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Abstract

The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts approximately 8 million
people in Latin America. Diagnosis of chronic Chagas disease is currently based on serological tests because this condition is
usually characterized by high anti-T. cruzi IgG titers and low parasitemia. The antigens used in these assays may have low
specificity due to cross reactivity with antigens from related parasite infections, such as leishmaniasis, and low sensitivity
caused by the high polymorphism among T. cruzi strains. Therefore, the identification of new T. cruzi-specific antigens that
are conserved among the various parasite discrete typing units (DTUs) is still required. In the present study, we have
explored the hybrid nature of the T. cruzi CL Brener strain using a broad genome screening approach to select new T. cruzi
antigens that are conserved among the different parasite DTUs and that are absent in other trypanosomatid species.
Peptide arrays containing the conserved antigens with the highest epitope prediction scores were synthesized, and the
reactivity of the peptides were tested by immunoblot using sera from C57BL/6 mice chronically infected with T. cruzi strains
from the TcI, TcII or TcVI DTU. The two T. cruzi proteins that contained the most promising peptides were expressed as
recombinant proteins and tested in ELISA experiments with sera from chagasic patients with distinct clinical manifestations:
those infected with T. cruzi from different DTUs and those with cutaneous or visceral leishmaniasis. These proteins, named
rTc_11623.20 and rTc_N_10421.310, exhibited 94.83 and 89.66% sensitivity, 98.2 and 94.6% specificity, respectively, and a
pool of these 2 proteins exhibited 96.55% sensitivity and 98.18% specificity. This work led to the identification of two new
antigens with great potential application in the diagnosis of chronic Chagas disease.
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Introduction

The protozoan Trypanosoma cruzi is the etiologic agent of

Chagas disease, an infection that afflicts 8 million people in Latin

America, causes high morbidity and accounts for 662,000

disability-adjusted life years (DALYs) [1–4]. The parasite is

distributed from Southern USA to Southern Argentina, compris-

ing 22 countries, where bloodsucking insects of the Triatominae

subfamily are incriminated in the vector-borne transmission route

of Chagas disease [2].

Immigration and travel of chagasic patients to non-endemic

countries, such as the US [5], Australia and Spain [6], has spread

this infection worldwide [7,8], highlighting other important

transmission routes, such as blood transfusion, congenital trans-

mission and organ transplantation [7,8]. These alternative

transmission routes have also gained importance in endemic

countries where vector-borne transmission has been controlled

[2,9].

The progression of Chagas disease begins with an acute phase

that lasts 10–90 days and is characterized by high parasitemia but

is usually asymptomatic. After approximately three months of

infection, the parasitemia is controlled by the host immune

response, and the patients reach the chronic phase, which is

usually characterized by high anti-T. cruzi IgG titers [10]. Chronic

Chagas disease is asymptomatic in 70% of the patients but evolves
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into cardiac, digestive or mixed clinical forms in 30% of cases [10–

12].

Because parasitemia is low during chronic Chagas disease,

diagnosed is mainly carried out using serologic assays, such as

indirect ELISA, indirect hemagglutination and indirect immuno-

fluorescence [13–15]. The use of whole or fractionated parasite

protein extracts as antigens has been replaced by recombinant

proteins or peptides, which have higher specificity due to lower

cross-reactivity with other infections, such as leishmaniasis [16–18]

and T. rangeli [15,19]. In addition, the use of recombinant

proteins or peptides facilitates the standardization of methods for

antigen preparation [15,20].

The T. cruzi taxon has been extensively documented as highly

polymorphic [21–24], and currently, six different DTUs (discrete

typing units), named TcI – TcVI, have been recognized [25]. This

high variability among T. cruzi strains compromises the sensitivity

of serological tests for Chagas disease [15,26]. The TcV and TcVI

DTUs are derived from recent recombination events between

strains from TcII and TcIII [27,28]. CL Brener, the first strain to

have its genome sequenced [29], belongs to the TcVI DTU.

Because CL Brener is a hybrid strain, its genome is composed of

two haplotypes named esmo-like and non-esmo-like, which are

derived from TcII and TcIII, respectively [29]. TcI, TcII, TcV

and TcVI are the most common lineages associated with human

infections [30,31].

In the present study, we have explored the hybrid nature of the

CL Brener strain using a broad genome screening approach to

select new T. cruzi antigens that are potentially conserved among

the different parasite DTUs and that are absent in other

trypanosomatid species. This analysis led to the identification of

two new candidate antigens for use in the serodiagnosis of chronic

Chagas disease.

Materials and Methods

Ethics statement
The design and methodology of all experiments involving mice

were performed in accordance with the guidelines of COBEA

(Brazilian College of Animal Experimentation), strictly followed

the Brazilian law for ‘‘Procedures for the Scientific Use of

Animals’’ (11.794/2008) and were approved by the animal-care

ethics committee of the Federal University of Minas Gerais

(protocol number 143/2009).

The study protocol involving human samples was approved by

the Ethics Committee of the Federal University of Minas Gerais

(UFMG) under protocol number No. 312/06. All subjects

provided written informed consent before blood sample was

collected.

Mouse sera
Each experimental group was composed of five 6-8-week old

C57BL/6 female mice, which were infected intraperitoneally with

T. cruzi bloodstream trypomastigotes from Colombiana, Y or CL

Brener strains. All parasites were previously genotyped according

to Souto et al., 1996 [32], de-Freitas et al., 2006 [28] and Burgos et
al., 2007 [33]. Infection was confirmed by the observation of

trypomastigote forms in blood collected from the infected mice’s

tail seven days after the parasite inoculation. An additional group

was infected with T. rangeli trypomastigotes from the SC-58

strain, and infection was confirmed by PCR [34]. Six uninfected

mice were used as the control group. The chronic phase of

infection was confirmed 4 months post-infection by negative

parasitemia and the presence of anti-parasite IgG (as tested against

T. cruzi and T. rangeli crude antigens) by ELISA [35]. Blood from

chronically infected mice was then collected by cardiac puncture

followed by 30 minutes incubation at room temperature and

centrifugation at 4,000 x g for 15 minutes at 4uC to obtain serum,

which was stored at 280uC until use.

We performed ELISA using sera from mice chronically infected

with T. cruzi and the epimastigote raw extract as antigen and

determined that the 1:100 dilution would be adequate to

discriminate between sera from infected and non-infected mice.

Human sera
A total of 58 sera samples from chagasic patients were used in

this study. Of these samples, 43 were from chagasic patients

infected with untyped parasites collected from Rio Grande do

Norte and Minas Gerais States, Brazil, 8 were samples from

chagasic patients previously characterized to be infected with TcII

[36], and 7 were samples from patients known to be infected with

TcVI. Of the 43 samples from chagasic patients infected with

untyped parasites, 23 are from patients with defined clinical forms

of Chagas disease: 9 are from patients with indeterminate forms,

14 with chronic chagasic cardiopathy [37]. Infection was

confirmed by testing the reactivity of sera from chagasic patients

using Chagatest recombinant ELISA v. 3.0 kit, Chagatest

hemagglutination inhibition (HAI), screening A-V kit (Wiener

Lab, Rosário, Argentina) using titers of 1:40 as the cutoff value,

and indirect immunofluorescence (IIF) using a T. cruzi Y strain

epimastigotes maintained in culture and fixed with 20% formal-

dehyde as the antigen all according to the manufacturer’s

instructions. Anti-human IgG immunoglobulin labeled with

fluorescein isothiocyanate (Sigma Chemical Company, Missouri,

USA) was used as the secondary antibody at titers of 1:40 as the

cutoff value [38]. The serum samples were considered positive for

T. cruzi infection when two methods with different principles were

reactive, indeterminate when only one method was reactive, and

negative when these methods were nonreactive in accordance with

the recommendations of the World Health Organization [39].

Sera exhibiting indeterminate results were evaluated using western

blot (TESAcruzi, bioMérieux Brazil) to measure anti-T. cruzi
reactivity [40].

To evaluate the cross-reactivity with leishmaniasis, sera from 5

patients with clinical signs of cutaneous leishmaniasis and

confirmed infections by microscopic analysis of biopsy from the

cutaneous lesion from the Centro de Referência em Leishmaniose

in Januária/MG Brazil were used. In addition, sera from 5

patients with visceral leishmaniasis with reactivity confirmed by

serology, molecular analysis and microscopic analysis of bone

marrow aspirates from Hospital Universitário Clemente de Faria

in Montes Claros/MG Brazil were used.

The sera of 45 healthy Brazilian individuals residing in Belo

Horizonte, Minas Gerais were used as a negative control.

In silico prediction of linear B-cell epitopes
Linear B-cell epitope predictions were performed on all

predicted proteins in CL Brener genome release 4.1 [29] using

the BepiPred 1.0 program with a cutoff of 1.3 [41] as previously

described [42]. To select epitopes that are potentially conserved

among T. cruzi strains, the predicted proteome from the esmo-like

and non-esmo-like haplotypes of the T. cruzi CL Brener strain

[29] were aligned using the ClustalW program [43]. The predicted

epitopes that had identical sequences in the two CL Brener

haplotypes were selected, and 15–18 mer peptides with mean

score $1.3 were retained. To reduce the chance of cross-reaction

with other parasites, the selected peptides were analyzed with

BLASTP searches against the predicted L. braziliensis, L.
infantum and L. major proteomes, and those that showed greater
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than 70% similarity along 70% of the length were discarded. After

analysis, 450 peptides with the highest mean BepiPred score that

were identical between the two CL Brener haplotypes and absent

in the predicted Leishmania major, L. braziliensis and L. infantum
proteomes were selected for synthesis.

Spot synthesis and immunoblotting
Peptide arrays containing 30, 120 or 300 distinct peptides (450

in total) were synthesized as previously described [42] (Table S1).

These membranes were used in immunoblotting assays with pools

of sera from five C57BL/6 mice chronically infected with

Colombiana (TcI), Y (TcII) or CL Brener (TcVI) T. cruzi strains

or uninfected mice. Briefly, the membranes were blocked for

16 hours with 5% BSA, 4% sucrose in PBS, washed 3 times for

10 minutes with 0.1% Tween-20 in PBS and incubated with one

of the pools of sera diluted 1:2,500 in 0.1% Tween in PBS for one

hour. Subsequently, the membranes were washed as described

above, incubated with horseradish peroxidase-conjugated anti-

mouse IgG (Sigma-Aldrich) diluted 1:35,000 in 0.1% Tween in

PBS for one hour, washed as described above and visualized by

chemiluminescence using ECL Plus western blotting detection

system (GE-Healthcare) with 20 minutes exposure on an Im-

ageQuant LAS 4000 digital imaging system (GE-Healthcare).

After data acquisition, the membranes were regenerated for use

with another pool of sera. The regeneration was performed by

washing the membranes 3 times for 10 minutes with dimethylfor-

mamide, followed by incubation for 16 hours with an 8 M urea,

10% SDS solution. The membranes were then washed twice for

30 minutes in the 8 M urea, 10% SDS solution, washed once with

deionized water, and then washed 3 times in 55% ethanol and

10% acetic acid. Lastly, the membranes were washed for

5 minutes with deionized water. The densitometric value of each

spot was calculated using ImageMaster 2D Platinum software

(GE-Healthcare). The relative value (RV) for each spot was

calculated using the formula RV = PDV/NDV, where PDV

corresponds to the spot densitometric value when a positive pool

of sera were used and NDV corresponds to the densitometric value

when the negative pool of sera were used. Spots with RV value of

2 or higher were considered reactive.

Expression and purification of recombinant proteins
The primer sequences used to amplify the entire coding

sequence of the Tc00.1047053511623.20 gene and the 59 end of

the Tc00.1047053510421.310 gene are listed in Table S2. The

PCR reactions were performed using 100 ng of genomic DNA

from the T. cruzi CL Brener strain and Platinum Taq DNA High

Fidelity Polymerase (Invitrogen) according to the manufacturer’s

instructions. The amplicons were purified from an agarose gel

using the Illustra GFX PCR DNA and Gel Band Purification Kit

(GE Healthcare) according to the manufacturer’s instructions. The

purified fragments were cloned into the pET-28a-TEV expression

vector (CeBiMe, Campinas/SP) in frame with the N-terminal

poly-histidine tag. The constructs were sequenced to confirm that

the fragments were cloned in frame, and the recombinant proteins

were expressed in the Escherichia coli BL-21Star strain by adding

1 mM isopropyl-b- -thiogalactopyranoside (IPTG) to the culture

for 3 h at 37uC shaking at 180 rpm. Recombinant proteins were

purified using affinity chromatography with HisTrap HP 5 mL

columns (GE Healthcare Life Sciences) in the ÄKTA primeplus

(GE Healthcare Life Sciences) system. The purified proteins were

separated by SDS-PAGE and visualized by western blotting to

confirm their identity and purity (data not shown).

ELISA
ELISA half area plates (Greiner-Bio-One-675061) were coated

with 50 mL/well of a solution containing 5 mg/mL recombinant

Tc00.1047053511623.20 (rTc_11623.20) protein, 10 mg/mL re-

combinant protein corresponding to the N-terminal portion of the

Tc00.1047053510421.310 protein (rTc_N_10421.310), or 10 mg/

mL protein mixture containing both recombinant proteins at a

ratio of 1:1 diluted in ultrapure H2O for 18 h at 4uC. Plates were

blocked with 200 mL 5% BSA in PBS for 1 hour at 37uC. The

human or mouse sera, diluted 1:100 in 2.5% BSA in PBS was

added and incubated for 1 hour at 37uC. The plates were washed

four times with 200 mL PBS containing 0.05% Tween 20 and

incubated for 1 hour at 37uC with 50 mL secondary horseradish

peroxidase-conjugated anti-human or anti-mouse IgG antibody

(Sigma-Aldrich) diluted 1:5,000 in 2.5% BSA in PBS. Then, the

plates were washed four times as previously described and

incubated for 15 minutes at 37uC in a dark room with 50 mL

revealing solution (0.1 M citric acid, 0.2 M Na2PO4, 0.05% OPD,

0.1% H2O2). The reaction was interrupted by adding 50 mL 4N

HCl, and the absorbance was measured at 490 nm in an

automated Versa Max Microplate Reader. Each sample was

assayed in triplicate.

Statistical analysis
All statistical analyses were performed using Graph Prism 5.0

software. The normal distribution of data was evaluated by the

Kolmogorov-Smirnov test, an unpaired t-test was used for the

comparative analysis between the two data sets, and ANOVA was

used to evaluate three or more experimental groups. P values

lower than 0.05 were considered statistically significant. The

values of sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV) and accuracy were calculated for

the human sera. The cutoff value was determined based on the

Receiver Operating Characteristic (ROC) curve to maximize

sensibility and specificity.

Results

Evaluation of the reactivity of the selected peptides with
the sera from C57BL/6 mice infected with different T.
cruzi strains using immunoscreening of peptide arrays

To correctly diagnose patients with chronic Chagas disease,

identifying antigens that are conserved among parasite strains but

do not cross-react with sera from individuals infected with related

parasites, such as T. rangeli and Leishmania species, is imperative.

As an attempt to identify epitopes conserved in distinct T. cruzi
DTUs, we have performed polymorphism analysis and B-cell

epitope prediction on all proteins derived from single copy genes

represented by allele pairs in the CL Brener genome. We assumed

that because CL Brener is a recent hybrid between TcII and TcIII

DTUs, alleles pairs that contain conserved epitopes are likely to be

conserved in the parental genotypes. To this end, we aligned 3,983

proteins derived from allele pair from esmo-like and non-esmo-like

haplotypes, and the conserved sequences were analyzed by epitope

prediction using the BepiPred algorithm [41]. A total of 1,488

conserved predicted B cell epitopes were identified. To reduce the

chance of cross-reactivity with related parasites, we excluded 402

sequences that had high sequence similarity to the predicted

proteome of human-infectious Leishmania species. A total of 1,086

peptides ranging from 15–18 amino acids that are potentially

conserved among different T. cruzi strains but are absent in

Leishmania sp. were selected.

To determine the reactivity of the sera from mice experimen-

tally infected with T. cruzi to these antigens, 450 peptides with

Immunogenomics and Chagas Disease Diagnosis
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high BepiPred scores were synthesized on cellulose membranes

and probed using a pool of sera from C57BL/6 mice chronically

infected with the T. cruzi strains Colombiana (TcI), Y (TcII) or CL

Brener (TcVI) (Figure 1). These strains correspond to the T. cruzi
DTUs commonly associated with human infections.

The antigen spots that were reactive with pooled serum from

uninfected mice were excluded from further analysis. The

densitometric value of each spot with each pool of serum was

determined, and their relative value (RV) was calculated using the

formula RV = PDV/NDV. Spots with an RV value of 2 or higher

Figure 1. Immunoblot of a peptide array with sera from C57BL/6 mice chronically infected with different T. cruzi strains. (A) Sera from
mice infected with Colombiana (TcI); (B), Y (TcII) or (C), CL Brener (TcVI); or (D) uninfected mice.
doi:10.1371/journal.pone.0106304.g001
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were categorized as reactive. Peptides that were reactive with at

least one serum pool from T. cruzi-infected mice are listed in the

Table S3. Two peptides, named C6-30 and E27-300, had RV

higher than 2 for all pools of sera from the mice chronically

infected with each one of the T. cruzi strains assayed. The genes

that encode the proteins containing these peptides are

Tc00.1047053510421.310 and Tc00.1047053511623.20, respec-

tively.

These protein sequences were analyzed for linear B cell epitopes

and intrinsically unstructured regions. The presence of these

unstructured regions suggest that a given protein region is in an

unfolded structure and therefore possibly accessible for antibody

binding. Hence, the co-occurrence of these two features reinforces

the accuracy of the B cell linear epitope prediction. All selected

proteins had a high density of predicted B cell epitopes and large

predicted unfolded regions that co-localize with these epitopes

(Figure 2).

Expression and purification of recombinant proteins
The full-length Tc00.1047053511623.20 gene was cloned into

the pET28a-TEV vector for recombinant expression. Due to large

size of the Tc00.1047053510421.310 gene, only its first 1,704

nucleotides which contains the coding sequence of the peptide C6-

30 were cloned into the expression vector. Both sequences were

cloned in frame in the expression vector as confirmed by

sequencing (data not shown). The recombinant proteins with a

predicted molecular weight of 47 kDa for

Tc00.1047053511623.20 (named rTc_11623.20) and 66 kDa for

the N-terminal portion of the protein Tc00.1047053510421.310

(rTc_N_10421.310) were successfully expressed in E. coli BL21

cells as insoluble his-tagged proteins and purified by Ni2+-affinity

chromatography (GE Healthcare). The recombinant protein

expression was confirmed by western blot using mouse anti-His

antibody (GE Healthcare) (data not shown).

Reactivity of sera from C57BL/6 mice chronically infected
with T. cruzi to the purified recombinant proteins

Initially, the recombinant proteins were analyzed by ELISA

using individual sera from three groups of C57BL/6 mice: (i) mice

chronically infected with Colombiana (TcI), Y (TcII) or CL Brener

(TcVI) T. cruzi strains, (ii) mice infected with the SC-58 strain of

T. rangeli, (iii) or uninfected mice. The serum samples used in this

assay were the same as the pooled samples used for the

immunoblotting screen. Both rTc_11623.20 and

rTc_N_10421.310 had high sensitivity and specificity (Figure 3,

Figure S1 and Table S4). In concordance with the immunoblot-

ting assays, all sera from mice chronically infected with each one of

the three T. cruzi strains were reactive with rTc_11623.20 and

rTc_N_10421.310 when they were assayed individually and when

assayed using an antigen pool containing both recombinant

proteins by ELISA. The sera from T. rangeli-infected mice or

uninfected mice exhibited results below the cutoff for all antigens

(Figure 3).

Performance of rTc_11623.20 and rTc_N_10421.310 for
diagnosing Chagas disease by ELISA

To evaluate the accuracy of the recombinant proteins

rTc_11623.20 and rTc_N_10421.310 in the diagnosis of chronic

human Chagas disease, a total of 113 human sera, of which 58

samples correspond to chronic chagasic patients and 55 to non-

chagasic control patients, were screened. All serum samples were

tested by ELISA using both recombinant proteins (Figure 4,

Figure S2).

Of the 58 sera from chagasic patients, 55 were reactive with

rTc_11623.20 (Figure 4A), 52 with rTc_N_10421.310 (Figure 4B)

and 56 with a pool of both recombinant proteins (Figure 4C). All

three sera that were below the cutoff for rTc_11623.20 belong to

the non-typed group (Figure 4D). Of the six sera from chagasic

patients that were below the cutoff value for rTc_N_10421.310,

four samples belong to the non-typed group, one to the TcVI

group and one to the Tc-Card group (Figure 4E). The two sera

Figure 2. Predictions of B-cell linear epitopes and intrinsically unstructured/disordered regions in rTc_11623.20 (A) and
rTc_N_10421.310 (B). The complete sequences of the recombinant proteins were submitted to the BepiPred and IUPred algorithms. The dashed
arrow corresponds to the complete amino acid sequence of the recombinant proteins. The orange boxes indicate linear B-cell epitopes as predicted
by BepiPred, and the gray boxes indicate unfolded regions that were predicted by IUPred. The epitope region that contains the peptide screened in
the immunoblotting for each one of the proteins is highlighted by a blue box.
doi:10.1371/journal.pone.0106304.g002
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that were below the cutoff for the pool of both recombinant

proteins belong to the non-typed group (Figure 4F).

Of the 55 sera from non-chagasic individuals, 54, 52, and 54

samples were below cutoff for rTc_11623.20 (Figure 4A),

rTc_N_10421.310 (Figure 4B) and the pool of both proteins,

respectively (Figure 4C). The only non-chagasic serum sample that

was above cutoff value for rTc_11623.20 was from a patient with

visceral leishmaniasis (Figure 4D). Of the three sera from non-

chagasic individuals that had values above cutoff for

rTc_N_10421.310, two were from patients with visceral leish-

maniasis and one from a patient with cutaneous leishmaniasis

(Figure 4E). The only non-chagasic serum sample that had values

above cutoff for the pooled recombinant proteins belonged to the

uninfected group (Figure 4F).

The sensitivity, specificity, positive predictive value, negative

predictive value and accuracy values were 94.83, 98.18, 98.30,

94.82 and 96.4, respectively for rTc_11623.20; 89.66, 94.55,

95.08, 90.16, and 92.03 respectively for rTc_N_10421.310 and

96.55, 98.18, 98.30, 96.49 and 97.34, respectively for the pooled

antigens (Table S4).

Discussion

The lack of highly accurate methods to diagnose Chagas disease

hampers the correct identification and treatment of infected

individuals and restricts the evaluation of effectiveness of any

initiative aiming at blocking transmission or vaccination in

endemic countries [13,15]. Additionally, reports of blood transfu-

sion transmission in the USA, Spain and Canada, countries that

receive a high contingency of Latin-American immigrants also

highlights the importance of an accurate diagnostic test to identify

Chagas disease infection in samples from blood banks of non-

endemic countries [5–8,44,45].

Due to the high genetic variability among the T. cruzi strains,

the sensitivity of many diagnostic tests varies widely with sera from

patients infected with parasites from different geographic regions,

where different T.cruzi DTUs are found [31]. To identify new

antigens that are potentially conserved among distinct T. cruzi
strains, in this study, we applied a genome-wide screening aiming

at identifying epitopes that are conserved between esmo-like and

non-esmo haplotypes of the CL Brener hybrid strain. Because the

esmo-like haplotype is derived from TcII and non-esmo haplotype

is derived from the TcIII, antigens that are conserved between

these two haplotypes are likely to also be conserved among other

T. cruzi DTUs.

The major drawback of the specificity of Chagas disease

serologic tests is cross-reaction with sera from patients infected

with related parasites, such as T. rangeli and the Leishmania genus

[15,18,46,47]. In an attempt to increase the specificity of the

selected epitopes, we excluded sequences that had high similarity

to the predicted proteome of sequenced, human-infectious

Leishmania species. This approach allowed us to identify two

new antigens, named rTc_11623.20 and rTc_N_10421.310,

designed for Chagas disease diagnosis.

These two antigens were first screened with the sera from

C57BL/6 mice chronically infected with T. cruzi strains from TcI

(Colombiana), TcII (Y) and TcVI (CL Brener) DTUs. The

selection of these T. cruzi DTUs was due to their broad

geographic distribution, importance in human infection in Latin

America and their categorization into highly divergent T. cruzi
DTUs [25,31]. Both proteins, used individually or pooled, were

able to discriminate 100% of the sera from mice infected with all

the three T. cruzi strains from the uninfected mice or from mice

infected with T. rangeli (Figure 3).

Next, we tested the accuracy of rTc_11623.20 and

rTc_N_10421.310 as antigens to diagnose human patients with

chronic Chagas disease. To this end, sera from patients infected

with TcII and TcVI T. cruzi DTUs, sera from patients with

different clinical forms of Chagas disease and sera from patients

infected with non-typed T. cruzi were used. This sera panel was

used because patients that are infected with different DTUs or

present different clinical forms have been reported to exhibit

discordant results when evaluated with conventional Chagas

serologic tests [14,15,26]. Additionally, cross-reactivity between

sera from patients infected with T. cruzi and Leishmania spp. is

well documented [15,17,18]. To determine the specificity of both

recombinant proteins, sera from healthy humans and patients with

cutaneous or visceral leishmaniasis were also assayed.

The sensitivity and specificity of the rTc_11623.20,

rTc_N_10421.310 and pooled recombinant proteins were com-

parable with the results from commercial tests as the INNO-LIA

Chagas assay, which contains a combination of recombinant

antigens and exhibited 99.4% sensitivity and 98.1% specificity

[47]. The rTc_11623.20 and rTc_N_10421.310 antigens also

showed slightly better results than the recombinant protein TSSA

VI, which exhibits 87% sensitivity and 97.4% specificity [48].

Additionally, rTc_11623.20 and rTc_N_10421.310 showed sim-

Figure 3. Recognition of rTc_11623.20 and rTc_N_10421.310 by sera from C57BL/6 mice chronically infected with different T. cruzi
strains. Sera from mice chronically infected with CL Brener (CL-B), Colombiana (Col) or Y (Y) T. cruzi strains, mice infected with T. rangeli (T.rang) or
uninfected mice (C-) were screened by ELISA with rTc_11623.20 (A), rTc_N_10421.310 (B) or with a pool of these two recombinant proteins (C). The
dotted line represents the cutoff value that was obtained based on the ROC curve. The solid line corresponds to the mean values. Col, mice infected
with Colombiana; Y, mice infected with the Y strain; CL-B, mice infected with the CL Brener; T. rang, T. rangeli-infected mice. C-, uninfected mice.
doi:10.1371/journal.pone.0106304.g003
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Figure 4. Recognition of rTc_11623.20 and rTc_N_10421.310 by the sera from chronic chagasic patients or Leishmania-infected
individuals. Sera from chronic chagasic patients and sera from patients with cutaneous and visceral leishmaniasis were assayed by ELISA using
rTc_11623.20 (A, D), rTc_N_10421.310 (B, E) and pooled recombinant proteins (C, F). Tc-non typed, sera from chronic chagasic patients; TcII, sera from
patients infected with T. cruzi TcII DTU; TcVI, sera from patients infected with T. cruzi TcVI DTU, Tc-Ind, sera from chagasic patients in the
indeterminate form of Chagas disease; Tc-Card, sera from chagasic patients in the cardiac stage of Chagas disease; CL, sera from patients with
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ilar accuracy compared to ELISA-IMT, Chagas III (BIOSChile)

ELISAcruzi (bioMérieux Brasil SA), Chagatek (bioMérieux Brasil

SA) Chagatest Rec v3.0 (Wiener) and Pathozyme Chagas

(Omega), which have sensitivities ranging from 75 to 100% and

specificities ranging from 82.84 to 100% [15].

It is well established that new potential antigens selected for the

diagnosis of chronic Chagas disease must meet three criteria: (i)

expression in T. cruzi isolates from different DTUs and absence in

other infectious disease pathogens. (ii) high immunogenicity

regardless the clinical form of Chagas disease and (iii) stability

and adaptability to quality-control tests to guarantee reproduc-

ibility [13,49,50]. We believe that the antigens identified in this

study meet all these criteria. First, our data suggests that they were

able to discriminate sera from patients infected with T. cruzi from

sera from patients with cutaneous, visceral leishmaniasis or healthy

donors, with specificity of 98.18 for rTc_11623.20, 94.55 for

rTc_N_10421.310 and 98.18 for a pool of both proteins. Second,

the antigens were recognized by 14 out of the 15 sera from patients

infected with T. cruzi strains belonging to different DTUs. Third,

both antigens were reactive with sera from patients with different

clinical forms of Chagas disease, with the exception of one

indeterminate sera for the protein rTc_N_10421.310. Forth, the

expression protocol used in this study yielded approximately

17 mg of protein/culture liter, which allows nearly 22,500 sera

trials to be performed with rTc_11623.20 and 11,300 trials with

rTc_N_10421.310.

Further studies using a larger sera panel from negative and

positive individuals with different clinical forms and from distinct

endemic areas throughout Latin America where different T. cruzi
DTUs are found will be necessary to better characterize the

antigens identified in this study. Additionally, we are currently

expanding the genome wide approach for the antigen selection

described in this work to include new sequenced T. cruzi genomes

[51,52] as an attempt to define an highly effective antigenic panel

for the Chagas disease serodiagnosis.
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