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RNA-seq of peripheral blood 
mononuclear cells of congenital 
generalized lipodystrophy type 2 
patients
Yen-Hua Huang   1,2, Tzu-Chien Su1, Chung-Hsing Wang3,4, Siew-Lee Wong5, Yin-Hsiu Chien   6, 
Yu-Tai Wang   7, Wuh-Liang Hwu6 & Ni-Chung Lee   6 ✉

Illumina RNA-seq analysis was used to characterize the whole transcriptomes of peripheral blood 
mononuclear cells (PBMCs) from patients with congenital generalized lipodystrophy. RNA-seq 
information for seven patients with type 2 congenital generalized lipodystrophy (CGL2; Berardinelli-
Seip congenital lipodystrophy, BSCL2) was obtained and compared with similar information for seven 
age- and sex-matched healthy control subjects. All seven CGL2 patients carried biallelic pathogenic 
mutations affecting the BSCL2 gene and had clinical symptoms of varying severity. The findings provide 
the whole-transcriptome signatures of PBMCs of CGL2 patients, allowing further exploration of gene 
expression patterns/signatures associated with the various clinical symptoms of patients with this 
disease.

Background & Summary
RNA sequencing (RNA-seq) is a term that describes the use of next-generation sequencing (NGS)-based method-
ology to target whole transcriptomes. This approach has gained wide popularity in biomedical research, in which 
profiling of the gene expression levels in samples can be very useful. Compared with other high-throughput 
transcriptome profiling technologies, such as DNA microarrays, the RNA-seq approach has the advantage of 
a wider dynamic range of measurement, which enables more sensitive detection of the global gene expression 
signatures of a given cell population or tissue1. Thus, RNA-seq allows for a more precise identification of the gene 
expression differences of cells when normal and abnormal tissues are compared. Indeed, RNA-seq has become a 
ubiquitous tool for the study of human diseases, including metabolic disorders, cancers, and infectious diseases2. 
Overall, RNA-seq-identified changes in the transcriptome that are associated with a disease can reveal dysregu-
lation affecting associated biological pathways. The approach also aids in the identification of molecular markers 
reflecting disease progression.

Congenital generalized lipodystrophy (CGL; CGL1, MIM #608594; CGL2, MIM #269700; CGL3, 
MIM#612526; CGL4, MIM#613327) is a group of rare autosomal recessive disorders characterized by defects in 
the biogenesis of lipid droplets; individuals with these genetic diseases lack adipose tissue from early in life due 
to mutations in AGPAT2, BSCL2, CAV1, or CAVIN13–8. Metabolic disorders in CGL patients are the main factors 
causing morbidity and mortality. Deficiency in adipose mass results in leptin deficiency9, leading to the main 
clinical features of these diseases, including hepatomegaly, muscular hypertrophy, cardiomyopathy, insulin resist-
ance, and hypertriglyceridemia3. Furthermore, leptin deficiency might be associated with the lowered immu-
nity frequently observed in CGL patients, as leptin is an important modulator of both the innate and adaptive 
immune systems. For example, leptin activates polymorphonuclear neutrophils (PMNs), exerts proliferative and 
antiapoptotic activities on T lymphocytes, affects cytokine production and regulates activation of monocytes and 
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macrophages10–12. To date, approximately 500 patients with CGL have been reported in the literature. In Taiwan, 
type 2 disease (CGL2), which is caused by BSCL2 mutation, is most common based on surveillance across Asia 
(73% to 100%)13–17.

Compared to CGL1, CGL2 presents with a more severe phenotype, including extensive fat loss, cardiomyopa-
thy, intellectual impairment (50% to 78%), and premature death (15%)13,18. Hypertrophic cardiomyopathy (25% 
of CGL2 patients) often leads to death in the third decade of life. In addition, early onset of liver cirrhosis, renal 
failure, and recurrent bacterial infection are potential lethal complications. Diagnosis of CGL is based on the 
patient’s clinical and biochemical phenotype and is usually confirmed by molecular testing19. Therapeutic strate-
gies include restriction of total fat intake (20–30% of total dietary energy), treatment with fibric acid derivatives, 
prescription of n-3 polyunsaturated fatty acids to control hypertriglyceridemia, and standard glucose-lowering 
treatments20. In addition, leptin replacement therapy has been approved since 2014 by the Food and Drug 
Administration (FDA) for the treatment of severe metabolic abnormalities that result in generalized forms of 
lipodystrophy21.

Clinically, we have observed that some CGL2 patients develop hyperactivity and seizures in late childhood but 
that others develop metabolic syndrome that is difficult to control with glucose-lowering drugs. To elucidate the 
processes underlying these different outcomes, the aim in this study was to explore differences in RNA signatures 
between CGL2 patients and matched control subjects.

Methods
Subjects and blood sample preparation.  This study investigated differentially expressed genes that 
might be associated with various subcategories of CGL2 patients and aimed to identify distinct regulatory path-
ways involved in these various phenotypes. The overall workflow is presented in Fig. 1.

Seven patients (3 female patients and 4 male patients) who had been diagnosed with CGL2 (Table 1) and seven 
healthy individuals age- and sex-matched with the patients participated in this study; the latter group was used 
as a control. All enrolled CGL2 patients had been shown to carry BSCL2 mutation by Sanger sequencing after 
their initial diagnosis of CGL. Each was further categorized into various subgroups based on age, symptoms, and 
individual biochemical profiles, namely, child or young adult, normal blood lipid or hyperlipidemia, intellectual 
disability or not, and diabetes mellitus (DM) or not. Additionally, patients with severe DM or hyperlipidemia, 
namely, patients 1, 4, 6, and 7, were assigned together into another subgroup, the metabolic syndrome subgroup 
(presence of insulin resistance or a diagnosis of DM); patients 2, 3, and 5 comprised the “nonmetabolic syn-
drome” subgroup. Peripheral blood samples were collected after obtaining written informed consent from the 
participants themselves or one of their parents if the individual was younger than 18 years old. The study protocol 
was approved by the Institutional Review Board of National Yang-Ming University (IRB number: YM108113E) 
and the Institutional Review Board of National Taiwan University Hospital (IRB number: 201901028RINB). 
Informed consent for these data to be openly shared was obtained from all subjects or their guardians, and the 

Fig. 1  The workflow of this study.
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participants were warned that RNA-seq data carry some inherent risk of reidentification. To reduce variability, 
each blood sample was drawn in the morning before the participant broke their fast. Each blood sample was 
collected into a BD Vacutainer® EDTA tube, and soon after collection, an aliquot from each sample was used for 
RNA-seq transcriptomic profiling of peripheral blood mononuclear cells (PBMCs).

Preparation of total RNA from PBMCs and RNA-seq analysis.  Each whole-blood sample was hep-
arinized, and the samples were used to isolate PBMCs by density gradient centrifugation using LymphoprepTM 
medium according to the manufacturer’s instructions. Specifically, a sample was diluted with phosphate-buffered 
saline (PBS, pH 7.4) to double its volume, layered on top of 5 mL of Ficoll-Paque Plus (GE Healthcare, Cat. No. 
17-1440-02) and centrifuged for 30 minutes at 400 × g. The PBMC layer was aspirated and centrifuged for collec-
tion. The PBMC pellet was treated for 15 minutes with RBC lysis buffer in the absence of light and then centri-
fuged again followed by washing twice with PBS. Total RNA was extracted using a miRNeasy Kit (Qiagen Cat. No. 
74004), followed by DNase I treatment to avoid contamination with genomic DNA. All procedures were accord-
ing to the manufacturer’s instructions. The fourteen samples containing total RNA from the subject’s PBMCs 
were submitted to The Genomics Center for Clinical and Biotechnological Applications of National Core Facility 
for Biopharmaceuticals, which is located at National Yang-Ming University, Taipei. At this facility, RNA quality 
assessment, RNA integrity assessment, and whole-transcriptome sequencing were carried out. The sequencing 
library was prepared using a TruSeq Stranded Total RNA Library Ribo-Zero™ Globin Kit (Illumina, San Diego, 
CA, USA). As the amount of input RNA for the preparation of sequencing libraries was ~1 μg, which is approxi-
mately the highest level suggested by the manufacturer’s manual, no positive control, such as SMARTer® Ultra™ 
Low RNA Kit for Illumina® Sequencing (Takara Bio USA, Mountain View, CA, USA), was used. Paired-end 
RNA-seq (2 × 100 bases) was carried out using the Illumina HiSeq. 2500 platform.

RNA-seq data analysis.  RNA-seq data analysis was performed to identify differentially expressed genes 
(DEGs) by assessing the number of reads mapped to the individual gene present in the human reference genome. 
The workflow of the RNA-seq data analysis was as follows: (1) preprocessing of raw RNA-seq reads and quality 
validation; and (2) read mapping and normalization.

Preprocessing of raw RNA-seq reads and quality validation.  During RNA-seq data preprocessing, the quality 
of the raw RNA-seq reads was evaluated using FastQC22 and MultiQC23, providing per-base and per-sequence 
assessments of the sample’s read quality, overall GC contents, and presence of adaptors, overrepresented k-mers 
and duplicated reads. In addition, Trimmomatic was used to discard low-quality reads, to trim adaptor sequences 
and to eliminate poor-quality bases24. The quality control steps and read trimming were iteratively performed to 
ensure that all low-quality reads and adaptor sequences were removed as much as possible because they would 
seriously interfere with the read-mapping step. The quality of the cleaned reads was further assessed by generating 
per-base box plots using FastQC. Next, MultiQC was applied to create a visualization of the output across the 
various different samples (Fig. 2), which was used to identify any global trends and/or biases that might affect the 
sequence quality metrices23.

Read mapping and normalization.  Cleaned reads were mapped to the human reference genome (GRCh38) using 
the splice-aware alignment tool STAR25, followed by BAM file sorting using SAMtools26. The RNA-seq read map-
ping results are summarized in Table 2.

The read counts mapped to each gene were further normalized by edgeR27 using the TMM (trimmed mean 
of M values) normalization method to calculate various effective library sizes. Boxplots and a multidimensional 
scaling (MDS) plot were generated to determine whether any unusual expression-pattern similarities between 
the samples due to batch effects might be present28. The boxplots suggested that the variation in the distributions 

Patient Sex Age Relation Relationship IQ category
Diabetes 
mellitus Allele 1 Allele 2

1 F 5 y N/A Child/Hyperlipidemia Normal No c.565 G > T (p.G1u189Ter) c.782dup (p.Ile262HisfsTer12)

2 M 6 y
Sibling

Child/Intellectual disability Mild No c.782dup (p.Ile262HisfsTer12) c.782dup (p.Ile262HisfsTer12)

3 M 3 y Child/Intellectual disability Mild No c.782dup (p.Ile262HisfsTer12) c.782dup (p.Ile262HisfsTer12)

4 F 19 y
Sibling

Young adult/Diabetes Mellitus/
Hyperlipidemia/Intellectual 
disability

Mild Yes c.565 G > T (p.G1u189Ter) c.782dup (p.Ile262HisfsTer12)

5 M 17 y Young adult/Intellectual 
disability Moderate No c.565 G > T (p.G1u189Ter) c.782dup (p.Ile262HisfsTer12)

6 M 16 y
Sibling

Young adult/Diabetes mellitus Borderline Yes c.545_546insCCG (p.Glu182delinsAspArg) c.565 G > T (p.G1u189Ter)

7 F 13 y Young adult/Diabetes mellitus/
Hyperlipidemia Borderline Yes c.545_546insCCG (p.Glu182delinsAspArg) c.565 G > T (p.G1u189Ter)

Table 1.  Sex, age, and categories of the participants with CGL2 and their BSCL2 mutant alleles. BSCL2 
transcript: NM_032667.6 *FIQ was categorized as borderline (71–84), mild (50 to 69), moderate (36–49), severe 
(20–35), or profound (<20) intellectual disability (mental retardation) according to DSM-IV classification32. 
For patients 6 and 7, who were not available for the IQ test, the severity category was classified as borderline 
intellectual functioning based on the finding that they underwent vocational high school education with a 
minimal requirement of support while low normal functioning was observed33.
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of normalized gene expression levels across different samples was small and that their median values and IQRs 
(interquartile ranges) were highly similar (Fig. 3). In addition, no batch effect was noted based on the MDS plot, 
in which the distributions of data points did not reveal any obvious clustering between sibling pairs, between 
patients, or between normal controls (Fig. 4).

Downstream analysis.  Statistical tests were carried out using edgeR based on negative binomial differential 
expression methods and were performed to identify differentially expressed genes (DEGs) when CGL2 patients 
were compared to age- and sex-matched controls27. Based on the instructions provided in the user’s guide of 

Fig. 2  Assessment of the sequence quality scores of the raw FASTQ data. The sequencing quality of the raw 
FASTQ files was evaluated by using FastQC and then summarized by using MultiQC to create aggregated 
reports. All 14 FASTQ files were assessed for mean per-base (a) and per-sequence (b) quality as measured by the 
Phred score.

Sample NCBI GEO
Paired-end 
reads (raw)

Paired-end 
reads (cleaned) Remaining %

Uniquely 
mapped reads

Uniquely 
mapped%

Seq. 
batch

Control_1 GSM4826885 21,828,683 21,393,525 98.0% 16,810,898 78.6% 1

Control_2 GSM4826886 27,251,284 26,755,597 98.2% 21,118,417 78.9% 1

Control_3 GSM4826887 24,931,372 24,443,108 98.0% 18,260,149 74.7% 1

Control_4 GSM4826888 26,879,004 26,291,723 97.8% 19,457,043 74.0% 1

Control_5 GSM4826889 26,795,914 26,207,057 97.8% 19,711,634 75.2% 1

Control_6 GSM4826890 25,299,512 24,862,820 98.3% 18,692,854 75.2% 1

Control_7 GSM4826891 25,424,700 24,936,311 98.1% 18,407,765 73.8% 1

Patient_1 GSM4826878 24,647,461 24,131,516 97.9% 17,743,976 73.5% 1

Patient_2 GSM4826879 24,757,287 24,332,834 98.3% 18,956,429 77.9% 1

Patient_3 GSM4826880 22,988,027 22,550,204 98.1% 16,698,356 74.0% 1

Patient_4 GSM4826881 25,487,312 25,078,286 98.4% 20,196,651 80.5% 1

Patient_5 GSM4826882 23,639,342 23,108,960 97.8% 17,442,669 75.5% 1

Patient_6 GSM4826883 22,931,749 22,545,880 98.3% 16,741,981 74.3% 1

Patient_7 GSM4826884 24,073,144 23,652,701 98.3% 17,536,718 74.1% 1

Table 2.  RNA-seq read statistics. All RNA samples had RIN >7.0 and 260/280 > 1.8.

Fig. 3  Boxplots of the log2(counts per million) of the cleaned data of all of the RNA-seq.
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edgeR, we used a paired-sample design to detect DEGs while adjusting for any confounding effects caused by 
differences in age and sex among the patients.

Data Records
The FASTQ files for the raw RNA-seq reads in this study have been deposited in NCBI Sequence Read Archive 
(SRA) under the study accession SRP28191929. The raw read count dataset was deposited in the NCBI Gene 
Expression Omnibus (GEO) under accession number GSE15933730 (Table 2). The DEGs of CGL2 patients’ PBMC 
were deposited in Excel file format in figshare31.

Technical Validation
RNA integrity assessment.  Total RNA was quantified using a Nanodrop ND-1000 spectrophotometer, 
and its quality was then assessed using an Agilent 2100 Bioanalyzer according to the manufacturer’s instructions. 
Acceptable quality values are in the range of 1.8−2.2 for A260/A280 ratios and with an RNA integrity number 
(RIN) of >7.0.

RNA-seq data quality assessment.  The quality of the raw and cleaned RNA-seq reads was evaluated 
using FastQC22, which ensured that the adaptors were removed from the raw reads. This program also verified 
that the quality of the cleaned RNA-seq reads was suitable for downstream analyses (Fig. 2).

Code availability
To finish the RNA-seq data preprocessing, quality validation, and mapping to the human reference genome, only 
public-domain software but no other custom code was used. These software tools and their versions are listed as 
follows:

1. �FastQC v0.11.8 was used for quality assessment of the raw reads and the trimmed reads of RNA-sequencing 
data: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

2. �Trimmomatic 0.38 was used to remove adaptors and do quality trimming: http://www.usadellab.org/
cms/?page=trimmomatic.

3. �MultiQC 1.0 was used to perform cross-sample quality assessment of the RNA-sequencing reads: https://
multiqc.info/.

4. �STAR 2.7 was used to map the cleaned RNA-seq reads to the human reference genome assembly, GRCh38: 
https://github.com/alexdobin/STAR.

5. �edgeR 3.30.3 was used to carry out trimmed mean of M values (TMM) normalization for gene expression 
quantification, and to find the differentially expressed genes (DEGs) between sample groups: https://biocon-
ductor.org/packages/release/bioc/html/edgeR.html.
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