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ABSTRACT
Obesity is a complex disease of global epidemic proportions. Adipose tissue expansion and chronic 
low-grade inflammation, locally and systemically, are hallmark features of obesity. Obesity is asso-
ciated with several other chronic diseases, which are also characterized by inflammation. 
Determination of adipocyte size and macrophage content in adipose tissue is a critical step in 
assessing changes in this tissue with obesity. Here, we introduce a complete standalone software 
package, AdipoGauge, to analyse microscopic images derived from haematoxylin and eosin (H&E)- 
stained and immunofluorescently stained histology sections of adipose tissue. The software package 
is a user-friendly application that does not require a vast knowledge of computer science or costly 
commercial tools. AdipoGauge includes analysing tools that are capable of cell counting and colour 
separation. Furthermore, it can quantify the cell data in images both with and without clear bound-
aries around the cells. It can also remove objects from the image that are not intended for analysis, 
such as blood vessels or partial cells at edges of slide sections. The simple and state-of-the-art 
graphical user interface requires minimal time and learning.
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1. Introduction
1 Obesity is a complex disease that has reached epi-
demic proportions in the U.S and worldwide [1,2] and 
is characterized by expansion of white adipose tissue 
(WAT). This chronic, low-grade inflammatory disease 
involves infiltration of macrophages into the WAT, 
which leads to increased production and secretion of 
pro-inflammatory adipocytokines from adipose tissue 
and reduced anti-inflammatory adipokines [3,4]. 
These cytokines affect metabolism of other tissues 
and contribute to systemic inflammation and insulin 
resistance [5]. Enlarged adipocytes (hypertrophy), 
increased adipocyte number (hyperplasia) and 
increased macrophage content in adipose tissue are 
important characteristics in adipose tissue expansion. 
All these features are typically examined in order to 
estimate changes that occur in adipose tissue with 
obesity, whether dietary or genetic, and to assess the 
effects of various dietary or pharmacological anti- 
obesity and anti-inflammatory interventions [6,7]. 
Thus far, most researchers have relied on manual 
measurements (counting cells by hand), or publicly 
available software, such as NIH ImageJ, for analyses 

of histology sections of adipose tissue [8]. While these 
tools have been very useful, both approaches are 
tedious and time consuming, and justify the need for 
an automated and rapid means to measure various 
cellular features in adipose tissue histological sections.

The first attempts to determine adipose cell size 
started in the late 1960 s, when Hirsch et al. developed 
a Coulter electronic counter, which was used for sus-
pension derived from a known number of cells that 
were counted manually [9]. Di Girolamo et al. devel-
oped a technique to determine the number and size of 
cells in mammals, but it was not a computer method, 
and it was also done manually by the researchers [10]. 
With the technological advancements in computer 
science and embedded systems, some biomedical algo-
rithms and software were developed for biomedical 
imaging purposes. Chen et al. developed computer 
image analysis for adipose cell size by measuring the 
cross-sectional area of adipocytes; this method made 
cell sizing easier for a larger number of cells but was 
limited to adipocytes only [11]. Björnheden et al. devel-
oped an automated method in which they took a video 
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of the cell suspension placed between a siliconized glass 
slide and a cover slip and then acquired images for 
computer analysis to determine the adipocyte size 
[12]. Carpenter introduced CellProfiler, which utilized 
image processing algorithms for automated biological 
image analysis; the software supported yeast colony 
counting and classifying, tumour quantification, 
wound healing assays, and tissue topology evaluation, 
but the results showed errors when compared to the 
actual measurements as the number of cells increased 
[13]. Kamentsky et al. released a new version of 
CellProfiler, CellProfiler 2 aimed at making a pipeline 
between ImageJ and CellProfiler. To date, it has 
become a powerful but complex software, which can 
be difficult to use. To run CellProfiler 2, the researcher 
needs knowledge of machine learning, a complicated 
subject for biologists [14]. Osman et al. calculated the 
area of adipose cells by both manual and computerized 
methods and compared the results. Their computer 
method, however, was not very accurate as they con-
sidered the long and short diameters in cells and con-
sidered the cells to be oval; consequently, the 
determined area of cells was not accurate [15]. 
Rasband developed the frequently used software, 
ImageJ, for the National Institutes of Health [16]; this 
software is used to count and determine the size of 
adipocyte cells automatically and has additional appli-
cations. However, some researchers use ImageJ to per-
form a manual analysis of the adipocyte size [17]. 
ImageJ, as one of the most popular software programs 
in the rapidly growing field of biological image analysis, 
had a major impact on other software programs [18]. 
However, ImageJ has some limitations: it is not easy to 
operate and requires training, especially with more 
complex problems such as classifying multiple shapes 
based on their immunostaining.

Several other microscopic image analysers have 
recently been released, but they generally focus on 
one aspect of cell analysis and must be used with 
other software, which increases the time and cost of 
analysis. Debitage was introduced by Pau to conduct 
analysis of biological images in cellular phenotypes 
[19]. This software combines features such as signal 
processing and machine learning but is limited to 
a certain type of images and cannot be used widely by 
researchers without computer education. Also, Sommer 
et al. introduced Ilastik, which is a toolkit for segmen-
tation in analysis of biological high content images; this 
software can be used only for segmentation purposes 
[20]. Schindelin et al. developed Fiji software for bio-
logical image analysis, which is a distribution of ImageJ 
that has been written in Java language. Fiji is used 
mostly for cell counting purposes [21], it is not 

applicable in the colour separation for immuno- 
stained slides, and the researcher needs to install other 
software alongside Fiji to operate it. Icy software was 
developed by Chaumont et al. to provide an informatics 
platform for reproducible biological research [22]; this 
software provides an excellent combination of 
a community website and image processing tool, but 
is mostly intended for researchers who have 
a significant background in computer programming. 
Recently, a new version of ImageJ, called ImageJ 2, 
has been released by Rueden et al. [23]; this new ver-
sion has some major changes such as a new built-in 
User Interface (UI). As ImageJ is an open source soft-
ware, it can be easily modified by researchers. However, 
the improved ImageJ2 still requires training and prac-
tice for biomedical researchers, as many lack back-
grounds in computer science and programming 
modification. ImageJ has the features to do cell sizing, 
however, these features are hidden in menus that take 
time to learn and use. ImageJ also lacks some other 
useful and novel analysis features that are provided by 
our newly developed software, AdipoGauge, as 
described in this manuscript. Our future goal is to 
convert AdipoGauge (developed in C++) into an 
ImageJ Plugin using Java applications.

2. Materials, methods, and software 
devleopment

AdipoGauge (© Moussa lab, 2020) is designed to pro-
vide an easy interface for researchers in obesity studies 
to accurately analyse Haematoxylin & Eosin (H&E) 
stained images and fluorescently stained images. This 
software is equipped with different analysing tools to 
deal with most of the image processing requirements in 
cell biology. Cell counting and colour separation have 
been implemented alongside various novel features to 
provide biology researchers with a powerful, accurate, 
and user-friendly software, which can be easily applied 
by investigators with limited computer expertise. The 
algorithms are described in this section and the results 
and their accuracy are discussed in the next section, 
followed by the conclusions and future work to 
improve the software.

2.1. Software development, overview, and images 
used

Two types of basic microscopic images are analysed in 
this study: H&E stained images of adipose tissue sec-
tions and fluorescently stained images (Figure 1). 
Adipose tissue histological sections are used to deter-
mine the number of cells in the image. Such images do 
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not always have clear borders at the edge of sections, 
which may appear in different background colours. It is 
important that in H&E stained adipose tissue images, 
the clear or unclear borders around the cells be 
detected accurately, so the number of cells and other 
required information (i.e. cell size and area histogram) 
can be acquired with a high level of accuracy.

Fluorescent stained adipose tissue sections are 
another type of microscopic images that have been 
considered in this study (Figure 1). The main purpose 
of using fluorescent stained images is to find the area of 
interest of each colour in the image by separating the 
colour channels. Some regions in microscopic images 
contain valuable information, such as the distribution 
of adipose tissue or epithelial cell layers of interest. 
Thus, in fluorescent images, each colour of the image 
indicates a special part of the cell and knowing the 
percentage of the marked regions is highly important 
for bio-researchers. Using simple colour segmentation 
techniques, the area percentage of a specific organelle 
can be determined in the image.

2.2. Steps for image processing

AdipoGauge uses C++ to enhance microscopic images, 
perform the required analysis, and generate the desired 
output for the user who has little or no computer 
programming skills. Efficient image processing algo-
rithms and a user-friendly graphical user interface 
(GUI) allow the researcher to analyse different types 
of images for different objectives with little effort. 
Generally, microscopic images have RGB colour spaces, 
and the colour space conversion from RGB channel to 
other colour spaces is applied when necessary; other-
wise, contour detection techniques are implemented to 
identify the cells. After cell identification, cell counting, 
cell area evaluation, and histogram generation are per-
formed. Area identification is achieved by filtering out 
the specified colour channels by the user and compar-
ing the metric distance of objects to determine how 

similar the objects are. A general overview of the tech-
niques that are used in this framework is provided in 
subsections: A. Pre-processing, B. Analysing, and 
C. Post-processing.

It should be noted that one of the most significant 
improvements to the software is that the user can see 
changes in the analysis while working with the soft-
ware; thus, there is no need to repeat the process again 
and again to see the different results when the image is 
modified.

2.2.1. Pre-processing
The first type of image introduced in the previous 
section, the H & E stained adipocyte cell image, reveals 
significant information, such as the number of the cells 
and the area of a specific part of the cell organelles. The 
pre-processing stage is designed to perform a series of 
image conditioning and calibration steps. The calibra-
tion length of the input image is essential in order to 
generate accurate data; the other important pre- 
processing step is to identify unwanted objects or infor-
mation so that it can be excluded from the desired 
information. Images can also contain noise, such as 
haze and small black or coloured dots, which should 
be removed from the image. The pre-processing stage 
allows the software to enhance results acquired from 
the laboratory.

2.2.1.1. Calibration. To get the actual quantities such 
as length and area in micron and micron square, 
respectively, the image should be calibrated, and 
a calibration factor utilized. The method used in this 
software provides the required measurements based on 
the number of pixels in order to get the most accurate 
results. For example, cell size can be determined based 
on the number of pixels the cell contains, and therefore, 
the method proposed here gives more accurate results 
compared to other software that does not use pixel 
counting. The calibration factor shows the length that 
is assigned to a pixel. Hence, the calibration factor can 

a b c 

Figure 1. Sample of images used to develop and test AdipoGauge. a) H & E stained mouse adipose tissue image; b) Fluorescently 
stained macrophages from mouse adipose tissue fixed sections; c) H & E stained human breast tissue section (containing adipose 
tissue) used for colour separation.
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be evaluated in micron/pixel for the length and 
micron2/pixel for the area measurements.

In AdipoGauge, the calibration can be conducted 
automatically or manually. Usually, the original output 
file of the microscope contains the calibration factor as 
a metadata. The software reads the metadata, if present, 
in the image file and searches for the micron per pixel 
value to identify the calibration factor. If the micron 
per pixel value is not embedded in the image file, the 
user can enter the value directly into the software. This 
value can be obtained from the microscope catalogue or 
the user can determine the pixel length of the calibra-
tion line by clicking on the line’s starting and ending 
points and entering the actual length of the line. The 
software calculates the calibration factor according to 
the following formula:

Calibration factor MPPð Þ

¼
length of the calibration line in microns

length of the calibration line in pixels
(1) 

2.2.1.2. Image enhancement. One of the most impor-
tant steps in image processing algorithms is image 
enhancement. As the image is being prepared for 
photomicrograph, some cells might be damaged; thus, 
using enhancement methods will lead to more accurate 
results while analysing the cell images. A similar 
improvement in results can also be obtained when 
a specific area of interest is required to be isolated 
and measured. Moreover, microscopic images might 
be hazy or noisy due to the preparation process. 
AdipoGauge is equipped with an algorithm that auto-
matically removes the haze and noise after the user 
loads the image. The result is a clearer microscopic 
image, which is more convenient to process. The haze 
removal process is shown in Figure 2.

2.2.1.3. Loading multiple images. Another important 
feature of AdipoGauge is its ability to work with multi-
ple images (Figure 3). This allows the user to have 
a better control over the image processing and the 
required results. When a new image is loaded, the 
program creates a new object for the new image, and 
as the analysis progresses, every task performed is saved 
in the object memory, so the user can retrieve the 

results for multiple images to be used for further 
comparison.

2.2.2. Analysing
The main objective of AdipoGauge is to detect and 
analyse the desired features and quantities in micro-
scopic images. After improving their quality, the images 
are processed in the analysing step, where the user can 
choose one of the two methods, i.e. cell counting or 
colour separation.

2.2.2.1. Cell counting. This method is applied to 
count the number of cells in microscopic images. The 
H&E stained images are analysed by this algorithm to 
detect and count the cells. In contrast to previous soft-
ware that used axes to determine the cells’ areas, 
AdipoGauge uses contours to identify the required 
objects (cells). When cell borders are damaged during 
the photomicrography, the image processing algo-
rithms are often unable to obtain those cells as inde-
pendent cells. AdipoGauge allows the user to export the 
images into Microsoft Paint software to perform man-
ual corrections (e.g. connect the cell borders in the 
images such as light/faint cell membranes) if needed, 
and then return the images to AdipoGauge (Figure 4). 
Moreover, the user can see the microscopic image 
beside the processed image in Microsoft Paint, compare 
the two images and make the correction accordingly.

In H&E stained images, there are some regions that 
should be excluded from analysis, such as blood capil-
laries (depending on the user’s need), or scratches in 
the slide. AdipoGauge allows the user to exclude objects 
smaller or larger than a certain area or size by setting 
the upper and lower limit for the size of cells (i.e. cells 
smaller than 240 square microns can be ignored). Figure 2. Haze removal process.

Figure 3. Loading multiple images in software.
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Consequently, any unnecessary objects (small cells, very 
large cells, skeletal muscle fibres, blood capillaries) can 
be easily eliminated from analysis and calculations.

Another important feature of AdipoGauge is that it 
lets the user eliminate from the image any cell or other 
object and prevent them from being counted by click-
ing on them; these cells or other objects can be brought 
back into the calculations by clicking on them again. In 
medical imaging software, users can specify a range of 
cell areas to be excluded from analysis. For example, 
the user can set lower and upper limits for cell count-
ing, and any objects outside this range would be 
excluded. However, if an unwanted object is of the 
same size as the cell and cell removal is conducted 
based on the size range, both the unwanted object 
and required cells would be excluded from analysis 
and consequently, the results would be inaccurate. 
AdipoGauge users can click on an unwanted object 
and remove it without removing important cells. The 
counting cell algorithm flow is shown in Figure 5. First, 
the images are saved in a temporary image location, 
then the RGB values of the image are determined to do 
the thresholding, where the threshold is used to find 
the contours and the cell data. If the user needs to 
improve results by removing the cells, AdipoGauge 
will calculate the data for the remaining cells again.

AdipoGauge can exclude incomplete cells (border 
cells) from being counted or bring them back with 
one click. This method can be used for H&E stained 
microscopic images, including images with less clear 
cell borders, and for unstained cells that have very 

thin or damaged borders or cells with breaks in their 
borders. The user can thicken the border lines using 
a sliding bar. With a greater border thickness, more 
cells will have continuous borders, and the counting 
will be more accurate, but it will reduce the calculated 
cell area. The user can decide on the optimum results 
and balance between the thickness of the cell borders 
and the accuracy of the cell number and area with 
a user-friendly GUI, which shows the effects of the 
changes at the same time.

2.2.2.2. Colour separation. Each colour in H&E 
stained and fluorescent microscopic images represents 
a different organelle in the cell. The colour separation 
method provides the user with a wide range of options 
to separate the desired organelle’s area based on the 
research needs. In the colour separation algorithm, the 
user imports an H&E stained image that contains infor-
mation about cell parts, such as macrophages and 
nuclei, which is encoded in their colours. With the 
aid of 3 sliding bars in the GUI of AdipoGauge, users 
can go through all the colour bandwidths and select the 
purple, light red, reddish brown or any other colour. 
After filtering out the desired colours from a specific 
image, the software calculates the area of interest (areas 
of the organelles), and the percentage of the separated 
colours is displayed automatically. The analysed infor-
mation can be exported into an Excel file. The flow 
chart for this analysis is shown in Figure 6.

The user can also import a fluorescent image into 
the software. There are three main colour channels in 
fluorescent images: red, green, and blue, and these 
colour channels can be separated by the software. 
This process is similar to the algorithm for H&E 
stained images; however, the channels in fluorescent 
images represent only one colour and the user can see 
the selected colour on the GUI. This means that if the 
user chooses the blue channel, only blue would be 
shown on the GUI and the intensity for all displayed 
blue will be the same. The user can select each of these 
three channels or combinations of them and save them 
to analyse the data. In AdipoGauge, these saved images 
can be loaded as multiple images, which provides the 
user with a wider range of analysis tools.

Figure 4. Loading the image in Microsoft Paint to connect the 
cell border manually.

Figure 5. Cell counting flow diagram. Figure 6. Colour separation flow diagram.
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2.2.2.3. Image processing algorithms. The software 
includes several image processing algorithms to detect 
the cells and the colour ID of the microscopic images. 
These algorithms are written in C++ language and 
involve OpenCV libraries, which have an open source 
licence. The software can detect the cells by using real- 
time computer vision.

To find cells in pictures, we considered them as 
contours. Thus, we use the function called 
‘findContours’ in OpenCV. This function, based on 
the algorithm introduced by Satoshi Suzuki et al. in 
1985 [24], can retrieve contours from binary images 
and is a useful tool for shape analysis and object detec-
tion. Since we decided to implement this algorithm to 
count the number of the cells, the images are first 
converted into binary pictures. Each cell contour is 
stored as a vector of points. We used 
‘CHAIN_APPROX_SIMPLE’ method for contour 
approximation. We also used ‘RETR_EXTERNAL’ as 
the mode of contour retrieval. This helps us to get the 
contours more accurately, as the algorithm does not 
consider the spaces between cells as contours. The 
algorithm repeatedly chooses a point inside a white 
area, which represents a cell, and then finds the neigh-
bouring pixels of the point until it reaches all of the 
black pixels representing the border of the cell.

The contours are the boundaries of the cells which 
have the same intensity in binary images; the function 
‘findContours’ stores the coordinates of the boundary 
points of the cells. Thus, for large images, the software 
requires a large amount of memory, which will slow the 
computations. To overcome this problem, we have used 
the ‘CHAIN_APPROX_SIMPLE’ algorithm in 
OpenCV. In this algorithm, the software stores the 
coordinates of the beginning and the end point of 
each line only for each detected contour. Hence, the 
amount of required memory decreases significantly for 
the software. The algorithm used in the software is 
remarkably fast for large images and can be run on 
computers with less processing power and memory. As 
a result, the researcher can reduce time and expense to 
analyse a microscopic image.

For the colour separation, we used the C++ language 
and OpenCV libraries to analyse the images. We saved 
the images in Mat format in C++ and then the intensity 

of each colour channel (blue, green, and red) was 
determined and stored in a vector. This vector was 
used to separate the colours of each image.

2.2.3. Post-processing
After analysing the images, the acquired data can be 
displayed in the interface or stored, based on the needs 
of the user. The post processes include generating area 
size histograms, black and white cell maps, separated 
colour maps, area of interest maps, desired area size 
and its percentage, removing or counting the bordering 
cells of the image, and removing the unwanted objects 
by clicking on them and exporting the data into an 
Excel file.

3. Results

3.1. Calibration and object identification

3.1.1. Automatic calibration
The developed software enables automatic as well as 
manual calibration. After importing the image in 
Figure 1(a) into the software, the calibration factor 
was automatically detected as 0.8840 microns per 
pixel. The researcher can also use the scale bar to 
calculate the calibration factor manually; this can be 
done by sketching the sliding bar over the calibration 
guide on the microscopic image and then inserting the 
actual length on the image. The calibration factor yields 
(400/454.02) = 0.8810 MPP, which approximately 
equals the value assigned to the image.The manual 
and automatic calibrations are shown in Figure 7(a,b) 
respectively.

3.1.2. Object identification
AdipoGauge is equipped with the tools to identify the 
objects with different criteria. Figure 8 shows different 
objects that have been selected from the image in 
Figure 1(a). The criterion for these objects is the size 
of the cells. In this image, the cells with a size between 
250 and 2000 square microns have been displayed.

Another criterion that can be specified in 
AdipoGauge is removing the bordering or incomplete 
cells. Figure 9(a,b) show the images with and without 
border cells; the user can define the objects required 

a b 

Figure 7. Adipose tissue histology section for image calibration. a) Manual calibration b) Automatic calibration.
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for the research purposes and assign a number to 
each cell.

AdipoGauge can remove the unwanted objects, 
such as defects, background, scratches in specific 
areas of the slide, or blood vessel sections. It gives 
the researcher the freedom to eliminate any 
unwanted object without the need for specific cri-
teria. For example, if the researcher wants to remove 
an object but does not want to impose a limit on its 
size or does not want to delete other objects similar 
to the unwanted object, the user can simply click on 
it to exclude it from the calculations and bring it 

back by clicking on it again. Figure 10(a,b) show 
this feature.

This is a very important feature of AdipoGauge. In 
other software packages, including ImageJ, if the user 
removes an object and they want to bring it back, they 
have to close the program, reload the image, and start 
all over again; thus, it is very time consuming. 
However, in AdipoGauge one can eliminate or bring 
back objects in real time without closing the program, 
as many times as needed. Moreover, in ImageJ, the user 
can save each step, but if they need to proceed differ-
ently, they must redo the whole process. This problem 
is solved in AdipoGauge as the user can go back 
through the steps without closing the program and 
restarting it again.

3.2. Applications: cell counting/sizing and colour 
separation

3.2.1. Cell counting/sizing
AdipoGauge uses algorithms to analyse the number 
of cells and their areas. The number assigned to each 
cell is represented on the cell image in the GUI, as 
well as in the Excel file that includes the area of each 
cell. The cell counting analysis shows that the image 
in Figure 1(a) has 259 cells and their area is 
368,325.0 square microns without the border cells. 
To compare the results, the same image was pro-
cessed in ImageJ which shows that there are 266 

Figure 8. Adipose tissue histology section.
Objects with area between 250 and 2000 square microns. 

a b 

Figure 9. Adipose tissue histology sections for cell measurements. a) Image includes border cells b) Image without border cells.

b a 

Figure 10. Adipose tissue H&E stained section. a) Image with a scratch b) Segmented cells image in which the scratch is excluded 
from the analysis.
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cells and the area is 368,643.8 without border cells. In 
this analysis the difference in the number of cells is 
only 7 cells, 2.6%, and the difference in the area is 
318 square microns or 0.09%, which demonstrates 
that AdipoGauge is as accurate as ImageJ, without 
correcting the image with Microsoft Paint. When the 
image is further processed in AdipoGauge using 
Microsoft Paint (integrated into the program), the 
results become more accurate as the user can identify 
boarders better and delete unwanted objects. In this 
case, the software counted 294 cells and the area is 
407,925.3 square microns (Figure 11(a,b)). Thus, the 
segmentation and cell counting are significantly 

improved, and the cells are well defined by 
AdipoGauge. Data analysis for ImageJ and 
AdipoGauge before and after manual corrections 
using Microsoft Paint is given in Table 1. Statistical 
correlations between the two software packages are 
provided in the section on the statistical analysis.

3.2.1.1. Histogram of results. AdipoGauge can be 
used for further analysis of cell images. The data stored 
in an Excel file that contains the information about 
cells and their areas can be used to draw the histogram 
of cells based on their size or other features. Figure 12 
shows the number of cells for Figure 1(a) sorted in 8 

a b 

Figure 11. Excluding border cells and output of Image 1A analysis. a) Cells counted by ImageJ. b) Cells counted by AdipoGauge after 
manual processing of the image using Microsoft Paint.

Table 1. Data analysis (cell number and size) for adipocytes in Figure 11 by ImageJ and AdipoGauge.

ImageJ Analysis
AdipoGauge Analysis 

Before correcting by Paint
AdipoGauge Analysis 

After correcting by Paint

Area Bins (Sq. Micron)
Number of 

Cells Area (Sq. Micron)
Number of 

Cells Area (Sq. Micron)
Number of 

Cells Area (Sq. Micron)

10–250 70 6268.5 68 6151.6 59 6227.6
251–500 24 9368.8 24 9321.8 29 11,211.2
501–1000 45 34,186.9 43 33,453.0 52 40,512.5
1001–2000 61 92,375.8 57 87,010.5 70 103,242.5
2001–3000 33 80,366.1 34 83,795.1 54 128,670.5
3001–4000 18 61,043.3 18 61,054.1 21 72,685.9
4001–6000 10 47,027.7 10 48,241.9 10 45,375.1
6001- 5 38,006.5 5 39,297.0 0 0
Total 266 368,643.8 259 368,325.0 294 407,925.3
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Figure 12. Histogram of area of adipocytes from. Figure 1(a)
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bins. It can be inferred from the histogram that ImageJ 
and AdipoGauge can detect the cells very well. 
However, the results become more accurate after cor-
recting the cell borders (not very clear in the original 
image) in AdipoGauge using Microsoft Paint; the num-
ber of small and big cells is reduced and the number of 
medium-sized cells is increased. The reason for this is 
that in automatic detection by ImageJ and AdipoGauge 
cells that are not well defined are considered to be one 
cell; when the image is processed by Microsoft Paint, 
the borders become clear and AdipoGauge can detect 
separate cells.

3.2.2. Colour Separation
Finding the area occupied by different colours in an 
image is possible with AdipoGauge. It is utilized for 

two types of images; H&E stained images and fluores-
cent images. The researcher can split the three main 
colour channels (red, green, and blue) of a fluorescently 
stained image (Figure 13(a)) to display them separately, 
as shown in Figure 13(b-d). The images for blue and 
green channels in Figure 13(c,d) are converted into 
a black and white image (Figure 14(a,b) for more 
visibility.

Researchers can combine two channels as well. Thus, 
we have a total of 6 colour channels including red, blue, 
green, red and blue, red and green, and blue and green.

A colour separation algorithm is used to determine 
the reddish-brown area of Figure 1(c) and the result is 
displayed in Figure 15. In Figure 15(b) the area of 
reddish-brown colour is calculated as 10.21% of the 
whole image in Figure 15(a).

a cb d 

Figure 13. Adipose tissue histology sections a) Fluorescently stained image b) Red channel c) Blue channel d) Green channel.

ba

Figure 14. Adipose tissue sections: Image conversion into black & white to enhance visibility. a) Blue area of Figure 13(c) (nucleus). 
b) Green area of Figure 13(d).

a b 

Figure 15. Breast tissue H&E stained section. a) H & E stained image; b) Specified colour range ‘reddish brown’ is separated out.
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3.3. Statistical analysis of output data from 
AdipoGauge and ImageJ

We used linear regression to determine correlation coeffi-
cients and their p values for cell size and cell number 
measurements, conducted using AdipoGauge and ImageJ.

Two adipose tissue histology images, shown in 
Figure 16(a,b), were selected for this purpose. Both 
images were analysed by ImageJ and AdipoGauge, 
and the border cells were counted as well. Since the 
cells in Figure 16(a) are relatively large with well- 
defined borders while cell borders in Figure 16(b) are 
not very clear, the images were specifically chosen to 
compare the two software packages.

3.3.1. Analysis of Adipose Tissue Sections with 
Clear Cell Borders (Figure 16(a, Figure 17, and Table 
2)
In Figure 16(a) the total number of cells was counted as 135 
using ImageJ and 144 using AdipoGauge after correcting 
the cell borders using Microsoft Paint (to mark light cell 
membranes/borders). Due to corrections AdipoGauge 

detected poorly defined cells. Consequently, the number 
of medium-sized cells increased while the number of big 
cells decreased in AdipoGauge analysis vs. ImageJ analysis. 
The output cell counting results are displayed in Figure 17 
(b,c) for ImageJ and AdipoGauge, respectively. We high-
lighted in red and blue the cells that were counted differ-
ently by the two software packages (Figure 17(d,e)).

We also counted the total area of cells by ImageJ as 
530,224.3 square microns and by AdipoGauge as 
518,599.5 square microns. The difference is ~2.1% 
(Table 2).

Statistical analysis was used to verify the accuracy 
and correlation of results from ImageJ and AdipoGauge 
data. Linear regression in Excel was used to determine 
the correlation coefficient (R) for both cell size and 
number, based on data in Table 2. P values indicate 
strength and statistical significance of this correlation.

For the cell number, the correlation coefficient 
between the two software packages is R = 0.982815341 
(p = 0.0000125), indicating that the results for both 
software packages are very similar with a strong corre-
lation. For the cell area, R = 0.950701594 

a b 

Figure 16. Adipose tissue H&E stained sections. a) Section with clear cell membranes/borders b) Section with low quality cell 
membranes/borders.

a b 

e d 

c 

Figure 17. Output of cell counting results for. Figure 16(a). a) Original Image of adipose tissue histology. b) ImageJ image. c) 
AdipoGauge image. d) Cells that were counted differently in ImageJ in red. e) Cells that were counted differently in AdipoGauge in 
blue.

ADIPOCYTE 369



(p = 0.000288563) indicates 95% similarity between the 
data obtained with the two software packages.

3.3.2. Analysis of adipose tissue sections with 
unclear cell borders (Figure 16(b, Figure 18, and 
Table 3)
Tissue section image (Figure 18(a)) was analysed by 
both software packages. In this image, the borders are 
not very clear and there are very thin cell membranes. 
Using ImageJ, the total number of cells was counted as 
133 cells (Figure 18(b)). Some of the cell borders were 
not detected correctly, and consequently the objects 
were counted as one merged cell (Figure 18(d)). Table 
3 shows that the number of medium-sized cells is lower 
than the actual value while there is an increase in the 
number of large cells that consist of more than one cell. 
This problem was solved in AdipoGauge as we cor-
rected the cell borders manually using Microsoft Paint 
and then we counted the cells with AdipoGauge 
(Figure 18(c,e)). The number of cells increased to 179, 
and the difference is about 35%. The total area of cells 
was calculated as 475,217.7 vs. 490,921.3 square 

microns by ImageJ and AdipoGauge, respectively; the 
difference is ~3.3%. Cells that were counted differently 
are indicated in red and blue for ImageJ and 
AdipoGauge, respectively (Figure 18(d,e)).

The first row of Table 3 shows that ImageJ detected 
34 cells and AdipoGauge detected 45 cells. This indi-
cates that some cells with broken shared borders/mem-
branes were considered as one cell in ImageJ, which 
accounts for a lower cell number and bigger cell size. 
By using AdipoGauge and opening the image in 
Microsoft Paint, those broken or unclear/thin cell bor-
der lines are corrected manually, and as a result, the 
number of cells is counted correctly. Therefore, fewer 
small cells were placed in the bin with cell areas 
between 50 and 500 square microns for ImageJ. 
Overall, the calculated area for this bin by ImageJ is 
7341.6 square microns and by AdipoGauge is 8766.6, 
which was expected due to a greater number of cells 
detected by AdipoGauge. Similar comparisons can be 
made for other bins with different cell sizes. Overall, 
AdipoGauge detects more cells, which can be verified 
by visual observation and hand counting of cells in the 
original H&E image.

Table 2. Data analysis for Figure 17(a) by ImageJ and 
AdipoGauge.

ImageJ Analysis

AdipoGauge Analysis 
After correcting 

manually

Difference 
in Area (%)

Area Bin (Sq. 
Micron)

Number 
of 

Cells
Area (Sq. 
Micron)

Number 
of 

Cells
Area (Sq. 
Micron)

10–500 34 5897.6 36 7577.2 28.4
501–1000 12 7938.6 14 9496.3 19.6
1001–2000 14 20,291.5 16 22,828.2 12.5
2001–4000 22 64,989 24 70,088.1 7.8
4001–6000 18 84,622.5 20 96,894.5 14.5
6001–8000 15 104,020.6 16 110,982.7 7.0
8001–10,000 7 59,847.7 8 69,011.4 15.3
10,001- 13 182,616.7 10 131,721.0 27.9
Total 135 530,224.3 144 518,599.5 2.1

a 

e d 

c b 

Figure 18. Comparison of output results for image in. Figure 16(b). a) Original Image of adipose tissue histology. b) Image analysed 
by ImageJ. c) Image analysed by AdipoGauge. d) Cells counted differently in ImageJ. e) Cells counted differently in AdipoGauge.

Table 3. Data analysis for Figure 18(a) by ImageJ and 
AdipoGauge.

ImageJ Analysis

AdipoGauge Analysis 
After correcting 

manually

Difference 
in Area (%)

Area Bin (Sq. 
Micron)

Number 
of 

Cells
Area (Sq. 
Micron)

Number 
of 

Cells
Area (Sq. 
Micron)

50–500 34 7341.6 45 8766.6 19.4
501–1000 13 9349.9 19 13,715.2 46.7
1001–2000 20 29,427.6 31 45,496.1 54.6
2001–4000 27 76,285.2 36 103,826.7 36.1
4001–6000 16 87,302.8 24 121,763.6 39.5
6001–8000 10 67,072.4 15 105,405.8 57.2
8001–10,000 3 26,700.0 4 33,830.9 26.7
10,001- 9 171,738.2 5 58,116.4 66.1
Total 133 475,217.7 179 490,921.3 3.3
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The last row in Table 3, showing the number of cells 
bigger than 10,000 square microns, confirms the above 
statements. Since ImageJ is unable to automatically 
correct unclear cell borders between cells, it detected 
9 big cells, while this number is only 5 for AdipoGauge. 
Thus, there is a bigger difference between the two soft-
ware packages (66%) for very large cells, compared to 
19% for the smallest cells.

Statistical analysis was used to verify the accuracy 
and correlation of results from ImageJ and AdipoGauge 
data. Linear regression in Excel was used to determine 
the correlation coefficient (R) for both cell size and 
number, based on data in Table 3. P values indicate 
strength and statistical significance of this correlation.

For the cell number, the correlation coefficient 
between the two software packages is R = 0.97372 
(p = 0.00004450), while for the cell area, R = 0.52901 
(p = 0.17762). Thus, cell numbers evaluated using both 
software packages are very similar (~97.4%), with 
a strong correlation. However, for the area of the 
cells, the similarity between the data obtained with the 
two software packages is only ~53%. This indicates that 
when cell borders are not clear in the image, using 
AdipoGauge integrated with Microsoft Paint can sig-
nificantly improve the accuracy of the results.

3.3.3. Analysis of immunofluorescent images of 
macrophage staining in adipose tissue
Fluorescent images can be analysed by AdipoGauge 
and different parts of the image can be separated 

based on their colour to demonstrate different cell 
organelles. To illustrate this application, we used 
images of adipose tissue of obese mice fed a high-fat 
diet. The mice had an increased level of macrophages in 
adipose tissue (Figure 19(a)); the area of macrophages 
is shown in green. The image was analysed by 
AdipoGauge and ImageJ, and the results are shown in 
Figure 19(b,c), respectively.

In addition, we also used images of adipose tissue 
of mice fed a high-fat diet supplemented with fish 
oil, which is an anti-inflammatory food component 
known to reduce macrophage content in adipose 
tissue [17]. Figure 20(a) shows an EPA fluorescent 
slide and the area of the macrophage (green colour). 
The image was analysed by AdipoGauge and ImageJ, 
and the results are shown in Figure 20(b,c), 
respectively.

We compared the area of macrophages in adipose 
tissue for Figures 19a and 20(a), calculated by ImageJ 
and AdipoGauge, and the data are shown in Table 4. 
The images from obese mice fed a high-fat diet have 
a high level of macrophage staining, and the estimated 
area is comparable between ImageJ and AdipoGauge 
(0.36% difference). However, for the fish oil supple-
mented group, with very few macrophages detected, 
the difference between the two software packages is 
~24%; and this is likely because even though the differ-
ence in percentage is relatively high, but the calculated 
area by both software are very small and close to each 
other.

a b c 

Figure 19. Fluorescent image of macrophage staining in adipose tissue of obese mice fed a high-fat diet. (a). Original Image (b). 
Image analysed for macrophage detection from AdipoGauge. (c). Analysis result from ImageJ.

c b a 

Figure 20. Fluorescent image of macrophage staining in adipose tissue of obese mice fed a high-fat diet supplemented with fish oil 
(using galectin). (a). Original Image (b). Image analysed using AdipoGauge. (c). Analysis using ImageJ.
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4. Discussion

Biomedical researchers are increasingly in need of 
improved tools to evaluate their experimental data, 
and especially images such as those generated from 
histology or immunostainings. In obesity research, 
there is a critical need for automated tools to assess 
changes in the cell size, number and/or to quantify 
other cell changes.

Our primary goal was to develop software to specifically 
help obesity researchers to accurately and easily analyse 
adipose tissue images, for the purpose of counting fat cells 
and determining their size and quantifying stained cells or 
proteins in tissue sections.

The accuracy of results was verified by statistical 
analysis. Several images were analysed, and the number 
of their cells was counted by AdipoGauge and ImageJ. 
As shown above, AdipoGauge produced better results 
than ImageJ.

While others have reported various means to assess cell 
sizing, very few have developed automated means to 
analyse immunofluorescent-labelled sections of adipose 
tissue. Our software addresses many drawbacks of the 
currently used tools for cellularity measurements. Most 
existing methods are unable to process unstained cells, 
whereas AdipoGauge can process unstained as well as 
stained slides (H & E, fluorescence staining or chromo-
genic staining). Most available tools are mainly used to 
count the number of cells, and do not offer the option of 
analysing areas of interest such as areas in H&E or other 
stained slides that the user can separate by colours. 
Moreover, these tools fail to identify cell boundaries 
when they are not well defined in the histology section 
or when sections are of poor quality. The exclusion of 
damaged cells and border cells is among the most impor-
tant functions provided by AdipoGauge. Equally impor-
tant is the user-friendly and well-developed interface that 
gives the researcher the option of choosing which cells to 
include or not in the overall analysis. Another innovative 
feature of this novel tool is that it enables the study of 
specific areas of interest, such as cell nuclei or macrophage 
quantification. In addition, the software merges applica-
tions for obesity researchers into one package, which can 
be further customized as needed.

Future work will include implementing an algorithm 
to read a video as input. This can be done by extracting 
images from the video, analysing them, and then com-
bining them as a video file. We would also like to 
develop a tool to allow this software to interact with 
cellphone operating systems and use the cellphone’s 
camera/video to take a picture, insert it into the pro-
gram, and analyse it automatically.

5. Conclusions

AdipoGauge is intended to be widely used in labora-
tories focused on obesity research, but can also be 
expanded to other areas, as any cell or tissue section 
can be analysed by this software. AdipoGauge is an 
easy-to-use package that provides a wide range of ana-
lytical tools specifically designed to study obesity and 
adipose tissue and cells. The software is time efficient 
and accurate. Since analysing the data with 
AdipoGauge can be easily and quickly done in any 
laboratory, it will be beneficial for practitioners as 
well as other users in medical institutions where rapid 
patient image analyses are needed. Overall, 
AdipoGauge is an excellent tool for bio/medical 
researchers to help improve the outcomes and effi-
ciency of their practice or research.

Note

The software AdipoGauge (© Moussa lab, 2020) can be 
provided to academic researchers by contacting the 
corresponding author, Dr. Hanna Moussa (hanna. 
moussa@ttu.edu), and request the downloadable link 
of the software with the following expectations: 

1. The person who wishes to use the software for their 
research work, must cite this original publication of the 
software.

2. The software is provided “as is”, without warranty of 
any kind, expressed or implied, including but not lim-
ited to the warranties of merchantability, fitness for 
a particular purpose and noninfringement.

3. In no event shall the authors or copyright holders be 
liable for any claim, damages or other liability, whether 
in an action of contract, tort or otherwise, arising from, 
out of or in connection with the software or the use or 
other dealings in the software.
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