give point estimates of 0.0149 (with standard error 0.00985)
and 0.0143 (with standard error 0.00911) for causal effect,
respectively. Most importantly, PLDMRa and PLDMR imply a
significant causal effect of BMI on SBP with p-values 0.0244
and 0.0272, while MR-Egger and LDMR show no significance
in the causal relationship of BMI and SBP (p-value = 0.130
and 0.133, respectively). In addition, we conduct MR-LDP, LDA
MR-Egger and RAPS methods by randomly selecting 1,000
individuals from the whole dataset to estimate reference LD
correlation matrix and splitting the remained 5,782 individuals
into two halves to obtain summary statistics. The estimates of
the causal effect given by MR-LDP and LDA MR-Egger are
0.00802 and 0.0136, respectively (with standard errors 0.00510
and 0.0109, respectively), which show no significance in the
causal relationship between BMI and SBP (p-value = 0.116 and
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FIGURE 4 | Plot of the performances of all eight estimating methods when β = 0. Sample size is n = 5, 000, σα = 0.01, and the number of genetic variants

m = 50, 75, 100, 200. µα = 0,−0.1, 0.1 represents the mean of pleiotropic effect and ρg = 0, 0.3, 0.6 stands for the relative strength of LD between the genetic

variants. The solid circles are the mean values of estimators, the upper and lower bars are the means plus and minus one standard error in 10,000 replications. The

red dashed line indicates the true value of β.

0.228, respectively). RAPS estimates the causal effect as 0.0104
(with standard error 0.00362) and implies a significant causal
relationship between BMI and SBP (p-value = 0.00419).

Existing studies have already shown that there is a relationship
between BMI and blood pressure or hypertension (Feng et al.,
2012; Shihab et al., 2012; Hall et al., 2015). Recently, a
population-based cohort study from UK Biobank including
120,000 individuals identified the association between BMI and
hypertension, SBP and DBP, where Mendelian randomization
was used to show significant positive association between
BMI and SBP with p-value 2 × 10−4 (Lyall et al., 2017).
In addition, a MR analysis is conducted by studying a total
of 19,502 people from 36 study populations of European
descents, confirming that BMI has causal relationship with SBP
with p-value 6.7 × 10−76 (Fall et al., 2013). These results all
support the conclusion inferred from our method. So when
pleiotropy exists and can not be ignored, our method PLDMR
is recommended.

3.4. Causal Inference of BMI on GLU
We also investigate the relationship between BMI and GLU
(Supplementary Figure 11). The estimate of r2 is 0.000406,

which means the pleiotropic effect is relatively small. Only RAPS
shows a significant causal association between BMI and GLU
(β̂ = 0.00527 with standard error 0.00249 and p-value 0.0344).
A large-scale MR study investigating a European population
(34,538 people) concluded no significant association of BMI with
glucose deterioration with p-value 0.787 (Wang et al., 2018).
No statistical significance between BMI and fasting glucose was
reported in another study (Xu et al., 2020) (p-value 0.546).
The results of PLDMR are consistent with the findings in
the literature.

4. DISCUSSION

4.1. Relation Between PLDMR and Other
Existing Methods
Many methods have been proposed to detect the invalid
instrumental variables involved in Mendelian randomization
analysis and then to correct the estimate of causal effect. For
example, the Q test employs Cochran’s Q statistic, which follows
χ2 distribution with one degree of freedom, to detect outliers
and exclude them out in further analysis of the summary
level data (Bowden et al., 2018). They also proposed a scale
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FIGURE 5 | Scatter plot of Ŵ̂ with respect to γ̂ in the analyses of BMI-SBP. The red line is the regression line of MR-LDP method, the brown dashed line is the

regression line of RAPS, the yellow-green dashed line is the regression line of MR-Egger method, the green dashed line is the regression line of LDA MR-Egger

method, the blue short dashed line is the regression line of LDMR method, the purple short dashed line is the regression line of PLDMRa, and the magenta long

dashed line is the regression line of PLDMR.

factor φ, which is associated with the squared ratio r2 =

σ 2
α/σ 2

Y , to quantify the degree of heterogeneity in the Q-
test (Bowden et al., 2018). Similar to the Q-test method,
MR-PRESSO (Verbanck et al., 2018) first conducts a global
test to detect the overall pleiotropic effect in a MR study,
and then applies outlier test to rule out invalid genetic
variants in follow-up study. Unlike the Q-test and MR-
PRESSO methods, PLDMR contains all of the genetic variants
associated with the exposure in a MR study and corrects
the causal effect estimate with the mean and variance of
pleiotropic effect.

Another strategy for adjusting the pleiotropy in MR studies is
to additionally assume that the number of invalid genetic variants
is less than half of the total number of variants, like the weighted
median estimator and sisVIVE (Bowden et al., 2016; Kang et al.,
2016). Adaptive lasso (Windmeijer et al., 2019) has been applied
to select valid IVs and propose consistent estimate for causal
effect by combining weighted median method with sisVIVE
for individual level data. With these additional conditions on

pleiotropic effect, it has been proved that α is estimable (Kang
et al., 2016) and identification of the true set of invalid genetic
variants is consistent (Windmeijer et al., 2019). However, when
these conditions are not met (for example, the fraction of invalid
genetic variants is >50%), these methods fail to give a proper
estimate of causal effect.

TWMR (Porcu et al., 2019) is similar to multivariable MR
(Burgess and Thompson, 2015), which takes multiple expression
quantitative trait loci as exposures to control the pleiotropic
effects mediated by expression loci to the trait. However, any
other pleiotropic effects mediated by environmental factors such
as diet and education can still be potential confounders which
affect the performances of these two methods. Moreover, we
have conducted simulation studies to verify the performance of
TWMR. Because we only consider one exposure in this study,
the TWMR is unable to identify the pleiotropic effects in this
case and thus the results cannot meet expectations. Furthermore,
GSMR (Zhu et al., 2018) can also be applied to two-sample
summary-level data. It solves the pleiotropy and LD problems by
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excluding the SNPs which have pleiotropic effect and/or strong
LD correlations between each other (Zhu et al., 2018). We also
conduct simulation studies to compare our method and GSMR.
As all the SNPs have pleiotropic effects and most of them are
correlated with each other in our simulation study, the number
of remaining SNPs after HEIDI test and LD pruning procedures
may be <10, which would cause the instability warning in
executing GSMR. In addition, it is observed from Figures 2A,C
(Cheng et al., 2020) in the comparison of MR-LDP and GSMR
that GSMR is not able to control type I error rate well when h2α is
not zero, which is equivalent to the parameter setting of µα = 0
and σ 2

α > 0 in our simulation, thus we have excludedGSMR from
the comparison.

PLDMR takes a similar strategy to RAPS (Zhao et al., 2020),
but PLDMR also borrows the idea from MR-Egger. To be
precise, RAPS only models the variance of pleiotropic effects
to correct for causal effect, while PLDMR models both the
mean and variance of pleiotropic effects. What is more, RAPS
assumes the selected genetic variants are in linkage equilibrium
but PLDMR allows the existence of LD in all IVs. Similar to
RAPS, MR-LDP (Cheng et al., 2020) also models the variance
of pleiotropic effects, which regards pleiotropic effects as latent
variables and uses expectation-maximization (EM) algorithm
to estimate the causal effect. LDA MR-Egger (Barfield et al.,
2018) improves MR-Egger when LD exists among the selected
SNPs. The estimator derived from LDA MR-Egger is actually
quite similar to that of LDMR, despite of a little difference in
weight matrices.

4.2. Limitations and Forecast of PLDMR
We have shown in Figure 1 that the small sample size n and high
LD may cause type I error rate inflation, although very slight, for
PLDMR method. This may mainly be caused by the relatively
large variance of PLDMR estimator when the sample size n is
small, since the term (GTG)−1 in the variance is associated with
n and the diagonal elements of this matrix decrease at rate 1

n .
On the other hand, the slow growth of PLDMR’s power under
large variance of pleiotropic effect (Supplementary Figure 9)
may be interpreted as “the strong pleiotropy in MR studies
can dominate the power growth benefit from the increase in
sample size.”

Furthermore, although we propose a measurement r2 =

σ 2
α/σ 2

Y to describe the relative strength of pleiotropy, we have
not developed a method to test for the potential pleiotropy in
genetic variants. The test for pleiotropic effect is important as it
adds the interpretability of MR analyses when PLDMR returns
a different result from the traditional MR methods which do
not take pleiotropy into account. MR-Egger models pleiotropy
in the intercept term of the Egger’s regression, thus the test for
pleiotropy is equivalent to test whether the intercept in regression
is zero (Bowden et al., 2015), while the Q-test in fact focuses
on the regression residuals (Bowden et al., 2018). When testing
pleiotropic effect with PLDMR, it is important to notice that we
must test two parameters µα and r2 simultaneously, which is
similar to the random-effects model in meta analysis (Han and
Eskin, 2011) and may be conducted by the likelihood ratio test
with a mixture of χ2 distributions.

PLDMR also has restrictions on the data involved. Because
of the requirement of matrix GTG in calculating multiple

regression coefficients Ŵ̂, γ̂ and weight matrix W
1
2 , individual

data is needed for PLDMR method, whereas two-sample MR
methods likeMR-Egger (Bowden et al., 2015) only need summary
level data and thus can be easily implemented using results
from online database like GWAS Catalog. To extend the
application of PLDMR in summary level data, similar to most
MR methods which consider LD in summary level data analyses
(Zhu et al., 2018; Porcu et al., 2019), we can approximately
substitute the matrix GTG with the reference LD panels such as
1000Genomes or even ARIC dataset itself. This is work left for
future study.

Ultimately, we conclude that although MR-Egger allows
correction for LD, the type I error of testing the null hypothesis
of H0 :β = 0 still inflates when directional pleiotropy and
LD simultaneously exist between genetic variants, and LDA
MR-Egger also fails to control type I error rate when there
exists strong LD between genetic variants. PLDMR method
controls type I error rate well and stays consistent with true
value plug-in method PLDMRt, especially when MR-LDP and
RAPS are unable to control type I error rates in the cases of
directional pleiotropic effects. We further conclude that LDMR
and PLDMRa are effective approximation of PLDMR method
when the variation of pleiotropy is small and the sample size is
large, respectively.
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