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The barrier surfaces of the gastrointestinal tract are in constant contact with various

microorganisms. Cytokines orchestrate the mucosal adaptive and innate immune cells

in the defense against pathogens. IL-10 and IL-22 are the best studied members of the

IL-10 family and play essential roles in maintaining mucosal homeostasis. IL-10 serves

as an important regulator in preventing pro-inflammatory responses while IL-22 plays a

protective role in tissue damage and contributes to pathology in certain settings. In this

review, we focus on these two cytokines in the development of gastrointestinal diseases,

including inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC). We

summarize the recent studies and try to gain a better understanding on how they regulate

immune responses to maintain equilibrium under inflammatory conditions.
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INTRODUCTION

The IL-10-related cytokine family includes several members, IL-10, IL-19, IL-20, IL-22, IL-24,
IL-26, IL-28A/B, and IL-29, which also belong to the class 2α-helical cytokines (1). IL-19, IL-20,
IL-22, IL-24, and IL-26 also belong to the IL-20 sub-family. All members of the IL-10 cytokine
family signal through heterodimeric receptors composed of an α-chain and a β-chain. Although
the IL-22 sequence shows only 22% homology with the sequence of IL-10, the protein structure of
IL-22 is remarkably similar to that of IL-10 (2). IL-10, IL-22, IL-26, IL-28, and IL-29 share common
usage of IL-10Rβ, while IL-10Rα specifically binds to IL-10. Because IL-22Rα is also used by IL-20,
IL-22, and IL-24, it is difficult to draw conclusions about IL-22’s function using knockout mice for
its receptors.

The best-characterized cytokines of the IL-10 cytokine family are IL-10 and IL-22. IL-10 is
regarded as the most important cytokine for suppressing pro-inflammatory responses in the
immune system. IL-22 is believed to act exclusively on epithelial cells to promote cell regeneration
and tissue repair. Particularly at the intestinal barrier, IL-10 and IL-22 play essential roles in the
prevention or induction of mucosal damage and the development of colitis-associated cancer
(CAC) (3, 4), which will be reviewed here as a major topic.

OVERVIEW OF IL-10 AND IL-22

IL-10 exerts its protective functions by regulating over-exuberant immune responses and
autoimmune pathologies (5). Thirty years ago, Th2 cells were found to produce a factor that
inhibited Th1 cell function (6); this factor was later named IL-10 (7). The human IL-10 gene,
present on chromosome 1q32, is 4.7 kb long and includes 5 exons. The murine IL-10 locus spans
5.1 kb on chromosome 1E4. The sequence identity and transcription binding sites between human
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and murine IL-10 are conserved (8). IL-10 not only prevents
cytokine production, but also the expression of chemokine
(9) and co-stimulatory molecules (CD80, CD86, and MHC
Class II) (10). IL-10 binds to IL-10Rα and IL-10Rβ, which are
commonly expressed onmost immune cells. Therefore, IL-10 can
regulate different innate and adaptive immune cells to evade the
development of immune pathologies in different ways, such as
inducing Treg and Tr1 cells or displaying an autocrine inhibitory
effect on macrophages and dendritic cells (DCs) (11).

IL-22 was first identified by Renauld et al. in IL-9-
stimulated murine T cells (12). Murine IL-22 gene is localized
on chromosome 10 while human IL-22 gene is located on
chromosome 12q15, near the genes that encode for IFN-γ and
IL-26, other members of the IL-10 family (13). The IL-22 gene
includes five exons and a 537 bp-long open reading frame that
encodes for a 179 amino acid protein. Mouse and human IL-

22 share 79% homology (14). Because the IL-22 receptor is

widely expressed on epithelial cells located at boundary tissues,
such as gut, lung, liver, and skin, the major function of IL-

22 is to provide a protective response against pathogens at
barrier surfaces (15, 16). The IL-22/IL-22R pathway has been
shown to modulate the expression of many genes involved
in tissue protection, survival, differentiation, and remodeling
(17–19). Although IL-22 is mainly produced by the lymphoid
lineage cells, including Th17 cells, γδ T cells, natural killer T
cells, and innate lymphoid cells (ILCs), it has been reported

FIGURE 1 | The IL-10 and IL-22 signaling pathways. IL-10 and IL-20 signal through the heterodimeric receptor complexes IL-10Rα/IL-10Rβ and IL-22Rα/IL-10Rβ,

respectively. JAK/STAT-3 signaling leads to the expression of downstream genes.

that myeloid cells (macrophages and neutrophils) also produce
IL-22 (20, 21).

IL-22 has two heterodimeric transmembrane receptors, IL-
22R1 and IL-10R2, which subsequently activate the JAK/STAT3,
ERK, and JNK pathways (22). Similarly, IL-10 also drives
its expression through the JAK-STAT signaling pathway (23)
(Figure 1). On translocation to the nucleus, Stat dimer drives
the transcription of Stat3-responsive genes, including SOCS-1
and SOCS-3 (24), thus mediating the anti-inflammatory activities
of IL-10. IL-22-induced STAT3 activation in epithelial cells
enhances their regeneration during tissue damage. Although

STAT3 activation is responsible for most of the physiological
responses of IL-10 and IL-22, both of them can activate STAT-1

and STAT-5 under certain conditions (2, 25).

REGULATION OF IL-10 AND IL-22
SECRETION BY MUCOSAL IMMUNE
CELLS

The intestinal flora, largely composed of resident bacteria, is most
densely populated in the GI tract. Tolerance of the endogenous
microbe is advantageous to the host while inappropriate immune

responses are normally controlled by the innate and adaptive

immune systems. IL-10 can be produced by various immune
cells, including DCs, macrophages, mast cells, natural killer (NK)
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cells, eosinophils, neutrophils, CD4+ and CD8+ T cells, and B
cells (5, 26, 27). IL-10 production was first described in Th2 cells
(6), following with Th1, Th9, and Th17 cells were also shown
to produce IL-10 (5). CD4+Foxp3+ regulatory T cells and IL-
10-producing T (Tr-1) cells have non-redundant functions in
controlling intestinal inflammation (26, 28). In addition to T
helper cells, macrophages, DCs, and neutrophils are also known
to secrete IL-10 (29).

Several transcription factors, including Blimp-1, c-Maf, and
GATA3, serve as potential regulators of IL-10 expression. Blimp-
1−/− mice have been shown to develop a lethal multiorgan
inflammatory disease caused by an accumulation of effector and
memory T cells (30). Inactivation of c-MAF in the Treg cells has
been found to result in dysfunction of IL-10 production and such
mice were prone to spontaneous colitis (31). The transcription
factor GATA3 has been described as a master regulator of IL-10
expression (32). In addition, CCAAT/enhancer binding protein-
β (C/eBPβ) (33) and NF-κB p50 (34) are able to bind to the IL-10
promoter, activating IL-10 transcription in macrophages.

At the mucosal sites, IL-22 is mainly produced by the
lymphoid lineage cells, including CD4+ and CD8+ T cells, γδ

T cells, NK cells, and ILCs (35, 36). Th1 cells were found
as a source of IL-22, initially (37). Although Th17 cells can
produce both IL-22 and IL-17, it is noteworthy that a distinct
human CD4+ T cell subset, known as Th22 cells, only produces
IL-22 but not IL-17 (17, 38). Th22 cells produce their own
cytokine profiles, such as IL-22, IL-26, and IL-33, which can be
stimulated by IL-6, IL-21, and IL-23 (39); however, there is a
debate about whether the Th22 cells are derived from Th17 cells.
Apart from the adaptive cells, innate cells, including the ILCs
and lymphoid tissue inducer (LTi) cells also serve as important
sources of IL-22, particularly in the gastrointestinal tract (40).
Th17 cells, type 3 innate lymphoid cells (ILC3s), and LTi cells
express CCR6 and IL-23R (41). The Lymphotoxin (LT) pathway
is only necessary for LTi cells but not for Nkp46+ ILC3s (42).
Contrarily, loss in Ahr expression does not impact LTi cells
formation and accumulation in the fetal intestine but influences
the maintenance of gut ILC3s and Th22 cells (43, 44). Besides, IL-
22-producing neutrophils have been reported to crosstalk with
colonic epithelial cells to upregulate the antimicrobial peptides,
RegIIIβ and S100A8 (21).

Numerous factors can regulate IL-22. IL-23 is believed to
be a major inducer of IL-22 production due to the similar
phenotype displayed by IL-23Rα−/− mice and IL-22−/− mice
(45). DCs and CX3CR1+ macrophages are potent sources of
IL-23 (46, 47), as well as IL-1β (48). Constant IL-1β signaling
is required for sustained IL-22 production (49). Although IL-7
does not directly induce IL-22, it can stabilize RORγt expression
in all IL-22-producing subsets (50). AhR is critical for ILC3-
derived IL-22 production, because CD4+ T cells from AhR−/−

mice develop Th17 cell responses, but fail to produce IL-22 (51).
Notch signaling is also necessary for both NCR+ and NCR−

ILC3 subsets to produce IL-22 (52). On the contrary, TGF-β
(53), ICOS (54), and IL-27 (55) have also been shown to prevent
the production of IL-22. Lastly, IL-22BP is a natural inhibitor
of IL-22, having more than a 20-fold higher affinity for IL-22
than the cell surface receptor chain IL-22R1 (56), thus playing

a pathogenic role in inflammatory bowel disease (IBD) (57) and
multiple sclerosis (58) patients.

IL-10 AND IL-22 IN MUCOSAL
INFLAMMATION

IL-10 and IL-22 target vastly diverse cell types and induce
different downstream pathways. IL-10 prevents inflammatory
responses by acting on Treg cells or macrophages, while IL-
22 directly promotes tissue epithelial cell regeneration and
repair. In these ways, they maintain barrier integrity and reduce
tissue damage.

IL-10
IL-10 is regarded as a major anti-inflammatory cytokine
associated with many autoimmune diseases in humans and
mice (2). IL-10 is highly relevant to IBD, as exhibited by the
development of spontaneous enterocolitis in both IL-10−/−

and IL-10Rβ−/− mice (59, 60). In humans, polymorphisms
in IL-10 (61), IL-10Rα, and IL-10Rβ (62) have been found
to be correlated with very early-onset of colitis. Genome-wide
association studies (GWAS) have further revealed an important
role of the IL-10 axis in IBD pathogenesis (63). All the above
data indicate that IL-10 signaling is important for maintaining
gastrointestinal homeostasis. Interestingly, germ-free IL-10−/−

mice do not develop colitis and the administration of antibiotics
prevents colitis (64), indicating that the gut microbiota is
necessary for the development of colitis. A single species,
Helicobacter hepaticus, is responsible for this exacerbated disease
(65). H. hepaticus-infected IL-10−/− mice display significantly
increased production of IL-12 and IFN-γ, indicating that IL-
10 stimulation in response to intestinal flora is important for
preventing IBD.

IL-10’s protective function has been identified in many
colitis models, including the DSS-induced colitis model and the
CD45RBhi T cell transfer colitis model, which mimic ulcerative
colitis (UC) and Crohn’s disease, respectively (66). IL-10 inhibits
IFN-γ production by Th1 cells in mice reconstituted with
CD45RBhiCD4+ T cells (67) and reduces Th17 responses in the
DSS model (68, 69). As microbiota is involved in the normal
physiological status of the colon (70), the immunomodulatory
effects of microbiota-produced short-chain fatty acids (SCFAs)
have been examined. SCFAs not only promote IL-10 production
by Th17 cells and reprogram their metabolic activity toward
elevated glucose oxidation (71), but also induce antigen-
specific IL-10 secretion by Th1 cells to maintain the intestinal
homeostasis through G-protein coupled receptor 43 (72).

Because the IL-10Rα receptor is widely expressed on T
cells, B cells, macrophages, and DCs in the colon, identifying
the specific immune cell lineage responding to IL-10 is
important to understand IL-10’s pivotal role in regulating colonic
inflammation. Mice with Treg cells specifically lacking IL-10 or
IL-10Rα have been found to be prone to develop spontaneous
colitis (73, 74), indicating that IL-10 enables Treg cells to
suppress pathogenic Th17 cell responses in colitis (75), similar
to the observation in mice with Treg-specific ablation of Stat3
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(76). By using conditional knockout mice with macrophages
specifically lacking IL-10Rα, we found these highly activated
macrophages could produce large amounts of IL-1β together
with IL-6, promoting further Th17 cells development and colitis
pathogenesis (77). We further identified IL-10 as a secreted
inflammasome-tolerizing factor that could suppress caspase-1
activation and caspase-1-dependent maturation from pro-IL-
1β to IL-1β through regulation of caspase-8 activation (78).
Similarly, mice with CX3CR1+ macrophage-selective deletion of
IL-10Rα have been found to develop severe spontaneous colitis
(79). In addition, macrophages in Rag2−/−IL-10Rβ−/− mice
showed impaired iTreg generation and Treg function. Since the
shared usage of IL-10Rβ by IL-10 and IL-22 is well-known (80),
further studies need to investigate the separate role of these two
cytokines. Clinically, the therapeutic effect of anti-TNF treatment
in IBD patients is also dependent on the IL-10 signaling in
macrophages (81). In the DSS-induced colitis model, IL-10 exerts
its protective role through the macrophage-ROS-NO axis; lamina
propria macrophages produce substantially greater levels of NO
and ROS when they are unable to respond to IL-10 (82). IL-
1β mediates IBD in patients with IL-10 receptor deficiency was
reported thereafter (83). Taken together, these studies prove that
IL-10 signaling in the intestinal macrophages is indispensable for
controlling mucosal inflammation.

It is well-proven that IL-10 is required for intestinal
homeostasis; despite this, the downstream signaling pathways
and the molecular basis involved have not been fully examined.
Recently, several pathways related to IL-10 have been identified.
Lp et al. revealed that IL-10 alters macrophage function
by promoting the clearance of damaged mitochondria and
modulating cellular metabolism in an STAT3-DDIT4-dependent
manner (84, 85). Shp2 has been found to disrupt IL-10-induced
STAT3 activation and its dependent anti-inflammatory response
in human and murine macrophages (86). Inhibition of GSK3β
results in tolerogenic bonemarrow-derived DCs with profoundly
decreased C/EBPβ and CREB DNA binding activities, which
leads to a reduction of IL-10 and an increase in IL-12p70
production (87). This is consistent with another observation that
GSK3β deletion in CD4+ T cells improves the survival of T
cells and ameliorates colitis (88). In T cells, IL-10 can directly
restrict the activation and function of CD8+ T cells by inducing
the expression of Mgat5 and modifying the N-glycan branching
on surface glycoproteins (89). This mechanism is seen under
inflammatory conditions as well; MGAT5−/− mice have been
found to exhibit increased susceptibility to early-onset colitis,
while reduced branched N-glycosylation on mucosal T cells has
been observed in case of UC patients (90). The involvement of
IL-10 in this process needs to be further examined.

IL-22
Unlike IL-10, which targets hematopoietic cells, the major
impact of IL-22 is on non-hematopoietic epithelial cells and
stromal cells (4), due to the restricted IL-22R expression in
these cells. IL-22 can promote proliferation and barrier function.
Similar to IL-10, IL-22 exerts a protective effect on mucosal
inflammation in most animal models, but plays a harmful role

in the anti-CD40-induced colitis model, which will be discussed
later in this section.

Elevated IL-22 levels have been detected in patients with
Crohn’s disease (91), as well as increased IL-22 and IL-22Rα

expressions in colon biopsy samples from UC patients (92).
Also, in DSS-induced colitis, IL-22 has been shown to ameliorate
the histological score (93) in an STAT3-dependent manner.
Furthermore, STAT3 activation in epithelial cells is dependent
on IL-22 rather than IL-6 (94), suggesting that targeting the
STAT3 signaling pathway in intestinal epithelial cells (IECs) is a
promising therapeutic approach for IBD patients (95). Initially,
it was believed that IL-22-expressing NK cells are responsible
for protection against intestinal injury (96). Later, these cells
were identified to display a “CD3−CD127+CD56+NKp44+”
phenotype (97) and were named as ILC3s (98). ILCs are innate
immune cells that lack antigen specificity, enriched at mucosal
surfaces, and regulate immune responses as well as tissue
homeostasis (98–101). ILCs can be divided into subsets that are
characterized by their production of cytokines, including ILC1
(IFN-γ) (102), ILC2 (IL-5/IL-13), ILC3 (IL-17/IL-22), and ILCreg
(IL-10/TGF-β) (103).

IL-22-producing ILC3s have been shown to play a protective
role in a mouse model of infectious colitis induced by
Citrobacter rodentium. These RORγt+NKp46+ ILC3s, but not
NCR− ILC3s, are regulated by an intrinsic TCF-1 pathway that
plays a critical role in the host defense against C. rodentium
infection (104). Notably, Giacomin et al. found that IKKα1IEC

mice displayed impaired IL-22 production by RORγt+ ILC3s,
while rIL-22 administration or transferring WT cells protected
IKKα1IEC mice from C. rodentium-induced morbidity (105).
Lamina propria CX3CR1

+ mononuclear phagocytes are stronger
inducers of ILC3 production of IL-22 (106).

With respect to T cell-induced colitis, no significant difference
has been reported between RAG1−/− mice that received
CD45RBhighIL-22+/+ or CD45RBhighIL-22−/− CD4+ T cells,
indicating that the mice rely on a host-derived source of IL-
22 during IBD development (96). Upon CD45RBhi T cell
transfer, the disease severity in Rag1−/−Ahr−/− mice has been
found to be substantially higher than that in Rag1−/− mice.
Ahr−/− mice with reduced ILC3-produced IL-22 are prone
to spontaneous colitis accompanied with increased segmented
filamentous bacteria and Th17 cells (107). Interestingly, TNF-
like ligand 1A (TL1A) and death receptor 3 (DR3) are a
ligand–receptor pair involved in the pathogenesis of IBD. TL1A
potently enhances IL-23- and IL-1β-induced production of IL-
22 and GM-CSF by ILC3 (106, 108). Together with α-DR3
treatment, it causes a reduction in the ILC3 numbers in the large
intestine (109).

Although widely considered as an anti-inflammatory
cytokine, IL-22 plays a pathogenic role in the innate colitis
model. ILC3s have been identified as the only mediator for
disease induction in the anti-CD40-induced colitis model (110).
Adoptively transferring CD45+Lin−Thy1+CD127+NKp46+

ILC3s from Rag1−/− mice into NSG mice has been shown
to cause severe colitis, proving that NKp46+ ILC3s alone are
sufficient to induce innate immune colitis (111). Neutralization
of IL-22 results in a significant reduction in the weight loss
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and colitis scores caused by the anti-CD40 injection (111),
while IL-22 administration has been shown to drive more
severe mucosal damage (112). Identical results were reported in
another CD45RBlo memory T cell transfer colitis model (113).
Interestingly, transferred Treg cells reduce the ILC3 production
of IL-22 through suppression of the CX3CR1+ macrophage
production of IL-23 and IL-1β (114), indicating a potential
network between adaptive and innate immune responses.

Together, such conflicting reports on the role of IL-22 in
different colitis models reflect the complex function of ILC3
in relation to gut inflammation. Since it is unclear why ILC3-
induced IL-22 functions as a double-edged sword and displays
both pro-inflammatory and anti-inflammatory properties in
maintaining gut homeostasis, particularly in case of innate cell-
induced inflammation, more extensive studies are required in the
future to unravel its mechanism of action.

IL-10 AND IL-22 IN COLORECTAL CANCER

IL-10
IL-10 has a paradoxical role in cancer development (115).
IL-10 and TGF-β are considered as the two most important
immunosuppressive cytokines in the immune system as they
can help tumors escape immune surveillance in the tumor
microenvironment. Clinical analysis shows poor prognosis of
melanoma patients with high levels of IL-10 in the serum
(116) and tumor tissue (117). Mechanistically, IL-10 not only
inhibits MHC class II expression on APCs, but also reduces the
cytotoxicity of NK cells and CD8+ T cells (3). Notably, while
IL-10+ Treg cells promote tumor growth and induce T cell
exhaustion, deletion of IL-10 in Treg cells has been shown to
cause a drastic reduction in the expression of PD-1, TIM3, and
LAG3 in intra-tumoral CD8+ T cells (118).

Chronic inflammation is one of the hallmarks of cancer.
In the setting of intestinal inflammation, the mucosal immune
response leads to colorectal cancer, as exhibited by the increased
incidence of colitis-associated colon cancers in IBD patients.
Sixty percent IL-10−/− mice develop colorectal cancer; these
mice have significantly increased levels of pro-inflammatory
cytokines (IFN-γ, TNF-α, IL-1β, and IL-6), indicating the chronic
intestinal inflammation related with the tumor growth (119, 120).
It is interesting to note that apart from COX2 (121) and PTEN
(122), which have been found to facilitate the progression of
cancer in IL-10−/− mice, the development of colitis also depends
on IL-22, as exhibited by the elevated levels of IL-22+ Th17 cells
in the colon of IL-10−/− mice (123).

In fact, elevated levels of peripheral Th17 cells and serum
Th17-related cytokines have been reported in patients with
colorectal cancer (124) while a “Th17 expression signature”
has been observed in early colorectal cancer (125). It is well-
known that IL-1β and IL-6 together with TGF-β can induce
differentiation and development of Th17 cells (126, 127).
Coincidently, IL-1β and IL-6 also participate in colorectal cancer.
Mice deficient in the IL-1 receptor-related molecule SIGIRR
show increased tumor growth (128), while tumor-infiltrating
myeloid cells produce high levels of IL-1β and IL-6 that promote
tumorigenesis (129, 130). IL-6 secreted by lamina propria

myeloid cells not only protects IECs from apoptosis but also
provides the survival signal for premalignant IECs via the STAT3
pathway (131). Furthermore, treatment with anti-IL-6 in IBD
patients has been shown to prevent the onset of CAC (132, 133).
Although it is clear that macrophages lacking IL-10 signaling lead
to increased development of Th17 cells in severe colitis (77, 79),
the molecular mechanisms underlying the complex functions
of IL-10 in cancer immune surveillance under inflammatory
conditions still remain elusive.

IL-22
The role of IL-22 in cancer is also complicated. In a healthy
condition, IL-22 cannot initiate tumor formation by itself and
maintains barrier integrity against cancer development; but
under inflammatory conditions, IL-22 directly promotes tumor
growth or induces “stemness-like” cancer cells via STAT3-
dependent signaling.

In a study on AOM/DSS-induced colorectal cancer, the
number and size of tumors were found to increase in IL-22−/−

mice compared to WT mice, while the IL-22BP−/− mice were
found to exhibit increased tumorigenesis in an NLRP3/NLRP6-
IL-18-dependent manner (134), indicating that IL-22 can protect
mice against tumor development. Conversely, data also shows
that IL-22 results in tumor progression (135, 136). With the
elevated IL-17 and IL-22 levels in STAT1−/− mice, the colonic
epithelial cell proliferation increases while the tumor apoptosis
rate decreases in the early stage of tumor formation (137). In
humans, an SNP variation in the human IL-22 gene greatly
increases the risk of colon cancer (138). Th22 and IL-22
levels have also been reported to be profoundly increased in
CRC patients (139). Moreover, in Helicobacter pylori/AOM-
induced CRC models, Kirchberger et al. reported accumulation
of Nkp46−CD4−lin−Thy1hi ILCs at tumor sites. These ILCs
produce IL-22 that promotes cancer development by inducing
epithelial cell proliferation through phosphorylation of the Stat3
pathway; neutralization of IL-22 leads to abrogation of this
process (140).

STAT3 is oncogenic in colorectal cancer, as evidenced by the
observation that mice with specific ablation of STAT3 in IECs
develop fewer tumors in colorectal cancer (131, 141). Similarly,
overexpression of IL-10Rβ in HT29 promotes IL22/STAT3
signaling in colorectal carcinogenesis (142). Notably, STAT3 can
be activated by IL-6, IL-10, IL-11 as well as IL-22 (141). Although
the IL-22-STAT3 pathway remains very important for epithelial
cell proliferation and CAC development, IL-6- (143) and IL-11-
(144) mediated gp130-STAT3 pathway is also required for GI
cancer progression.

STAT3 signaling is required not only by the epithelial cells
in the tumor microenvironment but also by cancer stem cells.
For example, in human colorectal cancer tissues, CCR6+CD4+

T cells have been shown to be responsible for the secretion
of the entire amount of IL-22 (145). IL-22 activates the
STAT3 phosphorylation cascade in cancer cells and induces the
expression of stem cell markers (SOX2, NANOG, and POU5F1),
resulting in increased cancer stemness and tumorigenic potential
(146). In line with this, ILC3s also maintain intestinal epithelial
stem cells after tissue damage. LGR5 (Leucine-rich repeat
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containing G protein-coupled receptor) is known to be a stem cell
marker in the murine small intestine and colon (147). By using
ILC3-deficient Lgr5 reporter mice, Aparicio-Domingo et al. and
Lindemans et al. showed that in the absence of ILC3s or IL-22,
intestinal stem cells become severely impaired after tissue damage
(148), in an STAT3-dependent mechanism (149).

Finally, IL-22 has been shown to directly promote tumor
growth by inducing proliferation and exhibiting anti-apoptotic
effects on tumor cells in the colon (150) and lung (151). Tumor
cells have been found to display a high level of IL-22 receptor
expression as well as increased IL-22 production by surrounding
tumor infiltrating T cells, indicating that IL-22 promotes tumor
proliferation by engaging the STAT3 signaling in tumor tissues.
In the AOM/Helicobacter hepaticus-induced colorectal cancer
model, repair mechanisms for DNA damage potentially lead to
the accumulation of mutations. IL-22-driven, iNOS-dependent
DNA damage is associated with inflammation and cancer (152).

The diverse roles of IL-22 in cancer immunity are still not
clear. It is possible that the generation of IL-22 in different stages
of cancer development leads to different consequences. As a
potential therapeutic target, more fundamental studies on IL-22
need to be investigated.

THERAPEUTIC POTENTIAL FOR IL-10 AND
IL-22 IN INTESTINAL DISEASES

Based on the fact that mice deficient in either IL-10 or the IL-10
receptor α or β chains develop spontaneous colitis and multiple
anti-inflammatory functions in IBD (60, 119), after proving
recombinant IL-10 is safe for human in clinical trial at early 1990s
(153), rhuIL-10 was used to treat IBD patients in clinical trial in
2000. In this double-blinded clinical study, IL-10 treatment group
shows no significant difference (154). Another clinical study
using rhuIL-10 for testing its prevention role for patients with
relapse also displays no significant benefit from IL-10 treatment
(155). Moreover, increased IFN-γ production (156) and reduced
hemoglobin and thrombocyte counts (157) are seen in patients,
suggesting a more complex immune function of IL-10 in IBD. It
is possible that relative low concentration of delivered rhuIL-10
in the inflamed tissues. To overcome this difficulty, PEGylated
IL-10 or IL-10-Fc fusion proteins are designed, respectively (158,
159). Smartly, local delivery of IL-10 by engineered bacterial
strains, such as Lactobacilli and bifidobacterial, have been created
to specifically increase IL-10 concentration in the colon (160,
161). Lactobacilli and bifidobacterial are probiotics which have no
apparent capacity to induce mucosal inflammation, preliminary
trials about IL-10-engineered probiotics in human IBD patients
should be encouraged (162). On the other hand, intravenous IL-
10 administration displays no organ specificity (163), it prevents
both mucosal and systemic host responses. Therefore, a xylose-
inducible expression system (164) has been used to control
Lactobacilli’s IL-10 production, it leads to a high-level and long-
term IL-10 production, which is efficiently delivered to mucosal
surfaces (165). Interestingly, the employment of fermented milks
as a new form of administration of IL-10-producing Lactobacilli
is effective in the prevention of mucosal inflammation (166).

Despite it, IL-10/IL-10R complex is still an attractive target for
cancer immune therapy. Mice treated with CpG plus anti-IL-
10Rα have dramatically reduced C26 colon carcinoma growth,
while anti-IL-10R or CpG alone does not, indicating blockade IL-
10 signaling pathway together with TLR-9 stimulation promotes
tumor rejection (167). Recently, PEGylated IL-10 is shown to
Induce systemic immune activation, including intra-tumoral
CD8+ T cells proliferation and expansion, combined PEGylated
IL-10 with anti-PD-1 Ab increased the expansion of LAG-3+

PD-1+ CD8+ T cells (168). This result indicates IL-10 can
synergize with anti-PD-1 Ab to reverse the dysfunction status
of T cells and eliminate the tumor cells. Whether the similar
mechanism appears in colorectal cancer need to be explored.
Due to the strong immune suppressive functions, IL-10 can
repress cytotoxic T cells activation and IL-12 production. But
inflammation may promote tissue damage and oncogenesis (169,
170), especially in colorectal cancer. Thereby, IL-10 may inhibit
the increased risk of intestinal oncogenesis. The failures of
administration of IL-10 in IBD patients stop the step for further
treating colorectal cancer patients with IL-10. More knowledge
about how inflammation or tissue specific tolerance for tumor
proliferation will be helpful to determine using recombinant
IL-10 or anti-IL-10R Ab to fight against cancer.

IL-22 plays an essential role in regulating intestinal
equilibrium during inflammation. IL-22 not only promotes
epithelial cells activation though STAT3 signaling pathway,
but also induces various antimicrobial peptides (Claudin-2,
and Fut-2) (171), as well as enhances innate intestinal defense
functions. IL-22 exerting a beneficial role in various murine
colitis models is well-defined (3). As we discussed above, only in
some ILC3 cells involved colitis models, such as anti-CD40 and
CD45RBllow transferred colitis models, IL-22 plays a pathogenic
role (111, 113). Now, IL-22 based clinical trials have been
investigated. A recombinant fusion protein, F652, is consisting
of two human IL-22 molecules linked to an immunoglobulin
constant region (IgG2-Fc). F652 was evaluated in a randomized,
double-blind, placebo-controlled study. Administration of this
hIL-22 dimer to healthymale volunteers is safe and well-tolerated
(172). Another hIL-22 IgG fusion protein, UTTR1147A, was
assessed in healthy mice, rats and cynomolgus monkeys.
Moreover, UTTR1147A is shown to induce STAT3 activation in
primary human hepatocytes and human colon cell lines (173). A
clinical trial (NCT02847052) for studying the role of IL-22BP in
IBD patients is completed, although the results are not available
yet. Further clinical trials of F-652 and UTR1147A should be
planed for treating inflammatory bowel diseases. Finally, as
myeloid cells have higher IL-10 receptor expression while the
extensive expression of IL-22R on epithelial cells, a way to induce
specific cell lineage responding to these cytokines should be
concerned for the future therapeutic method.

CONCLUDING REMARKS

IL-10 and IL-22 are tightly associated with the prevention
of mucosal inflammation and have a variety of functions in
colorectal cancer development.
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IL-10 is necessary for controlling the abnormal immune
response against harmful microorganisms and the consequent
intestinal damage. The dynamic interactions between IL-10 and
the different IL-10 responsive immune cell lineages participate in
the pathogenesis of IBD. Apart from Treg cells, macrophages are
considered as another major immune subset to respond to IL-10
in the gastrointestinal tract. IL-22 is believed to act exclusively on
epithelial cells to promote proliferation and barrier function in
the intestine and, therefore, plays a protective role in IBD.

IL-10 leads to tumor growth and promotion, but it also
contributes to the eradication and suppression of cancer
development under colonic inflammatory conditions. IL-22
is also a controversial cytokine in tumor development; the
IL-22-STAT3 axis induces anti-apoptotic genes and provides
survival and proliferation signals for both normal and malignant

cells. Therefore, in the healthy condition, it prevents tumor
formation; however, once a tumor has been established, IL-22
promotes tumorigenesis.
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