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Abstract

Alternatives of conventional antibiotics have become an urgent need to control drug-resis-

tant bacteria. Therefore, search for new antibacterial agents has become a trend in several

microbiological and pharmaceutical scientific works. Insects, one of the most successful

and evolved species on earth is known to be an effective natural source of several medically

useful chemicals including antibacterial agents. There is considerable evidence of using

wasp venom against medical ailments in several parts of the world. In this work venom from

Polistes wattii Cameron, 1900 collected from Eastern Province, Saudi Arabia was evaluated

for its antibacterial activities. Such activity was tested against four pathogenic bacteria: two-

gram positive Staphylococcus aureus (ATCC 25923) and Streptococcus mutans (RCMB

017(1) ATCC 25175) and two gram-negative (Salmonella typhimurium NCTC 12023 ATCC

14028 and Enterobacter cloacae (RCMB 001(1) ATCC 23355). Also, chemical characteriza-

tion of wasp venom was done using HPLC and two isolated peptides were sequenced. The

result indicates the potent anti-microbial effect of the venom against the four tested bacteria.

The most sensitive bacteria were Staphylococcus aureus (ATCC 25923) and Streptococcus

mutans (RCMB 017(1) ATCC 25175). The sequence of the two purified peptides indicates

that they belong to mastoparan. The study results may pave way to use this wasp venom in

future antibiotics especially in controlling skin infection by Staphylococcus aureus.

Introduction

Humans depended mostly on the natural resources for all their needs [1]. Diseases, being the

most crucial limiting factor that negated the advancement of human race [2]. Plant derived

phytochemicals were the primary resources exploited for human needs [3]. Several plant-

derived phytochemicals were investigated for their activity against chronic debilitating diseases

and have found to act through multiple pathways including their disease modifying effect and
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by general mechanisms like antioxidant defense [4, 5]. But, in the present scenario, where the

disease-causing agents have attained resistance against the drug, these medicines failed drasti-

cally. In such situations, newer alternatives have been searched for in other life forms like ani-

mal derived drugs developed from their natural secretions. Animal derived glandular

secretions like musk are being traditionally used for medicinal purposes [6]. Salivary secre-

tions, specialized glandular secretions constituting venom, secretions for self-defense in the

form of acrid irritant juices; all represents potent sources against human diseases [7]. From an

evolutionary point of view-, animal venom forms a very effective group of chemicals that was

used to kill and digest prey [8, 9]. Many animals have evolved a wide range of chemical toxins

to achieve this purpose [10]. The class Insecta, in particular, utilized a vast array of chemicals

in their venom for the purpose of self-defense and predation [11, 12]. Among insects, the

order Hymenoptera, which includes ants, bees and wasps are specifically equipped with effec-

tive venom and delivery systems which provided them an evolutionary advantage of becoming

the most evolved life forms on earth [13, 14]. The chemical analysis of Hymenoptera venom

showed the presence of an array of low molecular weight compounds like amino acids, bio-

genic amines, carbohydrates, small peptides and phospholipids with diverse biological activity

[15].

The medicinal use of Hymenoptera venom dates back to ancient Egyptian civilizations,

where the use of honeybee venom was common for alleviating arthralgia [16]. For years,

immunotherapy was the main objective of medication by insect venom, as the venom

enhances the immune defense and increases blood circulation on target sites [17, 18]. Recently,

studies have shown that insect venom is active against viruses, fungi, and most importantly

drug-resistant bacteria [19].

Drug-resistant bacteria poses a great threat in the form of escalating health expenditure and

loss of precious human lives in different parts of the world [20]. Failure of conventional antibi-

otics against common bacterial infections is the nightmare faced by microbiologists and phar-

macologists alike during the current century [21]. Search for newer and potent anti-microbial

agents to combat infections is the urgent need of the hour to prevent wide spread infections

without specific medications [22]. Very common pathogenic bacteria like Staphylococcus
aureus, causing bacteremia and infective endocarditis along with soft tissue infections, and Sal-
monella typhimurium, the common cause for food poisoning, are resistant to a wide range of

antibiotics available today [23, 24]. The above illustrated facts point to a grave crisis generated

by drug-resistant microbes posing life-threatening conditions from common infections and

minor injuries [25].

Although, advancements like passive immunization and phage therapy have substituted

conventional antimicrobials to a greater extend, medical researchers are still behind exotic

sources of novel antibiotics [26, 27]. Several natural sources were screened for antimicrobial

activity and among them insects provided promising results in this regard [20, 28]. Recently,

several publications highlighted the biological and chemical activities of hymenopteran insects

including their antimicrobial activity [29].

Wasps, a hymenopteran insect, produces a venom which is a good source of alternative

antibiotic agents [30]. Antimicrobial peptides (AMPs) isolated from wasp venom have shown

strong bactericidal activity [31, 32]. Their mode of action depends on eliciting multiple path-

ways that include destructing the phospholipid bilayer membrane, perturbing cellular metabo-

lism, or by interfering with cytoplasmic signaling. This makes them a safer alternative for

human and animal consumption. Moreover, these compounds are highly conserved among

the Vespidae family [33].

In Saudi Arabia, several species of Vespidae are reported [34], but their venoms were never

characterized and analyzed before for their antimicrobial activity. This work aims at

PLOS ONE Antibacterial activities of two potential peptides from Polistes wattii

PLOS ONE | https://doi.org/10.1371/journal.pone.0264035 March 7, 2022 2 / 11

https://doi.org/10.1371/journal.pone.0264035


characterizing two peptides isolated from Polistes wattii Cameron, 1900 collected from the

Eastern Province of Saudi Arabia and to investigate their antimicrobial activity against four

multi-drug resistant strains of Staphylococcus aureus, Streptococcus mutans, Salmonella typhi-
murium and Enterobacter cloacae for the development of a probable antimicrobial agents that

can overcome drug resistance.

Material and methods

Collected materials

Live specimens of Polistes wattii wasps were collected using standard insect swiping net from

Al-Ahsa Governorate (25˚23000@N 49˚36000@E) (Fig 1). The specimens were then transferred

to the lab and identified according to the keys published by Temreshev, 2018. The venom was

collected using an electric screen that was used for collecting honeybee venom with a 6 Volt

electric charge [35]. The collected venom was harvested three time a week from electric screen

and transferred to Eppendorf tubes containing mixture of 50:50 acetonitrile and water and

preserved in refrigerator.

Fig 1. The wasp Polistes wattii with its characteristic yellow coloration.

https://doi.org/10.1371/journal.pone.0264035.g001
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Antibacterial activity

Four multidrug-resistant bacteria were selected to evaluate the antibacterial activities: two-

gram positive bacteria (Staphylococcus aureus (ATCC 25923) and Streptococcus mutans
(RCMB 017(1) ATCC 25175) and two gram-negative (Salmonella typhimurium NCTC 12023

ATCC 14028 and Enterobacter cloacae (RCMB 001(1) ATCC 23355). Agar well diffusion

method was used to demonstrate the antibacterial effect of the wasp venom against the selected

microbes [36]. The selected strains of the bacteria were uniformly inoculated on to petri dishes

containing nutrient agar media. Wells were made on the plates using a sterile 7 mm cork-

borer and 100 ul of diluted wasp venom were poured into each well. The dilutions of 5, 2.5,

1.25, 0.75 mg/ml of wasp venom were selected for the present study and the plates were incu-

bated for 24 h at 37˚C [37]. The zone of inhibition of bacterial growth was measured using cal-

ipers at the end of the incubation [20]. Each experiment was carried out in triplicates for each

concentration and organism.

Chemical analysis

Wasp venom compounds were isolated using HPLC under a specific column (Vydac1 218TP

C18 HPLC Columns, Avantor) with unique selectivity for small peptides. The peptides were

collected after a period of 30 min runtime at every minute [38]. Certain pure peptide fractions

were then transferred to Porton LF3000G protein sequencing machine to get the amino acid

sequence [39]. Chemoffice (chem draw) and Discovery Studio software were used to visualize

the selected peptide chemical orientation and 3D shape.

Statistical analysis

One way ANOVA was done between the different venom concentrations for each bacterial

pathogen and the mean zone of inhibition was done using IBM SPSS ver.22 followed by post

Hoc Tukey’s test were done to evaluate the differences between the different concentrations.

Matrix cluster analyses using two-way single linkage Euclidian distance was made using

SYSTAT version 13, from Systat Software, Inc., San Jose, CA, USA, www.sigmaplot.com to

show the degree of antimicrobial activity of wasp venom for each pathogenic species [20].

Results

The present work illustrates the antagonistic activity of different Polistes wattii wasp venom

(PWWV) concentrations to the spectrum of gram-positive and gram-negative human patho-

genic bacteria. The result of the agar well diffusion method showed a concentration dependent

inhibition of the pathogenic agents (Table 1; Fig 2). All tested bacteria were inhibited by wasp

venom with different degrees: the highest inhiation is shown by Staphylococcus aureus under

the highest concentration 29.3±1.5 while the lowest concentration shows no effect to

Table 1. Antimicrobial activity indicated as inhibition zone in (mm) of different wasp venom concentrations against selected pathogens.

Venom concentration (mg/ml) Zone of inhibition (mm)

Gram-positive bacteria Gram-negative bacteria

Staphylococcus aureus Streptococcus mutans Salmonella typhimurium Enterobacter cloacae
0.75 4.3±0.9 Na Na Na

1.25 17.0±1.4 5.3±1.3 Na 2.7±0.7

2.5 24.3±1.3 9.7±1.9 3.3±0.7 6.7±1.2

5 29.3±1.5 16.7±1.8 10.7±1.9 14.0±1.7

https://doi.org/10.1371/journal.pone.0264035.t001
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Streptococcus mutans, Salmonella typhimurium, and Enterobacter cloacae (Fig 2). Matrix clus-

ter analyses produce a heat map that represents each concentration effect on the target bacte-

rial species (Fig 2).

The statistical analysis indicates that there is a significant difference between mean inhibi-

tion zone of the different venom concentrations with a P = 0.03. the post hoc Tukey’s test

showed a significant difference between each venom concentration (Table 2).

The results of HPLC analysis of the venom with the separated venom components are

shown in Fig 3. From the literature, the effective small peptides were targeted as the main bio-

active compounds that can produce antimicrobial activity so two pure peptides that isolated at

retention time 34.778 and 39.693 were sequenced to identify their identity. The sequence result

shows that the two peptides have belonged to Mastoparan (a group of toxic peptides that are

common in wasp venoms) (Table 3). The two new peptides were given the Acronym of

MP-PW1 and MP-PW2 where the MP represents the peptide group mastoparan and the PW

represents the wasp species Polistes wattii. The chemical drawing software indicated the spiral

shape 3D dimension of the isolated peptide that has great ability to disintegrate the phospho-

lipid bilayer of bacterial cells (Fig 4).

Discussion

The drug-resistant microbial infection poses the most perilous issue in health sector due to the

escalating health costs and loss of human resources [40]. World is now facing pandemic

attacks from ‘superbugs’ that are resistant to almost all the known antibiotics in use today [41].

Researches ramified in varied related streams like phytomedicine, ethnomedicine and nano-

medicine, which searched for effective antimicrobials that could replace the existing antibiotics

or could potentiate their action so as to curb the menace created by multidrug resistant varie-

ties of microbes [42–45]. Though succeeded to a certain extent, these remedies largely failed to

provide a leap in the medical armamentarium of antibiotic agents [46]. The search has now

Fig 2. a. Minimum inhibitory concentrations of wasp venom towards certain strains of gram-positive and gram-

negative bacteria; b. the heat map that represents the effect of venom on each bacterial species where the darker color

indicates the highest effect.

https://doi.org/10.1371/journal.pone.0264035.g002

Table 2. Overall results of ANOVA test, including non-significant ranges.

Venom concentration (mg/ml) Mean Standard error Non-significant ranges

0.75 1.07 0.3 a

1.25 6.25 0.27 b

2.5 11 0.8 c

5 17.6 1.1 d

https://doi.org/10.1371/journal.pone.0264035.t002
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extended to other natural sources like the venom derived from reptiles and insects. Among

these the members of the class insecta evolved with much unique venom profile and diverse

biogenic activities. In insects, wasps, belonging to the family of Vespidae distributed all around

the world and with more than 5000 species has been the center of attraction owing to its

diverse pharmacological activities. Wasp venom is a complex mixture of chemicals containing

proteins, peptides, enzymes and small molecules. The common peptides isolated from the

wasp venom are mastoparan, eumenitin, eumenitin-R, rumenitin-F, EpVP, decoralin and ano-

plin [47]. The enzymes, on the other hand included hyaluronidase, α-glucosidase, phospha-

tase, phospholipase A2 and phospholipase B [48]. In this regard, the variety of antimicrobial,

anticancer, neuroprotective anti-oxidant and anti-inflammatory activities exhibited by wasp-

derived- peptides are well established. The bioactive peptides derived from PWWV was inves-

tigated for its potential to target drug-resistant microbes in the present study. Present study

investigated the venom at doses of 5, 2.5, 1.25 and 0.75 mg/ml against the multidrug-resistant

bacterial species of Staphylococcus aureus, Streptococcus mutans, Salmonella typhimurium and

Enterobacter cloacae. The results showed a statistically significant growth inhibition of Wasp

venom on the selected microorganisms. Thus, the four selected organisms were inhibited by

PWWV with a very predominant and dose dependent activity against Staphylococcus aureus.

In earlier studies, the mastoparan-c peptide isolated from Vespa cabro venom also showed

activity against drug resistant gram-positive and gram-negative microorganisms [49]. PWWV

also showed the presence of two mastoparan peptides in HPLC analysis which were sequenced

in the present study. Thus, PWWV forms a promising substitute for old and conventional

sources of antimicrobial drugs [50]. The presence of wide ranges of antimicrobial peptides in

wasp venom encourages the study of more wasp species from around the world to isolate these

Fig 3. HPLC profile of Polistes wattii venom the two red circles indicated the two targeted peptides the chose for

sequences.

https://doi.org/10.1371/journal.pone.0264035.g003

Table 3. Amino acid sequences of tested mastoparan family of peptides.

Acronym Retention time (min.) Sequence

MP-PW1 34.778 Ile-Asn-Leu-Lys-Ala-Leu-Ala-Ala-Leu-Ala-Met-Lys-Ile-Leu-NH2

MP-PW2 39.693 Ile-Asn-Arg-Lys-Ala-Leu-Ala-Ala-Leu- Met-Met -Lys-Leu-Leu-NH2

https://doi.org/10.1371/journal.pone.0264035.t003
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chemicals and evaluate their antagonistic activity against common multi-drug-resistant bacte-

rial species [51].

Present work showed highest activity against Staphylococcus aureus, which is a known noto-

rious pathogen causing skin and respiratory tract infections and other life-threatening condi-

tions like infective endocarditis, toxic shock syndrome, scalded skin syndrome, osteomyelitis,

necrotizing fasciitis and necrotizing pneumonia [52, 53]. The versatility and virulence of

Staphylococcal infections are attributed to a variety of virulence factors encoded in its genes.

for its pathogenicity for human skin [54], Streptococcus mutans is a member of the natural

flora of human oral cavity mostly dwelling on dental plaques and on biofilms over dental sur-

faces and is considered one of the common etiological agents for dental caries [55]. Salmonella
typhimurium, is considered the principal cause for food poisoning and accounts for 3 million

deaths in endemic zones annually. It poses a huge impact on the health expenditure of several

nations owing to its endemicity and its capability to cause gastroenteritis which is considered a

major factor responsible for under 5 years’ mortality among children [56, 57]. Enterobacter clo-
acae is a common Gram-negative facultative, anaerobic, non-sporing bacterium of human gut

which gained clinical significance recently owing to its capability to cause opportunistic and

nosocomial infections in patients under mechanical ventilation [58, 59]. The four species show

quite different responses to the range of diluted concentrations of PWWV. Such outcomes

came compatible with other works concerning antipathogenic activity of different wasp ven-

oms throughout the world. Various pathogens show great variation in their response to the

venoms [33, 37, 57, 60, 61]. Staphylococcus aureus shows highest sensitivity to PWWV even at

a very low concentration. This result makes this a potent candidate to be developed as a future

drug resistant anti-streptococcal agent. As a common skin pathogen and a predominant spe-

cies causing soft tissue infections, use of PWWV as a topical agent also could be considered.

The incorporation of PWWV into oral toiletries may also be beneficial to contain Streptococcus
mutans and its propensity to cause oral infections. In contrast, the Enterobacter cloacae show

less sensitivity to PWWV; this could be due to the exposure of these agents to “antibiotic-pol-

lution” leading to attainment of resistance to multiple drugs [62]. The venom of the very com-

mon wasp species Vespa orientalis also shows very few effects on Enterobacter cloacae [37].

Fig 4. a. Discovery Studio software diagram represents the 3D orientation of mastoparan showing the spiral shape; b.

Chem draw diagram which represents the molecular configuration of mastoparan: gray atoms represent Carbon, blue

atoms represent Nitrogen, red atoms represent Oxygen and white atoms represent Hydrogen.

https://doi.org/10.1371/journal.pone.0264035.g004
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The chemical analysis of PWWV showed similarity to other wasp species of the family Ves-

pidae [63]. The sequenced peptides through this study are very similar to those identified from

family Vespidae with an aspartate residue in the second position and very few amino acids

substitutions [64]. As all identified mastoparan the molecular orientation of the two identified

antimicrobial peptides MP-PW1 and MP-PW2 have a α-helical shape with 14 amino acid resi-

dues and an amide group at the C-terminus. Being a small molecule, it has an ability to pene-

trate the bacterial cell wall easily. AMPs is a versatile molecule that typically acts through a

variety of mechanisms of action, which can range from direct interactions and membrane

destabilization to intracellular targets [65, 66]. The chemical mode of action of antagonistic

activity of these peptides needs to be reviewed and studied for help in developing very effective

pharmaceutical final products that will be the antibiotics of the future.

Further works are needed to compare the sequences of different AMPs collected from other

wasp species around the world. This will help in synthesizing very effective artificial peptides

that could be more effective as antimicrobial agents. The way is still far from getting a complete

understanding of such group of new antibiotics till found them on the market, but no doubt

they will form a part of our future medicines.

Supporting information

S1 File. Inhibition zone induced by wasp venom using well diffusion method on the left side

the control using solvent only and on the right side the venom application (all photos represent

the high concentration of the venom): a. Staphylococcus aureus; b. Streptococcus mutans; c. Sal-
monella typhimurium; d. Enterobacter cloacae.
(DOCX)
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