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Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal
castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-
characterized molecular biomarkers. The clinical diagnosis of this disease is dependent
on biopsy and histological assessment: methods that are experience-based and easily
misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for
NEPC may assist clinicians in making medical decisions on the choice of continuing anti-
androgen receptor therapy or switching to platinum-based chemotherapy.

Methods: Gene expression profiles and clinical characteristics data of 208 samples of
metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno)
and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were
obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network
Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression
network to study the interrelationship between the potential modules and clinical features
of metastatic prostate adenocarcinoma and to identify hub genes in the modules.
Furthermore, the least absolute shrinkage and selection operator (LASSO) regression
analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The
findings were then verified in the nepc_wcm_2016 dataset.

Results: A total of 51 co-expression modules were successfully constructed using
WGCNA, of which three co-expression modules were found to be significantly
associated with the neuroendocrine features and the NEPC score. In total, four novel
genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in
NEPC compared with the adenocarcinoma samples, and these genes were all associated
with the neuroactive ligand receptor interaction pathway. Next, the expression levels of
these four genes were used to construct an NEPC diagnosis model, which was
successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the
training and the validation cohorts. Moreover, the values of the area under the receiver
operating characteristic (AUC) were 0.995 and 0.833 for the training and validation
cohorts, respectively.
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Conclusion: The present study identified four specific novel biomarkers for therapy-
related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of
NEPC, thereby meriting further study.
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INTRODUCTION

Prostate cancer (PCa) is one of the most prevalent cancers for
men in western countries and throughout the world with an
estimated incidence of 1.276 million cases in 2018. Owing to the
aging population globally, the incidence rate of PCa is expected to
increase to 2.3 million by the year 2040, thereby posing an even
greater threat to human health [1, 2]. Although the 5 years
survival rate of localized PCa is >95%, the overall survival
time for the advanced stage of this disease, metastatic
castration-resistant prostate cancer (mCRPC), is only
9–36 months [3]. Moreover, nearly 15–20% of mCRPC
patients apparently undergo a histological change from the
adenocarcinoma to the neuroendocrine subtype following
multiple treatments, which is a terminally aggressive PCa
subtype [4]. The emergence of neuroendocrine prostate cancer
(NEPC) may result in resistance to the androgen receptor (AR)-
based therapies, a development that is significantly unfavorable
towards patients’ survival [5]. Meanwhile, NEPC patients may
develop additional sensitivity to platinum-based chemotherapy,
which is the recommended therapeutic intervention to treat
NEPC according to the National Comprehensive Cancer
Network (NCCN) guidelines [6]. The timely diagnosis of
NEPC prevents patients from being subjected to ineffective
standard treatments of CRPC, including novel hormone and
Taxane-based therapies, and also enables the progression of
the disease to be effectively indicated, even in the absence of
(or with an underestimated elevation of) prostate-specific
antigen (PSA).

At present, the diagnosis of treatment-emergent NEPC is
dependent on the histological assessment of tissue biopsies
according to the World Health Organization (WHO)
classification system of 2004, and neuroendocrine markers,
including chromogranin A, synaptophysin (SYP), neuron-
specific enolase (NSE), and CD56, are widely used. However,
these diagnoses are not only experience-based but also may lead
to misdiagnosis due to the presence of mixed tumors (with both
adenocarcinoma and NEPC morphologies) or intratumor
heterogeneity [7]. Currently, there is no robust molecular
diagnosis tool available for NEPC due to its relative rarity and
the limited availability of tissue samples. It is worth mentioning
that a recognized diagnostic tool that addresses the NEPC scores
was used to calculate the scores of a set of 70 genes, and the
correlations among their alterations in DNA, RNA, and/or
epigenomic status with the NEPC feature [8, 9]. However,
though this tool can accurately distinguish NEPC from CRPC,
its comprehensive but complex profiling methods are likely to
hinder its applicability to a wider range of clinical practices. The
features of NEPC include indifference towards the AR signaling
pathway, downregulation of known androgen-regulated genes,

and overexpression of neuroendocrine-associated genes [10, 11].
For example, co-upregulation of the LIN28B, SOX2, EZH2, and
SPINK1 genes was reported in NEPC tumors [12–14]. Based on
the biological findings, further studies, however, are required to
combine molecular features for predicting NEPC transformation
and to identify patients at a higher risk of developing lineage
plasticity. Regrettably, certain of the markers that are in the
process of being developed, including neuronal markers such
as SYP, enolase 2 (ENO2), chromogranin-A (CHGA), and CD56
[15]; DNA methylation [16, 17]; the alterations in the expression
of mRNA [12–14]; and non-coding RNAs [7] exhibit either low
accuracy or are at too preliminary a stage for clinical application
at the present time. Therefore, the identification of novel and
robust biomarkers for the diagnosis of NEPC is urgently required.

In order to establish an effective diagnostic tool for NEPC, in
the present study, Weighted Gene Co-expression Network
Analysis (WGCNA) and the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis were
performed to identify correlated gene modules and hub genes
in selected modules to construct an NEPC feature-related model,
which was subsequently validated in another independent cohort.
A flow chart indicating a schematic representation for the
approach in this study was shown in Figure 1.

METHODS

Data Collection
The mRNA expression data and corresponding clinical feature of
castration-resistant prostate cancer (CRPC), including
castration-resistant prostate adenocarcinoma (CRPC-adeno)
and castration-resistant prostate adenocarcinoma with
neuroendocrine features (CRPC-NE), were all downloaded
from the cBioPortal database (https://www.cbioportal.org/).
Specifically, a total of 208 CRPC samples with expression data
were gained from SU2C/PCF Dream Team [9] to set as the
training dataset, and 49 samples were obtained from the
Neuroendocrine Prostate Cancer program (nepc_wcm 2016)
[8] and applied as the validation dataset. The clinical features
of the training and validation dataset were demonstrated in
Table 1.

Co-Expression Network Construction using
WGCNA and Target Prediction
The WGCNA algorithm was run in the R software package
(http://www.r-project.org/) to assess the clinical characteristics
of NEPC and their associated modules by calculating the
correlation coefficient simultaneously with the minimum gene
number of 30 in each module. A power value of 3 was used in this
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analysis as the package suggested, and values above a pre-
determined threshold are considered similar. Each module can
be associated with a characteristic according to the eigenvector of
the module and the correlation coefficient of the phenotype or the
saliency p-value of the module. With the application of a network
heat map, the connections between the characteristic association
module and other modules can be visualized. A hierarchical
clustering tree was constructed based on the weighted
correlation coefficients of genes and genes with similar
patterns in one module.

Functional Enrichment Analysis of
Co-Expression Modules
We uploaded the data to the database for Annotation,
Visualization, and Integrated Discovery (DAVID) (https://
david.ncifcrf.gov/) for analyzing the function of genes in key
co-expression modules which is a classic gene enrichment
analysis website, mainly used for differential gene function and
pathway enrichment analysis.

Identification of Hub Genes in Selected
Modules
After screening the key gene modules associated with the
characteristics of NEPC, the gene co-expression network map
was drawn based on the relations of the genes within the modules.
For each module, we selected the top 20 genes to identify the
hub genes.

Model Building and Validation
LASSO, which is suitable for the regression of high-dimensional data,
was used to select themost useful predictive features from the primary
data set [18]. Tuning parameter (L) selection in the LASSO model
used 10-fold cross-validation via minimum criteria. The NEPC
signature score was calculated by the following formula: NEPC
signature score � gene 1 expression × γ1 + gene 2 expression × γ2
+ gene 3 expression × γ3 + . + gene n expression × γn, where γn
denotes the coefficient for each hub gene in the multivariate Cox
regression model. The area under the receiver operating characteristic
curve was plotted using the “timeROC” package in R studio. A
coefficient profile plot was produced against the log(L) sequence. A

FIGURE 1 | A workflow chart for constructing an NEPC signature model.

TABLE 1 | The clinical information of CRPC samples.

Variable SU2C/PCF Dream team nepc_wcm 2016

Total 208 49
Age Median (range) 60.8 [38.6, 80.6] NA
Mutation count Median (range) 65 [1, 1,065] 38 [15, 414]
AR score Median (range) 0.481 [-0.265, 0.694] NA
Genomic burden Median (range) NA 0.34 [0.01, 0.94]
Gleason score 6 13 NA

7 46 NA
8 23 NA
9 65 NA
10 13 NA
11 1 NA

CRPC, castration-resistant prostate cancer, NA, not applicable.
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score was calculated for each patient via a linear combination of
selected genes that were weighted by their respective coefficients.

Gene Set Enrichment Analysis
The samples from the discovery dataset were divided into high-
and low-expression groups according to the genes’ mRNA level,
and the median expression level served as a cut-off value. GSEA
was performed to identify the molecular feature of the founding
biomarker genes [19].

Statistical Analysis
Statistical analysis was conducted with R software (v. 3.4.3,
http://www.Rproject.org). Categorical variables were analyzed
by use of the Fisher’s exact test. Continuous variables were
analyzed using Student’s t-test for paired samples. The median
value was used in this work as a cutoff to classify the patients
the training and validation cohorts into high- and low-level
groups. A p-value below 0.05 was considered statistically
significant.

FIGURE 2 | WGCNA module clustering and soft threshold power identification. (A) Hierarchical clustering dendrogram of 208 samples based on the Euclidean
distance; all samples were included in the analysis. (B) The clustering dendrogram and heat map shows the Euclidean distance and sample characteristic correlations.
Light color represents a lower value, dark color represents a higher value, and grey represents a missing value. (C) Soft threshold power screening based on the network
topology, the analysis used a power of 3 as the package suggested, the left panel is the coordinate map of the soft-thresholding power (x-axis) and the scale-free fit
index (y-axis), and the right panel is the coordinate map of the mean connectivity (y-axis) and the soft-thresholding power (x-axis). (D) Co-expression Module clustering
and identification dendrogram, 51 modules were identified and each row includes the highly correlated genes of one module.
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RESULTS

Weighted Co-Expression Network
Construction
The gene expression matrix and clinical information of
metastatic prostate adenocarcinoma samples were obtained
from the SU2C-Prostate Cancer Foundation (PCF) Dream
Team (Precision Therapy for Advanced Prostate Cancer). A
hierarchical clustering dendrogram of 208 samples was

constructed based on the Euclidean distance, all samples
were included in the analysis (Figure 2A). Additionally,
basic patient information, including the neuroendocrine
features, the NEPC score, AR score, Gleason score, tissue
site, and exposure status, amongst others, were attached
below the resulting tree (Figure 2B). As recommended by
the package, the soft threshold power value 3 was used to
construct the gene co-expression network (Figure 2C). In
total, 51 modules were identified based on co-expression

FIGURE 3 |Module and clinical characteristic relationship based on WGCNA. Module and clinical characteristic relationship heat map. In each cell, the correlation
between the corresponding module and characteristic are displayed with correlation numbers and colors (red as 0.0 ∼ 1.0, green as −1.0 ∼ 0.0) and p-values are also
shown in each cell, darker color means higher correlation.
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module clustering and the construction of the hierarchical
clustering dendrogram (Figure 2D).

ASSOCIATION OF MODULES WITH
CLINICAL TRAITS

For each module, gene co-expression was summarized according
to the eigengene. The correlations of each eigengene were
calculated with clinical characteristics, such as Abiraterone and
Enzalutamide (ABI ENZA) exposure status, AR score, tissue site,
Gleason score, pathology classification, and in particular, the
neuroendocrine features and NEPC score. The three highest
correlated modules with the neuroendocrine feature were
chosen, as denoted by the dark turquoise row (r � 0.71, p <
0.05), sky blue row (r � 0.62, p < 0.05), and white row (r � 0.55,
p < 0.05) (Figure 3). Interestingly, each one of these three selected
modules was also highly correlated with the NEPC score.

ENRICHMENT ANALYSIS OF THE
BIOLOGICAL FEATURES

Gene Ontology (GO) analysis of genes in the three selected
identified modules was performed, clarifying the combined
features that were associated with biological processes (BP),
molecular functions (MF), and cellular components (CC). The
genes in the dark turquoise module were mainly associated with
“regionalization”, “anterior/posterior pattern specification”,
“axon guidance”, “neuron projection guidance”, “cell cycle
arrest”, and “pattern specification process and axon genesis”
(Figure 4A). By contrast, the genes in the sky-blue module
were mainly enriched in the regulation of “membrane
potential”, “stabilization of membrane potential”, “potassium
ion leak channel activity”, “leak channel activity”, “narrow
pore channel activity”, “potassium channel activity”, “voltage-
gated ion channel activity”, and “voltage-gated channel activity”
(Figure 4B). Finally, the genes in the white module were involved

in “embryonic skeletal system development”, “positive regulation
of neurogenesis”, “embryonic skeletal system morphogenesis”,
and “synapse organization” (Figure 4C).

IDENTIFICATION AND VALIDATION OF
HUB GENES

Subsequently, 314 intra-module connectivity genes were screened as
candidate genes from the dark turquoise, sky-blue, and white
modules. The top 60 genes were selected (Supplementary Table
S1) for LASSO regression analysis, comprising the top 20 hub genes
from each of the three selected modules. In total, four potential hub
genes, including neuronal pentraxin 1 (NPTX1), proprotein
convertase subtilisin/kexin type 1 (PCSK1), ASXL transcriptional
regulator 3 (ASXL3), and tripartitemotif-containing 9 (TRIM9) were
identified as non-zero coefficients in the LASSO logistic regression
model used to predict NEPC feature (Figures 5A, B). As shown in
Figures 5C–F, these four identified genes were all associatedwith the
neuroactive ligand-receptor interaction and olfactory transduction
pathways. With the exception of PCSK1, the other three genes
(NPTX1, ASXL3, and TRIM9) were all associated with
complement and coagulation cascades. Additionally, PCSK1 was
also associated with the calcium signaling pathway.

Through the analysis of the NEPC features in conjunction
with the expression levels of the hub genes, it was demonstrated
that NPTX1, PCSK1, ASXL3, and TRIM9 were all significantly
upregulated in samples with NEPC feature (p < 0.001, Figures
6A–D). With the exception of PCSK1, the expressions of the
other three genes (NPTX1, ASXL3, and TRIM9) were all
positively correlated with the traditional NEPC score (Figures
6E–H). Based on the aforementioned results, the NEPC signature
was established by the expression of these four hub genes,
consisting of NPTX1, PCSK1, ASXL3, and TRIM9 (Table 2).

In addition, the predicted signature model was applied in the
training dataset, and this analysis demonstrated that the CRPC-
NE samples had a significantly higher predicted signature score,
compared with the CRPC-adeno samples (Figure 7A). The AUC

FIGURE 4 | Related signaling pathway of the three most related modules with NEPC score. (A)GO analysis of the dark turquoise module (A), sky blue module (B),
and white module (C). The color indicates the significant degree of enrichment and the size indicates the number of genes enriched for each result.
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FIGURE 5 | Feature genes selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) The result of LASSO
regression analysis. (B) LASSO coefficient profiles of the 60 genes. A coefficient profile plot was produced against the log(L) sequence. Gene set enrichment analysis for
NPTX1 (C), PCSK1 (D), ASXL3 (E), and TRIM9 (F). The top four pathways enriched in the high expression group are shown.
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FIGURE 6 | The expression level of four genes between samples with NEPC feature or not from the SU2C dataset. NPTX1 (A), PCSK1 (B), ASXL3 (C), and
TRIM9 (D) expression level in samples with (N � 6) or without (N � 161) NEPC feature. The relationship between the expression level of identified biomarkers [NPTX1 (E),
PCSK1 (F), ASXL3 (G), and TRIM9 (H)] and the NEPC score. The median value of gene expression level was used as a cutoff to classify samples into high- (N � 104) and
low- (N � 104) expression level groups.
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of the NEPC prediction was 0.995, showing its strong plausibility
as the NEPC diagnosis signature (Figure 7B).

Validation of the Established NEPC
Signature
Next, in the validation dataset of an independent NEPC program
(nepc_wcm_2016), it was noted that patient samples with NEPC
features (i.e., the CRPC-NE samples) had significantly higher
expression levels of the four genes compared with the CRPC-adeno
patient samples (p < 0.001, Figures 8A–D). Furthermore, the NEPC
samples in the validation cohort (nepc_wcm2016) also had significantly
higher predicted signature scores compare with those in the CRPC-
adeno samples (Figure 8E). Meanwhile, the AUC of the NEPC
prediction was 0.833, which confirmed the validity of this model in
terms of its accuracy for the diagnosis of NEPC (Figure 8F).

GENOMIC DIFFERENCES BETWEEN
SAMPLES WITH HIGH AND LOW NEPC
SIGNATURE SCORES
The top 20 mutated genes in samples with high and low NEPC
signature scores from the SU2C-PCF dataset were shown in Figures

9A, B. No significant differences were identified in the prevalence of
altered genes comparing between these two groups, including genes
associatedwith theAR signaling pathway (AR and FOXA1). However,
in the validation dataset, a significantly higher prevalence of certain
genes, including RB1,METTL24, and ADRM1, were identified in the
samples with a high NEPC signature score (Figure 9C). On the other
hand, KPRP and SPOPwere identified as more prevalent genes in the
CRPC-adeno samples (Figure 9D).

DISCUSSION

NEPC is a highly aggressive subtype of prostate cancer that is
associated with poor survival and developing resistance to novel
hormone treatments, including the administration of abiraterone
and enzalutamide. Early diagnosis of NEPC and the timely
application of treatment for advanced NEPC are difficult to
accomplish, however, due to a deficiency of robust molecular
biomarkers [20]. The previously established NEPC score, which
was comprehensively analyzed on the basis of DNA alteration,
methylation, and RNA expression parameters, has been shown to
enable the precise identification of CRPC-NE [8, 9]. Although this
model was effective, however, it was not appropriate for clinical
popularization or application due to its costliness and its complex
algorithm. In order to find a concise but effective diagnosis model
for NEPC, the present study aimed to analyze the RNA-seq data
of therapy-related NEPC compared with CRPC.

Biological analysis of our identified genemodules has suggested that
neurite extension, as the neuroendocrine marker, is a highly correlated
pathway in the modules. Changes in membrane potential and ion
channel activity may occur during the process of NE differentiation in
which the overexpression of alpha (1H) mRNA (i.e., a single type of
LVA calcium channel mRNA) was reported during neuroendocrine

TABLE 2 | The coefficients of identified genes in the NEPC signature.

Gene Coefficient p-value

NPTX1 0.003247 0.028
PCSK1 0.003142 0.011
ASXL3 0.024173 0.028
TRIM9 0.020398 0.011

FIGURE 7 | Application and evaluation of the NEPC predicted signature model. (A) The differences in predicted signature score between CRPC-NE and CRPC-
adeno samples. (B) The ROC curves for NEPC predicted signature model in the training cohort.
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differentiation [21]. Furthermore, calcium channels have been shown
to facilitate neurite lengthening via promoting basal calcium entry at
the resting membrane potential [22-24].

Ultimately, four novel biomarkers for NEPC were
identified, including NPTX1, PCSK1, ASXL3, and TRIM9,
by LASSO regression analysis, and it was noteworthy that

FIGURE 8 | Model validation using the lasso method in an independent dataset. The mRNA differential expression analysis of four potential predicting genes
between the samples with (N � 15) or without (N � 34) NE feature in the nepc_wcm_2016 dataset. (A) NPTX1. (B) PCSK1. (C) ASXL3. (D) TRIM9. (E) The differences in
predicted signature score between NEPC and Adenocarcinoma samples. (F) NEPC feature-dependent ROC curves were performed in the validation cohort.
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some of these genes have already been previously identified in the
NEPC. Through exon array profiling, Tsai and others identified
that 87% (13/16) of NEPC patients had outlier expression of
NPTX1 and PCSK1, findings that were also in support of the
strong plausibility of these two candidates as markers for the
diagnosis of NEPC [25]. NPTX1 encoded a secreted
glycoprotein of size 47–50 kDa and was first identified in the
central nervous system as a member of the pentraxin family
[26]. Based on mass-spectrometry-based proteomics, it was
identified that the level of NPTX1, which is involved in
neurogenesis, was elevated in NEPC samples [27]. Recently, an
increasing number of studies have shown that NPTX1 is involved
in the progression of various cancers, including lung cancer [28],
colon cancer [29], and gastric cancer [30]. PCSK1, encoding
prohormone convertase 1, belongs to the proprotein convertase
family, and its overexpression has been revealed in various
subtypes of neuroendocrine tumors [31–33]. Previous studies
have shown that treatment-related NEPC also exhibits a high
expression of PCSK1, and the pattern of promoter methylation
was observed to be different among distinct phenotypes of PCa [34,
35]. On the other hand, the role of ASXL3 and TRIM9 in the

diagnosis of NEPC has not been previously shown. ASXL3, the
polycomb group (PcG) protein, is essential for neuroendocrine
(NE) lung cancer development and was shown via KEGG analysis
to be associated with the multiple neuron differentiation signaling
pathways [36, 37]. Furthermore, ASXL3 was found to serve as an
effective biomarker for predicting the sensitivity towards BET
protein inhibitors in small cell lung cancer (SCLC), highlighting
its potential as an actionable biomarker [38, 39]. TRIM9, encoding
a brain-specific E3 ubiquitin ligase, has been shown by GO analysis
to be involved in the neurological disease and inflammation
pathways [40]. Its overexpression promotes cell proliferation,
and inhibits cell apoptosis via the NF-κB signaling pathway in
uterine leiomyoma [41]. As an important transcription factor,
NF-κB has also been implicated in the acquisition of
neuroendocrine characteristics in prostate cancer cells [42].

Although several diagnosis markers have now been
identified, histological assessment with neuroendocrine
differentiation remains “the gold standard” for clinical
diagnosis of NEPC. However, the clinical and cellular
heterogeneity of NEPC patients causes many difficulties for
the clinical management of NEPC, and the sampling process of

FIGURE 9 |Genomic alterations in samples with high and low NEPC signature. The oncoprint results of samples with high (A) and low (B)NEPC signature of SU2C
dataset. The oncoprint results of samples with high (C) and low (D) NEPC signature of WCM dataset. The top 20 most prevalent genes were presented.
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histological assessment is both invasive and painful to patients
[43]. Recently, comprehensive genomic profiling revealed
molecular heterogeneity in the genomic landscape of
metastatic CRPC [8, 9]. The results of the present study
should prove to be of great benefit in terms of improving
clinical applicability. Furthermore, the novel NEPC signature
that has been identified will have the advantage of overcoming
the heterogeneity that leads to inaccuracies in the diagnosis of
patients with NEPC. Finally, the high AUC value that was
determined provides confirmatory evidence that the NEPC
signature is trustworthy in terms of its putative role as a novel
diagnostic tool to distinguish samples of patients with CRPC-
NE from those with CRPC-adeno. However, it should be
acknowledged that the present study has some limits
because of the sample sizes. Moreover, this study was
conducted based on public databases. Therefore, we having
been collecting the NEPC patient samples in our hospital and
would validate the NEPC signature scoring system as a
diagnostic tool in an independent cohort. At the same time,
the merits of this NEPC signature scoring system would be
assessed with regard to its application in the clinic. To
corroborate these findings, the functional roles of the
identified four hub genes should be explored in relevant cell
lines or in a mouse model. Furthermore, other biomarkers,
such as low expression of androgen-regulated genes [e.g.,
KLK3 (PSA), TMPRSS2, and NXK3.1] and high expression
of neuroendocrine-associated genes (e.g., CGA and SYP), may
be investigated subsequently to provide further confirmatory
evidence for the accuracy of the NEPC signature in the
diagnosis of NEPC.

In conclusion, the present study has investigated co-expressed
gene modules that were highly correlated with the NEPC score, and
four hub genes were screened. The findings obtained have improved
our understanding of the underlying molecular mechanism of
NEPC. As a model, these hub genes could represent a novel
diagnostic marker and therapeutic target for NEPC.
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