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1  |  INTRODUC TION

As the most common type of endocrine tumour, thyroid cancer is 
one of malignant tumours whose incidences are rapidly increasing.1-3 
It includes four main subtypes: papillary thyroid carcinoma (PTC), 
follicular thyroid carcinoma (FTC), medullary thyroid carcinoma 
(MTC) and anaplastic thyroid carcinoma (ATC).4 Of them, PTC is the 
most major type accounting for more than 80% of all cases.2 PTC 

tumours can be clinically divided into four pathological stages (I, II, 
III and IV). Generally, prognosis of patients with PTC is excellent with 
5-year survival rate over 97%.5 However, in stage IV, the 5-year sur-
vival rate of PTC sharply reduces to 51%.6,7

Thus, it is of great significance to identify key genes related to 
PTC stages and understand their biological functions. Meanwhile, 
the survival rate of patients in advanced stage is significantly 
lower than that of patients in early stage. Therefore, it is more 
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Abstract
It is crucial to understand the differences across papillary thyroid cancer (PTC) stages, 
so as to provide a basis for individualized treatments. Here, comprehensive function 
characterization of PTC stage-related genes was performed and a new prognostic 
signature was developed for advanced patients. Two gene modules were confirmed to 
be closely associated with PTC stages and further six hub genes were identified that 
yield excellent diagnostic efficiency between tumour and normal tissues. Genetic al-
teration analysis indicates that they are much conservative since mutations in the DNA 
of them rarely occur, but changes of DNA methylation on these six genes show that 
12 DNA methylation sites are significantly associated with their corresponding genes' 
expression. Validation data set testing also suggests that these six stage-related hub 
genes would be probably potential biomarkers for marking four stages. Subsequently, 
a 21-mRNA-based prognostic risk model was constructed for PTC stage III/IV patients 
and it could effectively predict the survival of patients with strong prognostic ability. 
Functional analysis shows that differential expression genes between high- and low-
risk patients would promote the progress of PTC to some extent. Moreover, tumour 
microenvironment (TME) of high-risk patients may be more conducive to tumour 
growth by ESTIMATE analysis.
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important to conduct risk stratification analysis for advanced 
patients to find prognostic factors related to their survival 
prognosis.

The weighted gene co-expression network analysis (WGCNA) is 
deemed as an efficient network-based approach, which can inves-
tigate the signature of gene networks in the pathogenesis of com-
plicated diseases at system level.8 It is an algorithm that constructs 
scale-free gene co-expression networks based on the expression of 
genes, which can not only classify different gene modules, but also 
figure out the relationships between clinical features and gene mod-
ules,9 so this method provides an effective way to explore the in-
teraction mechanism of clinical traits-related genes of diseases and 
identify potential biomarkers.7,10-12

Until now, no comprehensive investigation on PTC stage-related 
genes has been reported and the regulation characteristics of 
them are not well revealed. Here, this study first gives systematic 
functional analysis on them. First, 1243 common differentially ex-
pressed genes (DEGs) were screened out by comparing stage I, II, 
III and IV PTC samples with adjacent non-tumour tissue samples. 
Then, WGCNA was employed to study the co-expression network 
of DEGs and two gene modules were proved to be associated with 
tumour stages. The Gene Ontologies (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analysis show 
that genes in both these two modules are mainly enriched in cancer-
related pathways, so 6 tumour stage-related hub genes were iden-
tified from the two gene modules, including RPS6KA6, SORBS2, 
EPHB3, QSOX1, S100A6 and UNC5CL. To validate six hub genes, 
their expression levels at different stages and the receiver operat-
ing characteristic (ROC) diagnostic analysis were, respectively, per-
formed based on validation data sets. Meanwhile, DNA mutation 
and methylation analyses of the six hub genes were also systemically 
implemented.

Besides, we established a 21-mRNA-based prognostic risk model 
for PTC patients with stage III and IV using a least absolute shrinkage 
and selection operator (LASSO) Cox method. Kaplan-Meier analysis, 
ROC analysis, Cox regression analysis and stratified analysis were 
employed to assess and validate the prediction performance of the 
risk model on the overall survival (OS) of advanced patients. Finally, 
we used KEGG pathway analysis and ESTIMATE analysis to explore 
the changes of biological pathways and TME between high-risk and 
low-risk patients.

2  |  MATERIAL S AND METHODS

2.1  |  Samples and preprocessing

The transcriptome data (level 3, HTSeq-counts) and clinical infor-
mation of PTC patients were downloaded from TCGA data portal 
(https://portal.gdc.cancer.gov/). Then, the analysis samples were 
cleaned by removing those with other tumours and lacking of 
clinical and tumour stage annotation, so 470 PTC patients were re-
mained, including 270 stage I, 50 stage II, 100 stage III and 50 stage 

IV samples. Of them, 56 samples contain both tumour and adjacent 
non-tumour tissue samples.

According to the annotation information of gene type from 
GENCODE Version 29 (https://www.genco​degen​es.org/), the gene 
expression data of 19645 mRNAs were extracted. Then, genes with 
no or low expression in more than a quarter of the samples (read 
count <10) were discarded, so 14647 mRNAs were remained. Next, 
they were normalized by Trimmed Mean of M values (TMM).13As 
validation data, two microarray data sets GSE29265 and GSE3678 
were downloaded from GEO database, including 10 and 7 pairs be-
tween tumour and normal tissues, respectively.

2.2  |  Differential gene expression analysis

DEGs were detected using edgeR package in R software (http://
bioco​nduct​or.org/packa​ges/edgeR/​).14 DEGs of stage I, II, III and IV 
PTC samples compared with adjacent non-tumour tissue samples 
were, respectively, screened out, according to the cut-off criteria 
of absolute log2 (fold change; |log2FC|) ≥1 and false discovery rate 
(FDR) <0.05. Then, common DEGs were achieved by overlapping the 
four groups' DEGs.

2.3  |  Weighted gene co-expression networks 
construction

Weighted gene co-expression network analysis was performed using 
‘WGCNA’ R package.9 First, the samples were clustered to delete 
the outlier samples. Second, a soft-threshold power β was selected 
based on the criterion of approximate scale-free topology using the 
function pickSoftThreshold. Third, the adjacency was transformed 
into a topological overlap matrix (TOM) using function TOM similar-
ity. Fourth, according to the TOM-based dissimilarity measurement, 
average linkage hierarchical clustering was conducted to produce 
the common DEGs dendrogram. Consequently, module identifica-
tion was performed with the function cutreeDynamic (minModule-
Size of 30). Finally, to further analyse the module, the dissimilarity of 
module eigengenes (MEs) was calculated using the function modu-
leEigengenes. ME is defined as the first principal component of the 
gene expression matrix of the corresponding module, which can 
summarize the gene expression profiles from a module. Highly sim-
ilar modules were identified by clustering analysis and then to be 
merged together with a height cut-off of 0.25.

2.4  |  Identification of stage-related gene 
modules and hub genes

To identify the stage-related modules and genes, module–trait rela-
tionship analysis was performed to measure the correlation between 
clinical traits and gene modules. The Pearson correlation coefficient 
and p value were calculated by between ME and clinical trait. The 

https://portal.gdc.cancer.gov/
https://www.gencodegenes.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678
http://bioconductor.org/packages/edgeR/)
http://bioconductor.org/packages/edgeR/)
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results were presented using heat map. Next, gene significance (GS) 
was calculated based on the correlation of a gene expression pro-
file with a clinical trait. In general, the higher the absolute GS, the 
higher the correlation between this module and the clinical trait. For 
a certain gene, its Module membership (MM) was defined as correla-
tion between its expression profile in all samples and the expression 
profile of a certain modules (MEs). The greater the MM value of the 
gene, the more important the gene is in the module. We defined the 
thresholds for the selection of hub genes as MM >0.8 and GS >0.2. 
In order to explore the potential biological mechanism of each mod-
ule, the genes in each module were uploaded into KOBAS (http://
kobas.cbi.pku.edu.cn/kobas3),15 which is an online tool for gene en-
richment analysis. Then, the Gene Ontologies (GO) functional en-
richment analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment were performed. Corrected p value 
<0.05 was set as the cut-off criteria.

Gene expression difference analysis was used to validate the 
practicability of hub gene as biomarkers. On one hand, the ex-
pression of hub genes in PTC was studied using Gene Expression 
Profiling Interactive Analysis (GEPIA)16 data sets. On the other hand, 
hub gene expression levels at different stages were also plotted. 
In addition, the receiver operating characteristic (ROC) curve was 
preformed to verify the diagnostic performance of hub genes using 
‘pROC’ package (https://cran.r-proje​ct.org/web/packa​ges/pROC/).

2.5  |  Genetic alteration analysis of hub genes

Genetic alterations about hub genes were explored using cBioPor-
tal (http://www.cbiop​ortal.org/).17 In addition, the changes of DNA 
methylation sites on hub genes were studied. First, DNA methyla-
tion data of the sites locating in hub genes were extracted; then, 
with data filtering and difference analysis, different methylation 
sites (DMSs) were selected according to the threshold that |Δβ| > 0.1 
and p value <0.05 (Δβ: the difference value between the average 
β values of tumour and normal tissues); last, the Spearman's rank 
correlation coefficients between these DMSs and their genes were 
calculated.

2.6  |  Construction and evaluation of the prognostic 
model for PTC advanced patients

A total of 148 samples with tumour stage III and stage IV were sub-
jected to prognostic modelling analysis, after removing two with 
follow-up time less than 1  month. A two-step analysis strategy 
was established for prognostic modelling. First, the common DEGs 
were selected to analyse their relationship with OS of PTC patients 
by univariate Cox regression analysis. Those with p value <0.05 
were extracted. Second, a least absolute shrinkage and selection 
operator (LASSO) Cox penalized regression model18 was preformed 
to build the classifier using R package ‘glmnet’ (https://cran.r-proje​
ct.org/web/packa​ges/glmne​t/).19In order to optimize the model, 

10-fold cross-validation was employed. Finally, candidate genes 
with non-zero coefficient were filtered to build a prognostic model. 
The risk score of each PTC patient was calculated by the following 
formula:

where N is the number of candidate genes, Ei is the expression of can-
didate normalized by TMM, and Ci is the coefficient of candidate genes 
in the LASSO Cox regression analysis.

Based on the risk score, the PTC patients were divided into 
high- and low-risk groups by cut-off median. A Kaplan-Meier sur-
vival curve was employed for survival analysis, and log-rank tests 
were used to compare the differences of OS between two groups. 
Meanwhile, time-dependent ROC analysis was used to investigate 
the prognosis accuracy of the model and area under the ROC curve 
(AUC) values were also calculated using the ‘timeROC’ package 
(https://cran.r-proje​ct.org/web/packa​ges/timeR​OC/).

The stratified analysis was conducted to determine whether the 
prognostic signature is independent of other clinical factors. KEGG 
pathway enrichment analysis was conducted on DGEs between 
high- and low-risk groups to explore potential biological pathway al-
teration. In addition, the stromal score, immune score and ESTIMATE 
score for each patient with PTC were computed using ‘estimate’ 
package (https://bioin​forma​tics.mdand​erson.org/estim​ate/).20

3  |  RESULTS

3.1  |  Screening DEGs

We first performed principal component analysis (PCA) for different 
tumour stage tissues and normal tissues using all the filtered and 
normalized gene expression data. As shown in Figure 1A, normal tis-
sues and tumour tissues at different stages can be separated to a 
certain extent, but there is still a large proportion of overlaps. Using 
differential gene expression analysis, we obtained 1801 DEGs (1128 
up-regulated and 673 down-regulated) between stage I and normal 
tissues, 1823 DEGs (1061 up-regulated and 762 down-regulated) be-
tween stage II and normal tissues, 2028 DEGs (1236 up-regulated 
and 792 down-regulated) between stage III and normal tissues, and 
2475 DEGs (1381 up-regulated and 1094 down-regulated) between 
stage IV and normal tissues (Figure  1B). Again, these DEGs were 
used for PCA analysis of PTC tissues at different stages and nor-
mal tissues. As shown in Figure 1C, normal tissues were significantly 
separated from different stages tissues, showing that the DEGs 
screened here are reliable.

Next, as shown in Figure  1D, 1243 common DEGs were ex-
tracted from the four comparison groups. Among these 1243 com-
mon DEGs, 835 genes were up-regulated (Figure 1E) and 408 genes 
were down-regulated (Figure 1F). It is obviously to see that either 
the expression levels of up-regulated or the down-regulated DEGs 
are all consistent in four stages.

(1)RiskScore =
∑

N

i= 1
(Ei × Ci)

http://kobas.cbi.pku.edu.cn/kobas3
http://kobas.cbi.pku.edu.cn/kobas3
https://cran.r-project.org/web/packages/pROC/
http://www.cbioportal.org/
https://cran.r-project.org/web/packages/glmnet/
https://cran.r-project.org/web/packages/glmnet/
https://cran.r-project.org/web/packages/timeROC/
https://bioinformatics.mdanderson.org/estimate/
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3.2  |  Identification of co-expression gene 
modules and functional annotation

1243 common DEGs were performed WGCNA analysis. 470 sam-
ples of PTC were first clustered to remove obvious outlier sam-
ples (Figure  S1). To ensure a scale-free network, the power of 
β  =  12 (R2  =  0.952) was chosen for the soft-threshold parameter 
(Figure 2A,B). Dynamic hybrid cutting was conducted to construct 
a hierarchical clustering. The genes with similar expression pattern 
formed a gene module, so four modules (blue, brown, turquoise and 
grey) were generated (Figure 2C). Because the similarity between all 

modules is less than 0.75, there is no module merge (Figure 2D). In 
addition, the weighted network and the eigengene heatmap were 
constructed to identify interaction relationships of the four co-
expression modules. Figure  2E,F reveal that each module is inde-
pendent in the network.

Genes in Grey module were not co-expressed with genes in any 
module and they do not co-express each other, we focused on other 
three ones. Biological functions of each module were explored by 
GO and KEGG pathway enrichment analysis. Top 15 GO terms and 
KEGG pathways for each module are shown in Figure  2G,H. For 
82 genes in brown module, the enriched GO terms are ‘Cell-cell 

F I G U R E  1  The distributions of differentially expressed genes. (A) PCA for different tumour stages tissues and normal tissues using all 
gene expression data. (B) Volcano plots of four comparison groups' differentially expressed genes. (C) PCA for different tumour stages 
tissues and normal tissues using differentially expressed genes data. (D) Upset plot of differentially expressed genes in four comparison 
groups. (E) Veen plots of up-regulated genes in four comparison groups. (F) Veen plots of down-regulated genes in four comparison groups
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adhesion’, ‘Cellular response to chemokine’ and ‘Positive regulation 
of cell adhesion’. KGEE pathways are ‘T cell receptor signalling path-
way’, ‘Primary immunodeficiency’ and ‘Intestinal immune network 

for IgA production’. It indicates that these genes are associated 
with immune reaction. 126 genes in blue module were significantly 
enriched in ‘Regulation of transcription by RNA polymerase II’ and 

F I G U R E  2  Construction of WGCNA co-expression modules and functional enrichment analysis of each module. (A-B) Analysis of 
network topology for various soft-thresholding powers. (C) The cluster dendrogram of the common differentially expressed genes in TCGA. 
Each branch in the figure represents one gene, and every colour below represents one co-expression module. (D) The cluster dendrogram 
of module eigengenes. (E) Interaction relationship analysis of co-expression genes. Different colours of horizontal axis and vertical axis 
represent different modules. (F) Correlation heatmap of modules' eigengene. (G) The top 15 GO terms of each module. (H) The top 15 KEGG 
pathway of each module



    |  8395XU et al.

‘Multicellular organism development’ with KEGG pathways of ‘Jak-
STAT signalling pathway’ and ‘PI3K-Akt signalling pathway’, which 
are common pathways related to cancers. Similar with those in 
blue module, 397 genes in turquoise module are mainly involved in 
cancer-related pathways, including ‘Transcriptional misregulation in 
cancer’, ‘Pathways in cancer’, ‘Small cell lung cancer’, ‘PI3K-Akt sig-
nalling pathway’, ‘p53 signalling pathway’ and ‘Proteoglycans in can-
cer’. It indicates that the genes in blue and turquoise modules may 
have key roles in development and progression of PTC.

3.3  |  Identification of stage-related modules

The module–clinical trait relationship analysis was conducted using 
‘WGCNA’ package. In this study, 13 clinical traits of PTC patients 
contain age, gender, survival status, neoplasm cancer status, neo-
plasm focus type, neoplasm length, neoplasm width, neoplasm 
depth, residual tumour, pathologic T, pathologic N, pathologic M and 
tumour stage. As shown in Figure 3A, among these modules, brown 
module is correlated to neoplasm length (r2 = −0.13, p = 0.004), neo-
plasm width (r2 = −0.12, p = 0.008) and neoplasm depth (r2 = −0.15, 
p = 0.001), while blue and turquoise modules show higher correla-
tion with pathologic traits and tumour stage. Specifically, the blue 
module is related to pathologic T (r2 = −0.23, p = 8e-07), pathologic 

N (r2 = −0.3, p = 2e-11), and tumour stage (r2 = −0.17, p = 2e-04). 
The turquoise module is also correlated to pathologic T (r2 = 0.18, 
p  =  6e-05), pathologic N (r2  =  0.38, p  =  2e-17) and tumour stage 
(r2 = 0.15, p = 0.001). Further, GS of each module for tumour stage 
also calculated. Figure  3B shows that GS values of blue and tur-
quoise modules were much higher than brown module, so we can 
conclude that two modules (blue and turquoise) are confirmed to be 
associated with PTC pathological stages.

3.4  |  Validation of the hub genes

Based on criteria of GS >0.2 and MM >0.8, two genes (RPS6KA6 
and SORBS2) in blue module and four genes (EPHB3, QSOX1, 
S100A6 and UNC5CL) in turquoise module were identified as hub 
genes (Figure  3C,D). Among them, RNA expressions of RPS6KA6 
and SORBS2 in PTC tissues were significantly down-regulated com-
pared with normal tissues, while expressions of other four genes 
were significantly up-regulated (Figure  3E). In order to verify this 
observation, expression levels of these 6 genes were also analysed 
based on three validation data sets of GEPIA database, GSE29265 
and GSE3678, respectively (Figures S2-S4). We can see that all six 
genes are differentially expressed in at least two data sets, especially 
RPS6KA6, SORBS2, EPHB3 and S100A6 in all data sets.

F I G U R E  3  Identification of modules and hub genes associated with PTC tumour stage. (A) Heatmap of the correlation between module 
eigengenes and the clinical traits of PTC patients. (B) Correlation between gene modules and tumour stage. (C) Scatter plot of module 
eigengenes in blue module. (D) Scatter plot of module eigengenes in turquoise module. (The horizontal dashed line is at 0.2 and the vertical 
dashed line is at 0.8.; E) Expressions of 6 tumour stage-related hub genes in PTC compared with normal tissues in the TCGA cohort (***: 
p < 0.001)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678
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Recently, Park et al21 used penalized regression analysis and ob-
tained an accurate model with 12 core pathway predictors for clas-
sifying PTC and normal thyroid tissues. When applied to the TCGA 
cohort, the model yielded an AUC values of 0.969. Likewise, the di-
agnostic performance of these six genes was also verified by ROC 
curve analysis. As shown in Figure 4A-F, six AUC values are all higher 
than 0.85 and four over 0.90 in TCGA cohort. For two validation data 
sets of GSE29265 and GSE3678, almost all AUC values of the six 
hub genes are higher than 0.9, especially that of UNC5CL is equal to 
1. These results illustrate that the six hub genes screened out by us 
also yield excellent diagnostic efficiency between PTC and normal 
tissues.

Besides, there are also significant differences on RNA expres-
sion levels of the six genes among four tumour stages (Figure 4G-L), 
which were consistent with analysis results of the GEPIA database 
(Figure S5). Table 1 shows the p values of differential gene expres-
sion analysis between PTC stage I, stage II, stage III and stage IV, so 
the above validation tests suggest that the six hub genes are all reli-
able and potential biomarkers for marking different PTC stages. By 
deep literature-exploring, all of six hub genes have been confirmed 
as important roles in cancers. The detailed function annotations are 
listed in Table 2.

3.5  |  Genetic alteration analysis on hub genes

We furtherly performed genetic alteration analysis for the six hub 
genes. The DNA mutations statuses of them were analysed using 
TCGA PTC patients' data in cBioPortal database. The six hub genes 
altered in about 4 (1%) of 399 PTC patients (Figure 5A), and the fre-
quency of alteration of each gene is shown in Figure 5B. Only EPHB3, 
QSOX1 and S100A6 altered, but their frequencies of alteration were 

extremely low (0.3%, 0.5% and 0.5%, respectively; Figure 5B). These 
results indicated that mutations in the DNA of the six genes rarely 
occurred and they are all conservative.

Then, we studied the changes of DNA methylation sites on the six 
hub genes and their relationship with hub gene expressions. There 
are 195 DNA methylation sites on them. After data filtering and dif-
ference analysis, 16 DMSs were screened based on the criteria that 
|Δβ|  >  0.1 and p value <0.05 (Table  S1). Of them, 12 DMSs were 
found to be significantly associated with their corresponding genes' 
expression (Figure  5C and Table  3). The 12 DMSs could regulate 
their corresponding genes' expression levels. As shown in Figure 5C, 
only cg04130557 was positive correlation with expression level of 

its corresponding gene SORBS2, and others DMSs were all negative 
correlation with their corresponding genes' expression.

3.6  |  Construction of a prognostic signature for 
PTC stage III/IV patients

As shown in Figure 6A, we compared the survival of PTC patients 
with early stages (I and II) and those with advanced stages (III and 
IV), finding that the survival curve of early-stage patients was sig-
nificantly different from that of advanced patients and the survival 
time of advanced patients was significantly less than that of early 
patients. Therefore, it is of more significance to model the survival 
prognosis for PTC advanced patients. Initially, the six stage-related 
genes were used to establish the prognosis model. But the univariate 
COX analysis results of six stage-related hub genes show that the 
p-values of six stage-related genes are all much higher than 0.05, as 
listed in Table S2, so these genes give poor correlation with the sur-
vival prognosis of advanced PTC patients, which was further proved 
from Figure  6G that stage is not associated with PTC advanced 
patients' OS by univariate Cox regression analysis with p-value of 
0.6315.

Therefore, we extracted the expression data of the 1243 DEGs 
and survival information of 148 patients with PTC advanced stages. 
First, univariate Cox regression analysis was conducted. Results 
show that 230 genes were associated with PTC advanced patients' 
OS (p < 0.05). To further screen out an optimal combination from 
these genes, LASSO Cox regression analysis was performed and 
21 genes were identified to develop a risk score model (Figure S6). 
Finally, using the coefficients derived from LASSO Cox algorithm, a 
risk score prognostic model was constructed based on RNA expres-
sion values of the 21 genes:

The risk score of each patient was calculated, and all patients 
were divided into high- and low-risk groups using the median as the 
cut-off. The risk score profiles and survival time of each patient are 
shown in Figure 6B,C. We can observe all dead patients are in high-
risk group. In addition, the 21 gene expressions in normal, low-risk 
and high-risk group patients are shown in Figure  6D. It demon-
strates that the expression levels of the 21 genes are all signifi-
cantly different. From equation (2), the coefficients of 5 mRNAs are 
negative, so they are safety factors, while the coefficients of other 
16 mRNAs are positive, so they are risk factors. For example, as 
shown in Figure 6D, the coefficient of ENTPD1 is negative and it is 
a safety factor, so the expression value in low-risk patients is higher 
than that in high-risk patients. While the coefficient of PAPSS2 is 

(2)

RiskScore= −0.0990×ENTPD1+0.0936×PAPSS2−0.3334×LRRC75A−0.1526×KIAA1211L

−0.3278×ADRA1B+0.2242×PCOLCE2+0.1491×HSPA6+0.0555×PDLIM3+

1.9123×MPL+0.0247×ANKRD37+0.0548×LOXL2+0.0571×ADAM22+

0.2086×SMIM10L2B−0.0178×CTXND1+0.2694×NECAB1+1.2249×LBX2+

0.2555× ITPKA+0.0851×F2RL2+0.2510×MAST1+0.8316×SIGLEC11+

0.0701×EFNB3

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678
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positive, which is a risk factor, the expression value in low-risk pa-
tients is lower than that in high-risk patients. The survival analysis 
indicated that high-risk patients had shorter survival times than 
low-risk patients (Figure 6E). In order to further assess the perfor-
mance of this prognosis model on the survival time prediction of 

PTC advanced patients, we conducted time-dependent ROC anal-
ysis of 3-, 5- and 10-year (Figure 6F). The three AUC values were 
0.993, 0.987 and 1 at 3, 5 and 10 years, respectively, suggesting 
that the model constructed based on the 21 genes yields the strong 
prognostic ability.

F I G U R E  4  (A-F) ROC curve analysis of 6 tumour stage-related hub genes diagnosis in the TCGA, GSE29265 and GSE3678 cohort. 
(G-L) Expressions of six tumour stage-related hub genes in I, II, III and IV stages in the TCGA cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678
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Consequently, we aim to confirm that the prognostic signature 
is of high applicability and could precisely predict the OS of PTC-
advanced patients. As shown in Figure 6G, univariate Cox regres-
sion analysis reveals that both age and risk score are associated with 
TPC-advanced patients' OS, but multivariate Cox regression analysis 

show that the risk score is an independent prognostic predictor for 
OS with HR, 95% CI and p-value of 7.26, 2.75–19.17 and 6.37 × 10−5, 
respectively (Figure 6H).

Then, the stratification analysis was implemented based on 
age, gender and tumour stage. The patients were divided into four 

TA B L E  1  The p values among PTC stage I, stage II, stage III and stage IV by T-test

Tumour stage RPS6KA6 SORBS2 EPHB3 QSOX1 S100A6 UNC5CL

Stage I vs. Stage II 1.23E−02 1.53E−02 2.66E−04 4.37E−02 5.01E−04 1.67E−04

Stage I vs. Stage III 6.60E−03 4.77E−02 3.45E−02 1.92E−03 1.51E−03 6.06E−04

Stage I vs. Stage IV 2.17E−08 1.35E−07 1.56E−07 4.26E−07 9.34E−06 3.36E−07

Stage II vs. Stage III 4.45E−04 1.17E−03 2.41E−05 2.23E−04 1.29E−05 3.59E−07

Stage II vs. Stage IV 8.50E−09 1.04E−07 3.84E−10 2.78E−07 3.48E−08 6.68E−10

Stage III vs. Stage IV 7.35E−03 9.41E−04 2.05E−03 1.67E−02 1.60E−01 3.87E−02

Hub gene Functional annotation

RPS6KA6 As a member of p90RSK family, it is closely associated with ERK, PI3K and p53 
signalling pathways, as well as implicated in cell growth, survival, motility 
and senescence.22-24 It can mediate resistance to PI3K inhibitors in breast 
cancer cells both in vitro and vivo.25 It has been reported that RPS6KA6 is 
a prognostic factor for renal cell carcinoma (RCC) and its overexpression 
could promote cell cycle progression and enhance the invasive and 
metastatic capability of RCC cell lines26

SORBS2 SORBS2 (sorbin and SH3 domain containing 2) is an RNA binding protein. 
Previous studies have indicated that it is a tumour suppressor and can 
suppress the metastasis of many cancer. For example, it can suppresses 
metastatic colonization of ovarian cancer by stabilizing tumour-suppressive 
immunomodulatory transcripts.27 Mediated by MEF2D, it suppresses the 
metastasis of human hepatocellular carcinoma by inhibiting the c-Abl-ERK 
signalling pathway,28 as well as hepatocellular carcinoma tumorigenesis29 
and cervical carcinogenesis30

EPHB3 EPHB3 (Ephrin type-B receptor 3) is one of EPH transmembrane tyrosine 
kinase receptors (TKRs) and has a critical function in tumour progression 
or regression in various cancers, such as colorectal cancer,31-33 non-small-
cell lung cancer34,35 and gastric cancer.36-38 In non-small-cell lung cancer, 
Li et al34 show that EPHB3 suppresses cancer cell metastasis via a PP2A/
RACK1/Akt signalling complex. In contrast, Ji et al35 demonstrate that 
EPHB3 is overexpressed in this cancer and promotes tumour metastasis by 
enhancing cell survival and migration

QSOX1 QSOX1is an enzyme that oxidizes thiols during protein folding, reducing 
molecular oxygen to hydrogen peroxide, which may be utilized by tumour 
cells at different stages of tumorigenesis.39 The results of Sung et al40 have 
proven that QSOX1 might be a lung cancer tissue-derived biomarker and 
be involved in the promotion of lung cancers, and thus can be a therapeutic 
target for lung cancers

S100A6 Overexpression of S100A6 is correlated with patient prognosis, so it is an 
independent prognostic predictor in gastric cancer and the methylation 
profile of specific CpG sites may affect its transcription.41 S100A6 can 
not only stimulate proliferation and migration of colorectal carcinoma 
cells through activation of the MAPK pathways,42 but also regulate the 
proliferation, invasion, migration and angiogenesis of lung cancer cells 
through the p53 acetylation.43 Moreover, it plays an important role in 
pancreatic cancer44,45

UNC5CL It is a novel inducer of a proinflammatory signalling cascade leading to 
activation of NF-κB and JNK. It has been first described as a novel ZU5 
and DD-containing protein that is mostly homologous to the intracellular 
fragments of the Unc5-receptor family members46

TA B L E  2  Detailed functional 
annotation about the six hub genes by 
deep literature-exploring
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subgroups based on stage III/low-risk, stage III/high-risk, stage IV/
low-risk and stage IV/high-risk, as shown in Figure 6I. The result indi-
cates both stage III and IV patients in high-risk group have poorer OS 
than low-risk patients. Meanwhile, based on age and gender, patients 
were divided into four subgroups (<60/low-risk, <60/high-risk, ≥60/
low-risk and ≥60/high-risk) and four subgroups (female/low-risk, fe-
male/high-risk, male/low-risk and male/high-risk). As expected, OS 

of ≥60/high-risk group patients is the worst (Figure 6J). In addition, 
in both female and male groups, high-risk patients have shorter sur-
vival time than low-risk ones (Figure  6K). Overall, this prognostic 
signature shows a satisfactory applicability when advanced patients 
are regrouped by different clinicopathological characteristic, sug-
gesting that it is an independent applicable prognostic predictor for 
PTC-advanced patients.

F I G U R E  5  Genetic alterations associated with 6 tumour stage-related hub genes. (A) Visual summary of Genetic alterations (data from 
PTC in TCGA) shows the genetic alteration of six hub genes. (B) The total alteration frequency of six hub genes. (C) Correlations between 
genes' expressions and DNA methylation values
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3.7  |  Biological pathway and tumour 
microenvironment alteration between high- and low-
risk patients

To explore potential biological pathway alteration between high- and 
low-risk patients, we conducted KEGG pathway enrichment analysis 
on DEGs between two groups. First, according to |log2FC| ≥ 1 and 
FDR<0.05, we obtained 454 DEGs, including 439 up-regulated and 
15 down-regulated genes, as shown in Figure 7A. Here, 40 pathways 
were enriched on these 454 DEGs, as listed in Table S3. Figure 7B 
shows the top 20 enriched pathways. We can see that pathways 
associated with cancers were enriched, such as ‘Wnt signalling 
pathway’, ‘TGF-beta signalling pathway’, ‘Proteoglycans in cancer’, 
‘PI3K-Akt signalling pathway’ and ‘Pathways in cancer’, illustrating 
that these DEGs may promote the progress of PTC to some extent.

As we know, understanding the tumour microenvironment 
(TME) is of practical significance for cancer diagnosis and treat-
ments. As major fraction of TME, infiltrating stromal and immune 
cells form the major non-tumour constituents of tumour tissues, 
which not only perturb the tumour signal in molecular studies but 
also have an important role in cancer biology.20 Therefore, in order 
to investigate the relationship between these cells and the prognos-
tic signature, ESTIMATE was preformed to calculated the Stromal 
Score, Immune Score and ESTIMATE Score for 148 PTC-advanced 
patients using R package ‘estimate’. Here, the higher value estimated 
in Immune Score or Stromal Score means to the larger amount of 
the immune or stromal components in TME. ESTIMATE Score is 
the sum of Immune Score and Stromal Score denoting the compre-
hensive proportion of both components in TME. First, we analysed 
whether these scores were correlated with the risk score. As shown 
in Figure  7C–E, the prognostic signature is significantly positively 
correlated with Stromal Score, Immune Score and ESTIMATE Score 
(p < 0.05) respectively. Then, we performed difference analysis in 
terms of Stromal, Immune and ESTIMATE scores between low- and 
high-risk patients. Figure 7F-H demonstrate that high-risk patients 
have higher Stromal, Immune and ESTIMATE scores (p  <  0.05). 

These results suggest that TME of high-risk patients, compared with 
low-risk patients, may be more conducive to tumour growth.

4  |  DISCUSSION

In this paper, we systematically analysed PTC tumour stage-related 
genes and constructed a prognostic risk signature for PTC stage III/
IV patients. The workflow of this study is shown in Figure S7. Based 
on 1243 DEGs, three co-expression gene modules were achieved by 
WGCNA analysis. GO and KEGG pathway enrichment analysis were 
performed on the three modules, which indicates that they are all 
related with cancer and immune pathways. Of them, two were iden-
tified to be closely related to pathologic stages by module–clinical 
trait relationship analysis. The genes in both two modules were 
mainly enriched in cancer-related pathways, such as ‘PI3K-Akt sig-
nalling pathway’, ‘MAPK signalling pathway’ and ‘Jak-STAT signalling 
pathway’. These results illustrate that although genes in two mod-
ules have different gene expression patterns, they are similar in bio-
logical pathways and play a similar role in the development of PTC.

Six hub genes of RPS6KA6, SORBS2, EPHB3, QSOX1, S100A6 
and UNC5CL from the two stage-related modules were identified 
and then underwent comprehensive validation tests, including ex-
pression difference analysis between tumour and normal tissue in 
our data set, GEPIA database, GSE29265 and GSE3678, as well as 
among four stage tumours based on our data set and GEPIA data-
base, respectively. Moreover, ROC curve analysis shows that these 
six hub genes yield excellent diagnostic efficiency between tumour 
and normal tissues. The alteration statuses of six hub genes were 
also analysed and mutations in the DNA of the six genes rarely occur, 
indicating that they are all much conservative, but the changes of 
DMSs on the six genes show that 12 DMSs are significantly associ-
ated with their corresponding genes' expression, so DNA methylation 
on six genes should be paid close attention in following researches. 
Finally, by deep literature-exploring as described in Table 2, all of the 
six hub genes have been confirmed as important roles in cancers. 

TA B L E  3  Details of the differential methylation sites and corresponding genes

CpG_site SiteLevel GeneSymbol GeneLevel Relation R p value

cg24944328 Down EPHB3 Up Negative −0.73 <2.2E−16

cg23626387 Down QSOX1 Up Negative −0.57 <2.2E−16

cg01910639 Down S100A6 Up Negative −0.53 <2.2E−16

cg08106792 Down S100A6 Up Negative −0.5 <2.2E−16

cg16291048 Down S100A6 Up Negative −0.71 <2.2E−16

cg04130557 Down SORBS2 Down Positive 0.49 <2.2E−16

cg07965335 Up SORBS2 Down Negative −0.39 <2.2E−16

cg11076487 Up SORBS2 Down Negative −0.51 <2.2E−16

cg15883603 Up SORBS2 Down Negative −0.42 <2.2E−16

cg18824724 Up SORBS2 Down Negative −0.4 <2.2E−16

cg03068376 Down UNC5CL Up Negative −0.45 <2.2E−16

cg05673137 Down UNC5CL Up Negative −0.25 3.50E−08

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29265
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3678
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All above analysis prove that these six hub genes would be potential 
biomarkers for PTC diagnosis and marking PTC stages.

Tang et al.7 have also given five hub genes for PTC (COL1A1, 
COL1A2, COL3A1, COL5A2 and DCN) by WGCNA and 

protein-protein interaction network methods, but further valida-
tion about them needs to be explored. Since we performed more 
rigorous data filtering, COL1A2 is absent in our data set. Here, we 
conducted ROC curve analysis and expression difference analysis 
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on other four genes. Figure S8 shows that AUC values of four genes 
are 0.757, 0.642, 0.696 and 0.909, respectively, while those of our 
six hub genes are all greater than 0.85 and four higher than 0.9 
(Figure 4A-F). The expression levels of the four genes yield no sig-
nificant difference (Figure S9 and Table  S4), compared with those 
of the six genes listed in Table 1. Based on different data filtering, 
there is no overlap of hub genes between our work and Tang et al., 

so the practical applicability of those genes would be experimentally 
confirmed in the future researches.

Survival curve reveals that the survival time of patients with 
advanced stage (III and IV) is significantly less than that of patients 
with early stage (I and II). Therefore, prognostic risk modelling for 
patients with advanced stage is more important for precise medical 
treatments. From common 1243 DEGs, 230 genes are associated 

F I G U R E  6  Construction and evaluation of the risk prognostic model for PTC advanced patients. (A) Kaplan-Meier survival analysis of PTC 
patients between stage I+II and stage III+IV. (B) The distribution of the risk score. (C) The distribution of PTC advanced patients' follow-up 
time and status. (D) Expressions distribution of the 21 genes in high-risk, low-risk and normal patients. (E) Kaplan-Meier survival analysis of 
PTC advanced patients that are categorized into low-risk and high-risk groups using the median as the cut-off. (F) The time-dependent ROC 
curves of the risk score. (G) Forest plot summary of univariable analysis of age, gender, tumour stage and risk score. (H) Forest plot summary 
of multivariable analysis of age and risk score. (I) The Kaplan-Meier curves for stage data set. (J) The Kaplan-Meier curves for age data set. 
(K) The Kaplan-Meier curves for gender data set

F I G U R E  7  Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and tumour microenvironment analyses between high-risk and 
low-risk patients. (A) Volcano plot of differentially expressed genes between high-risk and low-risk patients. (B) The top 20 KEGG pathways 
enriched of differentially expressed genes. (C-E) Correlations between the risk score and Stromal Score, Immune Score and ESTIMATE Score 
in the TCGA cohort, respectively. (F-H) Comparison of the Stromal Score, Immune Score and ESTIMATE Score between low-risk and high-
risk patients in the TCGA cohort, respectively
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with PTC-advanced patients' OS by univariate regression analy-
sis. Among them, 21 genes were identified to develop a risk score 
model by LASSO Cox algorithm. This prognostic signature can suc-
cessfully divide PTC patients into high- and low-risk groups and 
is independent of the clinical indicators by stratification analysis. 
Consequently, biological pathway alteration analysis on DGEs be-
tween high- and low-risk groups illustrate that these DEGs promote 
the progress of PTC to some extent. Meanwhile, high-risk patients 
have higher stromal, immune and ESTIMATE scores than low-risk 
patients, suggesting that TME of high-risk patients may be more 
conducive to tumour growth. We can conclude the 21-mRNA-based 
prognostic risk signature could be a novel and effectively indepen-
dent prognosis signature for predicting survival in advanced pa-
tients with PTC.
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