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ABSTRACT

CpG islands are GC-rich regions often located in the
5 end of genes and normally protected from
cytosine methylation in mammals. The important
role of CpG islands in gene transcription strongly
suggests evolutionary conservation in the mamma-
lian genome. However, as CpG dinucleotides are
over-represented in CpG islands, comparative CpG
island analysis using conventional sequence
analysis techniques remains a major challenge in
the epigenetics field. In this study, we conducted a
comparative analysis of all CpG island sequences in
10 mammalian genomes. As sequence similarity
methods and character composition techniques
such as information theory are particularly difficult
to conduct, we used exact patterns in CpG island
sequences and single character discrepancies to
identify differences in CpG island sequences. First,
by calculating genome distance based on rank cor-
relation tests, we show that k-mer and k-flank
patterns around CpG sites can be used to correctly
reconstruct the phylogeny of 10 mammalian
genomes. Further, we used various machine
learning algorithms to demonstrate that CpG
islands sequences can be characterized using
k-mers. In addition, by testing a human model on
the nine different mammalian genomes, we provide
the first evidence that k-mer signatures are consist-
ent with evolutionary history.

INTRODUCTION

The dinucleotide sequence CpG (cytosine followed by a
guanine, coupled by a phosphodiester bond) is a target for
DNA methylation. The cytosine residue in CpG sites is
frequently modified to form 5-methylcytosine, and
70-80% of CpG dinucleotides in the mammalian
genomes are methylated (1). DNA methylation is essential
for proper mammalian development and plays crucial
roles in imprinting, maintaining genomic stability and
many other biological processes (2). In addition,
aberrant DNA methylation changes have been detected
in several diseases (3-5). In the human genome, spontan-
eous deamination of methylated cytosine in the context of
CpG dinucleotides results in the creation of thymine
(C — T) and under-representation of CG dinucleotides
over evolutionary time (known as CG suppression) (6,
7). In fact, the frequency of CpG sites in vertebrate
genomes is only about a fifth of the expected frequency,
given the GC content of the genome. Although CpG sites
are under-represented in genomes overall, clusters of
CpGs known as CpG islands are observed, and these are
normally protected from methylation (8). The vast
majority of genes are associated with a CpG islands, and
~40% of gene promoters contain a CpG island (9),
including the 5 ends of housekeeping genes and many
tissue-specific genes in vertebrates (10). Recently, human
promoters were classified as high CpG content (about
70%) versus 30% low CpG promoters (CpG content char-
acteristic of the overall genome) (11). Comparative studies
(12) on CpG island promoter organization, in terms of
protein-DNA interactions and patterns of expression,
recently reported a strong link between CpG islands and
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evolution and that accumulation of CpG islands at tran-
scription start sites (TSS) is a vertebrate-specific genomic
feature. Those authors (12) suggested that CpG islands at
TSS are a consequence of warm-blooded vertebrate evo-
lution, presumably for efficient regulation of transcription
in large genomes. On the other hand, CpG islands could
have played a direct role in evolution of warm-blooded
vertebrates, perhaps contributing to the gain of placenta,
a hallmark of eutherian mammals (13). In support of the
latter, a relationship between evolution of CpG island
promoter function and gene expression in mammalian
heart was recently reported (14).

To date, objective definitions of CpG islands are
limited. Gardiner-Garden and Frommer (15) described
CpG islands as a region with at least 200bp, a GC
content >50% and an observed/expected CpG ratio
>00%. Takai and Jones (16) revised the definition of
CpG islands as DNA regions with at least 500 bp, a GC
content >55% and an observed/expected CpG ratio
>65% were more likely to be true CpG islands associated
with the 5 end regions of genes. They also enhanced the
ability to detect CpG islands by excluding other GC-rich
genomic sequences such as Alu repeats (17, 18). Despite
significant efforts to define CpG islands, it remains a chal-
lenge to perform computational CpG island analysis using
conventional sequence analysis methods.

To overcome this barrier, we propose novel oligomer-
counting approaches for the comparative analysis of all
CpG island sequences in 10 mammalian genomes. These
two new approaches use exact sequence patterns in CpG
island sequences called k-mer and k-flank. After counting
the k-mers and k-flanks, pattern counting was used to re-
construct 10 mammalian phylogenies and for machine
learning analysis. We demonstrate that k-mers are char-
acteristic of CpG island sequences and also show that
k-mer data are consistent with evolutionary history of 10
mammalian genomes. To our knowledge, this extensive
study represents the first comparative analysis of CpG
island sequences in mammalian genomes.

MATERIALS AND METHODS
Raw data

From the UCSC Genome Browser, CpG island sequences
in 10 mammalian were downloaded and used for the
analysis. Table 1 shows 10 mammalian reference
genomes and their versions from which the CpG island
sequences are taken.

BLAST and information theoretic approaches are not
effective for CpG island sequence analysis

Despite previous studies on CpG island sequences, it is
unclear why CpG island regions are found more fre-
quently in mammalian genomes compared with other
genomes. In addition, while studies exist on CpG island
sequences and evolution (19, 20) in primates, comparative
mammalian studies are lacking, perhaps owing to the
difficulty of performing computational analysis of CpG
island sequences containing over-represented CpG di-
nucleotides. In this regard, conventional sequence

analysis techniques are not effective for the comparative
analysis of highly similar CpG island sequences (shown in
the next section).

We used BLAST for CpG island sequence analysis.
Owing to over-represented CpG dinucleotides, CpG
island sequences are very similar to each other, and
sequence similarity-based methods like BLAST are not
effective for performing comparative CpG island se-
quences analysis. We took another traditional approach
and computed relative entropy between 10 mammalian
species. As shown in Table 2, computing the relative
entropy was ineffective in showing significant differences
among CpG island sequences. Shown below is the com-
putational procedure we performed for the relative
entropy between species.

(i) Let P and Q be probability distributions of CpG
island for chimp and human
(i) Get probabilities of A, G, T, C for chimp and
human in each CpG island sequence. Let them be
p(A), p(G), p(T), p(C) and ¢(4), ¢(G), ¢(T), ¢(C)
(ii1) Relative entropy is calculated by
(V) Y renrg.e PO IN((0)/(x)

(v) Repeat (i) to (iii) for all species pairwise

The k-mer and k-flank approaches

As shown in the previous section, over-represented CpG
dinucleotides make it difficult to perform analysis of CpG
islands. To overcome this hurdle, we used two new
oligomer-counting approaches, exact sequence patterns
called k-mer and k-flank, for the comparative analysis of
all CpG island sequences in 10 mammalian genomes. The
first model, k-mer, gives a general descriptor of the
oligomer landscape in the entire CpG island sequence.
Given a sequence S, k-mers are sub-sequences of S of
length k, also known as oligomers for small k. For each
CpG island sequence, sliding windows of length k are
moved across the CpG island sequence from the 5 end
to 3 end, and each k-mer occurrence is counted.
Determining the number of occurrences of specific
k-mers in a sequence is called k-mer counting or
oligomer counting, and can provide descriptive informa-
tion about the DNA sequence (6, 21). To better charac-
terize and describe CpG island sequences, we used k-mer
counting techniques and frequency measurements to
perform a comparative analysis of the CpG islands. The
second oligomer-counting approach, called k-flanks,
records the DNA sequence of k length directly upstream
and downstream of each CpG site in a CpG island
sequence. This oligomer model is stricter and specifically
describes the DNA bases directly adjacent to CpG sites.
Figure 1 illustrates the definition of k-mer and k-flank. In
this study, we counted 3-10k-mers and k-flanks. Once
k-mers and k-flanks were counted, we used pattern
counting for the reconstruction of 10 mammalian
phylogenies and also for machine learning analysis to
show that (i) k-mers are characteristic of CpG island se-
quences and (ii) k-mer data are consistent with evolution-
ary history of 10 mammalian genomes. As far as we know,



this study is the first extensive comparative analysis of
CpG island sequences.

Collecting k-mer/k-flank frequencies and common
k-mers/k-flanks

(i) Count k-mer and k-flank frequencies in CpG island
for each species

(i1) Collect k-mers and k-flanks common in all 10 mam-
malian genomes and their frequencies

Once the common k-mers/k-flanks are collected, they
are sorted according to their frequencies. Based on the
ranks of common k-mers/k-flanks, their ranks are
marked. Since these k-mers/k-flanks are in common
across all 10 mammalian genomes, the order of k-mers/
k-flanks in each species becomes a permutation of ranks of
common k-mers/k-flanks. This k-mer/k-flank ranking
method based on the common k-mer/k-flank ranks

Table 1. Ten mammalian CpG islands sequence

Species Data version

Chimp CGSC 2.1.3/panTro3

Cow Bos taurus UMD 3.1/bosTAu6
Dog Broad/canFam?2

Human CRCh37/hgl9

Marmoset WUGSC 3.2/calJac3

Mouse NCBI37/mm9

Opossum Broad/monDom5

Pig SGSC Sscrofa9.2/susScr2
Rat Baylor 3.4/rn4

Rhesus MGSC Merged 1.0/rheMac2

Table 2. Relative entropy between species
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comes from an assumption that all these mammalian
species are closely related from the evolutionary perspec-
tive. Figure 2 illustrates the experimental protocol.

Correlation between species

k-mer|[k-flank selection for correlation
Based on the common k-mers/k-flanks, k-mers/k-flanks in
the each species were selected for correlation analysis
between species. That is, for the correlation coefficient
computation, each species has the same set of k-mers/
k-flanks but a different rank order 2.

Kendall tau rank correlation coefficient with merge sort
Kendalls tau is a method to measure rank correlation, first
discussed by G.T. Fechner in 1900 and rediscovered by
M.G. Kendall in 1938 (23, 24). It is a statistic used to
measure the association between two measured quantities,
effectively measuring rank correlation.

RESULTS AND DISCUSSION

Reconstruction of the phylogenetic tree based on the
distance matrix

Distance matrix can be directly obtained from the correl-
ation coefficient value computed by Kendalls tau method.
If the correlation coefficient value is 7, the distance matrix
will be (1 — 7).

Neighbour-joining algorithm

We applied a neighbour-joining algorithm (22) to recon-
struct phylogenetic trees using matrix of pairwise

Species Chimp Cow Dog Human Marmoset ~ Mouse Opossum Pig Rat Rhesus
Chimp 0.00E+00  6.52E-05 1.24E-05 2.61E-05 3.38E-04 2.61E-05 8.42E-04 7.18E-04 4.15E-04 2.20E-06
Cow 6.51E-05 0.00E+00  1.34E-04 1.71E-04 1.07E-04 1.31E-05 4.39E-04 3.54E-04 1.56E-04 4.59E-05
Dog 1.24E-05 1.34E-04 0.00E+00  4.47E-06 4.80E-04 7.28E-05 1.06E-03 9.19E-04 5.69E-04 2.41E-05
Human 2.62E-05 1.72E-04 4.48E-06 0.00E+00  5.48E-04 1.00E-04 1.15E-03 1.00E-03 6.43E-04 4.12E-05
Marmoset  3.37E-04 1.07E-04 4.77E-04 5.44E-04 0.00E+00  1.80E-04 1.12E-04 7.23E-05 6.83E-06 2.88E-04
Mouse 2.61E-05 1.31E-05 7.26E-05 1.00E-04 1.81E-04 0.00E+00  5.79E-04 4.75E-04 2.35E-04 1.33E-05
Opossum 8.35E-04 4.36E-04 1.04E-03 1.14E-03 1.12E-04 5.75E-04 0.00E+00  8.32E-06 8.11E-05 7.58E-04
Pig 7.12E-04 3.52E-04 9.11E-04 9.97E-04 7.21E-05 4.72E-04 8.34E-06 0.00E+00  4.62E-05 6.40E-04
Rat 4.13E-04 1.56E-04 5.64E-04 6.38E-04 6.83E-06 2.34E-04 8.12E-05 4.63E-05 0.00E+00  3.57E-04
Rhesus 2.20E-06 4.60E-05 2.41E-05 4.11E-05 2.90E-04 1.33E-05 7.64E-04 6.45E-04 3.59E-04 0.00E +00
No significant difference enough to represent CpG island sequence features.
k-mer k-flank
GCGCGA... 3-Mer | Frequency
G |:> GeG [ 2 ...AGGC GATC...
GCG cac ! upstream downstream
CGA CGA 1

Figure 1. Definition of K-mer and K-flank.
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evolutionary between distance. Our objective here was to
define distance between genomes by using the rank-sum
tests of conserved k-mers.

Visualize phylogenetic tree

Using the Newick format data, we used the on-line phyl-
ogeny drawing tool, called PHY-FI (25). A phylogenetic
tree using top ranked 64 3-mers is shown in Figure 3,
which is consistent with the evolutionary history of the
10 mammalian genomes. Additional results using different
k-mers and k-flanks are available at http://biohealth.snu.
ac.kr/wiki/index.php/PhylogeneticTree

A Rank
B 1.|A
D Rank g g
E 1. A )
F ; 5.|F
: 2.|B 4lE
E . 3|D : '
Chimp’ s kemer(flank) : 4.| E : Chimp’ s k-mer(flank) seq.s
seq.s sorted by frequency | F E which will be used to get
: 5. : correlation
_B ! Common k-mer(flank) | Rank
A ! seq.s for all species 2B
Wel 1.|A
D 3.|D
E . Leave only 5.|E
o= ! common segs. 4.|F
F Human’ s k-mer(flank) seq.s

which will be used to get

Human’ s k-mer(flank) correlation

seq.s sorted by frequency

Figure 2. Get common k-mer(flank) exist in all the species. Each
alphabet stands for the k-mer(flank) sequences. Based on the
k-mer(flank) rank order in common, k-mer(flank) order in each
species are set. Rank difference between common and other species
are computed.

2 chimp

L 0~ 4 human

a0
AR -
QL

—  « marmoset

Machine learning analysis of CpG island sequence using
k-mer as features

In the previous section, the k-mer/k-flank rank method
was used to reconstruct a phylogenetic tree based on
their sequence pattern. To investigate further relationships
among CpG island sequence patterns and evolutionary
relationship between species, we performed machine
learning analysis on the CpG island sequences using the
same k-mer frequency approach.

Machine learning algorithms

We performed the machine learning analysis using repre-
sentative algorithms including Random forest (RF), naive
bayes (NB), support vector machine (SVM) and radial
basis function network (RBF) implemented in Weka
package (26). We did not use the artificial neural
network (ANN) algorithm, as it is exceptionally time
consuming. In the machine learning analysis, statistically
significant k-mers were used as features, and CpG island
sequences from each species were used as class.

Positive and negative data set

Based on the k-th order, the frequency of each k-mers in
the CpG islands was counted and used as the positive data
set to represent CpG island sequence. We used Markov
model (MM) in seq++ package (27) to generate the nega-
tive data set. From CpG island sequences, the Markov
model parameters were estimated and the negative
sequences were generated using the Markov model. We
generated random sequences of the same length as
original CpG island sequences to make the positive and
negative data of the same size. The ratio between positive
and negative data set was one to one. Using the positive
and negative data sets, we performed a 10-fold cross val-
idation to evaluate machine learning models to character-
ize CpG island sequences.

0T~
L& rat

+ Opossum

Figure 3. Phylogenetic tree using top ranked 64 3-mers.
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Feature selections

To select statistically significant k-mers, t-tests were used
and a P-value of 0.05 was used as a cut-off value. For the
machine learning models, only statistically significant
k-mers were used.

MM order and k-mer selection

Selecting the appropriate k-mer length and the order of
MM for generating random sequence are critically import-
ant. Thus, we investigated the number of statistically sig-
nificant k-mers between original CpG island sequences
and random sequences from varying degrees of MM.
Table 3 shows the relationship between the orders of
MM and k-mer lengths.

Results of machine learning on k-mer as a human CpG
island sequence feature

To investigate predictive power of the machine learning
models, we tested all possible combinations of the order of
MM and k-mer length (Figures 4-11). Overall, SVM and
RF performed better than NB and RBF, achieving pre-
diction accuracies between 0.8 and 0.9. This result shows
that CpG island sequences in humans contain distinctive
k-mer patterns and are not random sequences.

Table 3. Relation between MM order and k-mer

Nucleic Acids Research, 2013, Vol. 41, No.9 4787

Analysis of CpG island sequences in nine mammalian
genomes

We next extended the k-mer pattern analysis method used
for the human to the other mammalian species (Table 2).
We fixed the machine learning algorithm as SVM, because
it showed the best performance in our previous analysis.
We also fixed parameters as 4-mer and the 2nd order for
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Figure 4. Machine learning performance with 4-mer as features using
2nd order MM random set.

MM-order 2-mer 3-mer 4-mer S5-mer 6-mer 7-mer
Ist 0 50 202 830 2992 9570
2nd 0 0 193 699 2444 7950
3rd 0 0 0 456 1826 6120
4th 0 0 0 7 947 4707
Sth 0 0 0 0 38 3520
6th 0 0 0 0 0 230
Number of significant k-mer filtered by #-test with P <0.05.
Table 4. Number of existing k-mer pattern in each species

Chimp Cow Dog Human Marmoset Mouse Opossum Pig Rat Rhesus
Total (255) 215 204 179 222 211 215 200 182 216 204
Among total possible combination of 4-mer pattern (255), each species contains different number of k-mer pattern (P <0.05).
Table 5. Number of common k-mers between species
Species Chimp Cow Dog Human Marmoset ~ Mouse Opossum Pig Rat Rhesus
Chimp 215/100% 197/88.7%  169/75.1%  213/95.0%  196/85.2%  200/86.9%  182/78.1%  173/77.2%  196/83.4%  202/93.0%
Cow 197/88.7%  204/100% 166/76.4%  200/88.4%  184/79.6%  190/82.9%  181/81.1%  174/82.0%  188/81.0%  192/88.8%
Dog 169/75.1%  166/76.4%  179/100% 171/74.3%  159/68.8%  165/72.0%  153/67.6%  164/83.2%  162/69.5%  162/73.3%
Human 213/95.0%  200/88.4%  171/74.3%  222/100% 197/83.4%  204/87.5%  186/78.8%  175/76.4%  201/84.8%  203/91.0%
Marmoset  196/85.2%  184/79.6%  159/68.8%  197/83.4%  211/100% 190/80.5%  178/76.3%  165/72.3%  191/80.9%  190/84.4%
Mouse 200/86.9%  190/82.9%  165/72.0%  204/87.5%  190/80.5%  215/100% 175/72.9%  168/73.3%  201/87.3%  191/83.7%
Opossum 182/78.1%  181/81.1%  153/67.6%  186/78.8%  178/76.3%  175/72.9%  200/100% 158/70.5%  178/74.7%  176/77.1%
Pig 173/77.2%  174/82.0%  164/83.2%  175/76.4%  165/72.3%  168/73.3%  158/70.5%  182/100% 168/73.0%  170/78.7%
Rat 196/83.4%  188/81.0%  162/69.5%  201/84.8%  191/80.9%  201/87.3%  178/74.7%  168/73.0%  216/100% 189/81.8%
Rhesus 202/93.0%  192/88.8%  162/73.3%  203/91.0%  190/84.4%  191/83.7%  176/77.1%  170/78.7%  189/81.8%  204/100%

(Number of common k-mer)/(Percentage of common k-mer). Evolutionarily closer genome pairs retain higher percentage of common k-mer pattern.
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Figure 5. Machine learning performance with 5-mer as features using
2nd order MM random set.
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Figure 6. Machine learning performance with 6-mer as features using
2nd order MM random set.
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Figure 7. Machine learning performance with 5-mer as features using
3rd order MM random set.

the MM negative data set, as 4-mer is the smallest k-mer
to get meaningful result and at least 2nd order for the MM
is required to simulate dinucleotide characteristics of CpG
sites in CpG islands sequence. Figure 12 shows the trained
machines performance for other species. The overall per-
formance was determined to be between 75-80%,
demonstrating that the CpG island sequences contain
certain unique pattern in each of the species.
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Figure 9. Machine learning performance with 6-mer as features using
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Analysis of CpG island sequences using common k-mer
patterns between species

Previous machine learning analysis showed that CpG
island sequences of all species contained distinct and
non-random k-mer pattern. To further investigate the
k-mers, we analyzed the similarity k-mer patterns
between species. The number of k-mer patterns in each
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MM order using SVM.
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species is conserved (Table 4); in addition, k-mer patterns
were shared between each species, ranging from 67 to
100% (Table 5).

Comparison between species I: applying a human model to
other species

To compare CpG island sequences among species, we used
a human model of 4-mer and the 2nd order MM back-
ground model to classify CpG island sequences in nine
mammalian genomes. In this case, the human CpG
island sequences were used as the training data, and
CpG island sequences in other species served as the test
data. The experimental procedure is summarized in
Figure 13. We predicted the predictive power of the

0.85
08 M chimp
0.75 - | Mcow
2 0.25:— .:'-dog
g 02 - W marmoset
% 0.15 - | mmouse
e 01 popssum
0.05 - | =P
rat
0 W rhesus

Figure 14. Result of applying a human model to different species.
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Figure 13. Applying human CpG island model to different species.
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Figure 16. Result of machine learning analysis human as positive data
set and other species as negative data set. The result is consistent with
evolutionary history since when two species are close, e.g., human
versus chimp, the prediction accuracy is low while two species are
distant, e.g., human versus opossum, the prediction accuracy is high.

human model to decrease as the evolutionary distance
increased between species. As shown in Figure 14, the
results are consistent with evolutionary history.

Comparison between species II: models between human
and other species

To further compare CpG island sequences among species,
we used the human CpG island sequences as the positive
data set and other species sequences as the negative data
set and performed 10-fold cross validation experiments.
Figure 15 illustrates the experimental scheme. The result
in Figure 16 is consistent with evolutionary history: pre-
diction accuracy was low for close species (e.g., human
versus chimp), and high prediction accuracy was
observed for distant species, e.g., human versus opossum.

CONCLUSION

CpG island sequences play critical roles in development
and disease biology. Despite the number of important
analytical studies on CpG island sequence characteristics,
no comparative analysis exists on CpG island sequences
among different species. One possible reason is conven-
tional sequence analysis techniques are currently ineffect-
ive for analyzing highly biased character composition of
CpG island sequences. In this article, we proposed new
approaches using exact patterns of CpG island sequence
called k-mer and k-flank. By using genome distance based
on rank correlation tests, we show that k-mer and k-flank
patterns nearby CpG sites can correctly reconstruct the
phylogeny of 10 mammalian genomes. We further report
that k-mers, by using various machine learning algo-
rithms, can be used to characterize CpG islands sequences.
Conserved k-mers mean conservation of short sequence in
CpG island sequences. Thus, our findings of conserved
k-mers in CpG island sequences extend our current know-
ledge of CpG islands as CpG over-represented sequences
to partially conserved sequences. In addition, human
model testing on nine additional mammalian genomes
confirms that k-mers indeed are signatures consistent
with their evolutionary history. We conclude for the first
time that CpG islands sequences of 10 mammalian
genomes contain evolutionary evidence for non-random
pattern characteristics.
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