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Abstract. Fluorescence in situ hybridization examination of 
a pediatric AML patient whose bone marrow cells carried 
trisomy 4 and FLT3-ITD mutation, demonstrated that part of 
the RUNX1 probe had unexpectedly moved to chromosome 
band 6q25 indicating a cryptic t(6;21)(q25;q22) translocation. 
RNA sequencing showed fusion of exon 7 of RUNX1 with 
an intergenic sequence of 6q25 close to the MIR1202 locus, 
something that was verified by RT-PCR together with Sanger 
sequencing. The RUNX1 fusion transcript encodes a truncated 
protein containing the Runt homology domain responsible for 
both heterodimerization with CBFB and DNA binding, but 
lacking the proline-, serine-, and threonine-rich (PST) region 
which is the transcription activation domain at the C terminal 
end. Which genetic event (+4, FLT3-ITD, t(6;21)-RUNX1 
truncation or other, undetected acquired changes) was more 
pathogenetically important in the present case of AML, remains 
unknown. The case illustrates that submicroscopic chromo-
somal rearrangements may accompany visible numerical 
changes and perhaps should be actively looked for whenever a 
single trisomy is found. An active search for them may provide 
both pathogenetic and prognostic novel information.

Introduction

Cancer is now accepted to be a genetic disease in the sense that 
it arises due to acquired genetic abnormalities in susceptible 

somatic cells (1). Microscopic studies of cancer cells have 
shown that these aberrations are often visible as balanced 
chromosomal changes, such as translocations and inversions, 
as well as unbalanced anomalies, such as deletions, mono-
somies, duplications, and trisomies (1). Many hematologic 
malignancies, including acute myeloid leukemia (AML) and 
acute lymphoblastic leukemia (ALL), are characterized by the 
presence of acquired chromosome translocations and inver-
sions resulting in chimeric genes of pathogenetic, diagnostic, 
and prognostic importance (1). Whereas some genes, e.g., ABL, 
BCR, RUNX1T1, and PML, have only been reported involved 
in one or a few translocations, other genes are promiscuous, 
having numerous fusion partners in various translocations 
and even in different types of malignancy suggesting that the 
pathogenetic and phenotypic impact of the chimeras is depen-
dent on both genes participating in the fusion (1).

One such gene is RUNX1 at 21q22 (2) which codes for the 
alpha subunit of the heterodimeric transcription factor named 
core binding factor (CBF) that binds to the core element of 
many enhancers and promoters. To date, RUNX1 (previously 
called AML1, CBFA2, PEBP2aB) has been shown in both 
myeloid and lymphoblastic acute leukemias to fuse with more 
than 30 different partner genes encoding a heterogeneous 
group of structurally diverse proteins (1). Recently, RUNX1 
fusions were also found in adenocarcinoma of breast and lung 
as well as in squamous cell carcinoma of the oral cavity (3). 
Some of the fusions are common, such as ETV6-RUNX1 
[t(12;21)(p13;q22)] in pre-B-ALL, RUNX1-RUNX1T1 [t(8;21)
(q22;q22)] in AML, and RUNX1/MECOM [t(3;21)(q26;q22)] in 
myelodysplasia (MDS), AML, and chronic myeloid leukemia 
in blastic phase, whereas others have been reported in single 
cases, i.e., they have not yet been shown to be recurrent (2,4). 
The prognostic impact of the common RUNX1 fusions is well 
known (5-8). Corresponding knowledge for the infrequent 
RUNX1 chimeras is lacking (9). 

Acquired point mutations distributed throughout RUNX1 
are also frequently found in both de novo and secondary 
(therapy-related) MDS/AML (10,11). They are not found 
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together with RUNX1 chromosomal translocations or complex 
abnormal karyotypes, and they are associated with poor 
outcome in MDS (12-16). The mutation spectrum includes 
missense, nonsense, frameshift, in-frame insertion/deletion 
mutations, as well as exon-skipping mutations (15). Nonsense 
mutations in RUNX1 account for 11% of the total and generate 
a repertoire of truncated RUNX1 proteins which to varying 
degree show lack of the C-terminal region. Most of them affect 
the transactivation domain (15).

Although less frequent, truncated RUNX1 proteins can 
also be the result of a chromosomal translocation which 
generates a premature stop codon in the RUNX1 open reading 
frame, leading to expression of C-terminal truncated forms. 
These chromosome translocations can be divided into two 
categories: in the first, the translocations produce only out-
of-frame fusion transcripts (17-25) whereas, in the second 
category, they generate both in-frame and out-of-frame 
fusion transcripts (26-31).

The generation of C-terminally truncated RUNX1 proteins 
via different mechanisms suggests that their expression is 
important in leukemogenesis. Truncated RUNX1 protein 
was shown to reduce the transactivation capacity of CBF 
on specific myeloid promoters that function as inhibitors of 
normal RUNX1 (18-20). Recently, the truncated RUNX1 
protein resulting from the t(1;21)(p32;q22) chromosomal trans-
location was shown to impair proliferation and differentiation 
of human hematopoietic progenitors (25).

Since acute leukemia treatment protocols are in part based 
on the presence of certain genetic changes, it is of clinical 
interest to obtain more information also about rare RUNX1 
fusions, even in disease subgroups that so far cannot be treated 
with medications specifically directed against the leukemo-
genic defect. It is important to underscore that this may be 
the case also for infrequent pathogenetic mechanisms where 
information is gathered by the addition of single case reports, 
as recently exemplified by the story of the rare RUNX1-USP42 
fusion and 5q deletion in AML (9,32-35).

For this reason, we here present the molecular genetic and 
clinical features of a case of AML with a cryptic t(6;21)(q25;q22) 
which resulted in the generation of a truncated RUNX1.

Patient and methods

Ethics statement. The study was approved by the regional ethics 
committee (Regional komité for medisinsk forskningsetikk 
Sør-Øst, Norge, http://helseforskning.etikkom.no), and written 
informed consent was obtained from the patient's parents to 
publication of the case details. The ethics com mittee's approval 
included a review of the consent procedure. All patient infor-
mation has been de-identified.

Case report. A 7-year-old girl was admitted to the Children's 
Hospital because of petechiae. Prior to admission she had a 
one week history of fever, throat and abdominal pain and had 
been prescribed antibiotics on the suspicion of tonsillitis. On 
clinical examination, the girl was pale and had petechiae on the 
extremities and trunk, as well as a few hematomas on the legs. 
The peripheral blood values were hemoglobin 88 g/l, leuko-
cytes 369.0x109/l, platelets 59x109/l, lactate dehydrogenase 
1886 U/L, and C-reactive protein 71 mg/l. She had continuous 

epistaxis despite sustained platelet counts of 60x109 cells/l, 
normal international normalized ratio (INR), and activated 
partial thromboplastin time (APTT). There was no central 
nervous system involvement. Leucocytes gradually increased 
to 480.0x109 cells/l before start of the treatment.

Morphology and immunophenotypic findings were in 
keeping with the diagnosis acute myeloid leukemia with 
minimal differentiation (AML M0). Normal hematopoiesis 
was completely replaced by large blasts without conspicuous 
granulation or Auer rods and with lacy chromatin and 
prominent nucleoli. The blasts were positive for CD34, CD71, 
CD117, CD123, HLA-DR antigens, and the common myeloid 
markers CD13, CD33, and CD15. Less than 10% of the blasts 
were positive for cytoplasmic myeloperoxidase. Of interest, 
partial expression of Tdt and aberrant expression of CD7 and 
CD9 were demonstrated. The blasts were negative for B-cell, 
T/Nk-cell as well as for monocytic, erythroid, and mega-
karyocytic lineage markers.

The bone marrow karyotype was 47,XX,+4[15] (see 
below). In addition, a FLT3 ITD mutation was detected, but 
no mutations in the nucleophosmin 1 gene. Upon induction 
treatment according to the NOPHO-AML 2004 protocol 
(NOPHO: Nordic Pediatric Hematology and Oncology) (36), 
morphologic remission (<5% blasts) was obtained. Due to the 
presence of a FLT3-ITD mutation, the patient became eligible 
for allogeneic stem cell transplantation (SCT). However, 
because a suitable donor was not found, consolidation therapy 
was completed with chemotherapy only. Four months after 
completed therapy, the patient had a bone marrow relapse. She 
went into a second remission on a clofarabin-based regimen 
and was transplanted with stem cells from her 7-month-old 
matching sibling. Unfortunately, she relapsed again 6 months 
after SCT and died one month later.

G-banding analysis. Bone marrow cells were cytogenetically 
investigated by standard methods. Chromosome preparations 
were made from metaphase cells of a 24-h culture, G-banded 
using Leishman stain, and karyotyped according to the ISCN 
2009 guidelines (37).

Fluorescence in situ hybridization (FISH). As part of our stan-
dard cytogenetic diagnosis, initial interphase FISH analyses 
of bone marrow cells were performed with the Cytocell 
multiprobe ALL panel (Cytocell, http://www.cytocell.co.uk/) 
looking for MYC rearrangements, CDKN2A (P16) deletion, 
TCF3 (E2A) rearrangements, ETV6-RUNX1 fusion, hyper-
diploidy, MLL rearrangements, BCR-ABL1 fusion, and IGH 
rearrangements. On the basis of findings made using the above 
panel, further FISH was performed on metaphase spreads and 
interphase nuclei using the vysis LSI TEL/AML1 ES Dual 
Color Translocation Probe (Abbott Molecular, http://www.
abbottmolecular.com) . This is a mixture of the LSI TEL probe 
labeled with SpectrumGreen and the LSI AML1 probe labeled 
with SpectrumOrange. Fluorescent signals were captured and 
analyzed using the Cytovision system (Leica Biosystems, 
Newcastle, Uk).

RNA sequencing. Total RNA (3 µg) extracted from the 
patient's bone marrow at the time of diagnosis was sent to 
the Norwegian Sequencing Centre at Ullevål Hospital (http://
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www.sequencing.uio.no/) for high-throughput paired-end 
RNA-sequencing. The Illumina software pipeline was used to 
process image data into raw sequencing data. Only sequence 
reads marked as ‘passed filtering’ were used in the downstream 
data analysis. A total of 103 million reads were obtained. 
The FASTQC software was used for quality control of the 

raw sequence data (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). The software deFuse was used for the 
discovery of fusion transcripts (38) (http://compbio.bccrc.ca/
software/defuse/).

In addition, the ‘grep’ command (http://en.wikipedia.org/
wiki/Grep) was used to search the fastq files of the sequence 

Figure 1. G-banding, FISH and RT-PCR analyses at diagnosis. (A) The G-banding analysis showed trisomy 4 in all 15 cells examined. (B) The ETV6-RUNX1 
probe showed abnormal signals with splitting of the RUNX1 (green signal) probe in 203 out of 233 interphase nuclei. The red signal is the ETV6 probe. The 
results were obtained with the Cytocell multiprobe ALL panel (Cytocell, http://www.cytocell.co.uk/). (C) Metaphase cell in which part of the RUNX1 probe 
(red signal) was unexpectedly seen to be located on the distal part of 6q. The green signal is the ETV6 probe. The results were obtained with the vysis LSI TEL/
AML1 ES Dual Color Translocation Probe. (D) Ideograms showing the der(6)t(6;21)(q25;q22) and the der(21)t(6;21)(q25;q22) together with the corresponding 
normal chromosome homologs. (E) Amplification of a cDNA fragment using the primers RUNX1-809N-F1 and 6q25-R1 from the bone marrow of the patient 
(L). M, 1 kb DNA ladder (GeneRuler, ThermoFisher). (F) Partial sequence chromatogram of the cDNA fragment showing the fusion (arrow) of the RUNX1 
gene with a sequence from 6q25.
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data (http://en.wikipedia.org/wiki/FASTQ_format) for RUNX1 
fusion sequences (NM_001754 version 4). To confirm the 
RUNX1 fusion identified by the deFuse program (see below), 
the ‘expression’ used was ‘CAGATGCAGGAAGACTTTTG’ 
which is a sequence of 20 nucleotides (nt) at the fusion point: 
10 bases upstream (5'-end of RUNX1 gene, CAGATGCAGG), 
and 10 bases downstream from the junction (3'-end of the 
6q25 intergenic sequence, AAGACTTTTG). The sequences 
obtained by ‘grep’ were blasted against the human genomic 
plus transcript database (http://blast.ncbi.nlm.nih.gov/Blast.
cgi) as well as the reference sequences NM_001754 version 4 
(RUNX1) and NC_000006.12 (chromosome 6).

PCR analysis. For reverse transcriptase-Polymerase Chain 
Reaction (RT-PCR), 1 µg of total RNA was reverse-tran-
scribed in a 20 µl reaction volume using iScript Advanced 
cDNA Synthesis kit for RT-qPCR according to the manufac-
turer's instructions (Bio-Rad Laboratories, Oslo, Norway). 
The cDNA was diluted to 50 µl of which 1 µl was used as 
templates in subsequent PCR assays. The 25 µl PCR volume 
contained 12.5 µl Premix Ex Taq™ DNA Polymerase Hot 
Start version (Takara Bio, AH diagnostics, Oslo, Norway), 
cDNA, and 0.4 µM of each of the forward and reverse primers. 
For detection of the RUNX1 fusion transcript, the forward 
RUNX1-809N-F1 (CGG CAG AAA CTA GAT GAT CAG 

ACC A) and reverse 6q25-R1 (TCC TTC AAG CAG CAA 
AAT CTG TGA G) primers were used. The PCR was run on a 
C-1000 Thermal cycler (Bio-Rad) with an initial denaturation 
at 94˚C for 30 sec, followed by 35 cycles of 7 sec at 98˚C, 
30 sec at 60˚C, 1 min at 72˚C, and a final extension for 5 min at 
72˚C. PCR products (3 µl) were stained with GelRed (Biotium, 
Hayward, CA, USA), analyzed by electrophoresis through 
1.0% agarose gel, and photographed. DNA gel electropho-
resis was performed using lithium borate buffer (39). The 
remaining PCR products were purified using the GeneJET 
PCR Purification kit (Thermo Fisher Scientific, Oslo, Norway) 
and sequenced at GATC Biotech (Germany, http://www.gatc-
biotech.com/en/home.html). The BLAST software (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) was used for computer 
analysis of sequence data.

Results

Cytogenetics. The G-banding analysis at diagnosis showed 
trisomy 4 in all 15 cells analyzed (Fig. 1A). The ETV6-RUNX1 
probe showed abnormal signals with splitting of the RUNX1 
probe in 203 out of 233 interphase nuclei examined in spite 
of no cytogenetically visible rearrangement of chromosome 
arm 21q (Fig. 1B). In the same experiment, 10 metaphase 
cells were examined in which part of the RUNX1 probe 

Figure 2. The fusion of RUNX1 with an intergenic sequence from 6q25 resulting in a putative RUNX1 truncated protein. (A) The sequence of the amplified 
cDNA fragment from Fig. 1E. The primers are shown by horizontal arrows. vertical arrow indicates the fusion point. The coding sequence is shown with 
capital letters. The * corresponds to the stop codon ‘tga’. (B) Alignment showing the known runt-related transcription factor 1 isoform AML1a (accession 
number: NP_001116079 version 1) with the putative RUNX1 protein resulting from the t(6;21)(q25;q22) chromosome aberration in the AML patient. The Runt 
domain (pfam00853) is the region between 48-182 amino acids. The dots indicate identical amino acids.
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was unexpectedly seen to be located on the distal part of 6q 
(Fig. 1C). The data showed a novel cryptic t(6;21)(q25-27;q22) 
chromosome translocation (Fig. 1D). Other FISH analyses 
detected no rearrangements of MYC, TCF3, MLL, and IGH, 
no CDKN2A (P16) deletion, no hyperdiploidy, and none of the 
fusions ETV6-RUNX1 and BCR-ABL1. Therefore, the whole 
karyotype was: 47,XX,+4[15].nuc ish(ETv6x2,AML1x3)
[209/233].ish t(6;21)(q25-27;q22)(AML1+;AML1+)[10] 
(Fig. 1A-D).

Analysis of RNA-sequencing with deFuse. Using deFuse 
on the raw sequencing data, 39 potential fusion transcripts 
were found (data not shown), among them a fusion between 
RUNX1 and a sequence mapping close to the MIR1202 locus 
which corresponds well to the 6q breakpoint of the t(6;21)
(q25-27;q22) suggested by combined G-banding and FISH. In 
order to verify the fusion obtained with the deFuse software, 
we used the ‘grep’ command utility to search for expressions 
composed of 10 nt of RUNX1 and 10 nt of 6q25 upstream and 
downstream of the fusion point (Table I). Using the expres-
sion ‘CAGATGCAGGAAGACTTTTG’, 9 sequences were 
retrieved which corresponded to the fusion RUNX1-transcript 
found by defuse (Table I).

Molecular confirmation of the RUNX1-fusions. PCR with the 
RUNX1-809N-F1/6q25-R1 primer combination amplified a 
358 bp cDNA fragment (Fig. 1E). Direct sequencing of the 
amplified fragment verified the presence of the RUNX1-
fusion transcript. The fusion point was identical to that found 
with deFuse (Fig. 1F). Therefore, the final karyotype after 
G-banding, FISH, and molecular examination could be written 
47,XX,+4,t(6;21)(q25;q22)[10] (Fig. 1A and D).

Discussion

We present herein a case of childhood AML in which the 
leukemic cells had trisomy 4, a novel cryptic t(6;21)(q25;q22) 
chromosome translocation, and FLT3-ITD mutation. The 
molecular analysis of the translocation showed fusion of the 
RUNX1 gene with an intergenic sequence from 6q25 resulting 
in a putative RUNX1 truncated protein (Fig. 2A and B). The 
predicted truncated protein would contain the Runt homology 
domain (RHD) which is responsible for both heterodimeriza-
tion with CBFB and DNA binding (40). Functionally, the 
truncated RUNX1 would be similar to the isoform AML1a of 
the RUNX1 protein (Fig. 2B, protein with accession number 
NP_001116079) (41-43). The isoform AML1a is a 250 amino 
acid RUNX1 protein which contains the RHD but lacks the 
proline-, serine-, and threonine-rich (PST) region which is the 
transcriptional activation domain at the C terminal end (41-43). 
AML1a does not itself have any transactivation function, but 
it inhibits the transcriptional activity of AML1b by competing 
for the DNA sequence of target genes with higher affinity (43). 
Overexpression of AML1a was shown to suppress granu-
locytic differentiation and to stimulate cell proliferation in 
32Dcl3 murine myeloid cells treated with granulocyte colony-
stimulating factor (43). AML1a was found to inhibit erythroid 
differentiation induced by sodium butyrate and enhance the 
megakaryocytic differentiation of k562 leukemia cells (44). 
AML1a also enhanced hematopoietic lineage commitment 
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from human embryonic stem cells and inducible pluripotent 
stem cells (45). AML1a was reported to be highly abundant 
in the primitive stem/progenitor compartment of human 
cord blood, and forced expression of AML1a in these cells 
enhanced maintenance of primitive potential both in vitro 
and in vivo (46). Overexpression of AML1a was reported in 
patients with acute lymphoblastic leukemia and AML-M2 
patients (47). In the same study, AML1a was found to repress 
transcription of promoter of macrophage colony-stimulating 
factor receptor mediated by AML1b (47). When murine bone 
marrow mononuclear cells were transduced with AML1a 
and then transplanted into lethally irradiated mice, the mice 
developed lymphoblastic leukemia after transplantation (47). 
Thus, AML1a seems to be an important contributing factor 
to leukemogenesis.

Truncated RUNX1 proteins generated by chromosomal 
translocations were shown to have functions similar to those 
of the AML1a isoform. In a patient with secondary AML 
carrying a t(19;21)(q13;q22), RUNX1 was fused out-of-frame 
to chromosome 19 sequences resulting in a truncated AML 
protein bearing the DNA binding domain but not the tran-
scriptional activation domain. The fusion AML1 protein 
functioned as an inhibitor of the normal RUNX1 protein (19). 
The RUNX1-RPL22P1 (also known as AML1-EAP) fusion 
gene which is the result of the t(3;21)(q26;q22) chromosome 
translocation in AML, codes for a truncated RUNX1 protein 
which acts as an inhibitor of AML1b (17,18). The fusion of 
RUNX1 to CPNE8 in an AML with t(12;21)(q12;q22) also 
resulted in a truncated inhibitory RUNX1 protein (20). 
Recently, in vitro analysis of transduced human hematopoietic/
progenitor stem cells showed that truncated RUNX1 proteins 
generated by a t(1;21)(p32;q22) chromosomal translocation 
increased proliferation and self-renewal and disrupted the 
differentiation program by interfering with AML1b (25). In 
a mouse model, truncated RUNX1 protein resulting from a 
point mutation induced pancytopenia with erythroid dysplasia, 
followed by progression to MDS-RAEB or MDS/AML (48). 
Dowdy et al studied the RUNX1 C-terminus in a mouse 
model by introducing a premature translational stop codon 
after amino acid 307 (Runx1Q307X) which mimicked RUNX1 
mutations found in MDS/AML and CMML patients (49). 
They found that Runx1Q307X homozygous mice exhibited 
embryonic lethality at E12.5 due to central nervous system 
hemorrhage and a complete lack of hematopoietic stem cell 
function (49). They also showed that while the RUNX1 trun-
cated protein was capable of binding to DNA, it was unable to 
associate with the nuclear matrix and failed to activate target 
gene promoters (49).

Taking all the above-mentioned data into consideration, it 
appears that the truncated RUNX1 protein (or absence from 
it of the C terminal part which contains subnuclear targeting 
and transactivation domains) is at least a contributing factor in 
leukemogenesis.

The patient described here also had, apart from the 
t(6;21)-RUNX1 rearrangement, trisomy 4 and FLT3-ITD 
mutation. The molecular genetic consequences of trisomy 
4 are, as for numerical chromosome changes in general, 
unknown. Possible mechanisms could be global gene expres-
sion alterations because of gene dosage effect generated by 
the trisomy and duplication of any rearranged or mutated 

genes on chromosome 4. The prognosis for AML-patients 
with trisomy 4 is unclear, but based on a review of 30 such 
patients, Gupta et al (50) concluded that the outcome is poor 
compared to that of other cytogenetic subsets within the inter-
mediate risk group. More importantly, a recent international 
collaborative study on pediatric t(8;21)-AML showed that gain 
of chromosome 4 in addition to t(8;21) represents a prognosti-
cally unfavorable feature (51).

FLT3-ITD mutation has been shown to be a prognostic 
factor although its impact has to be interpreted against the 
overall genetic background of the leukemic cells (52). In adult 
patients with a normal karyotype, FLT3-ITD is associated 
with poor prognosis (53,54). In core-binding factor (CBF) 
AML, higher mutant levels of FLT3-ITD were an adverse 
factor for overall survival (55). However, a recent report on 
adult patients with CBF AML stated that MRD levels, rather 
than the FLT3-ITD mutations, were significant prognostic 
markers for outcome (56). In pediatric patients, FLT3 muta-
tions have been associated with poor prognosis (57,58). 
Reports on the significance of FLT3 mutations in pediatric 
CBF AML are lacking.

All in all, we cannot say which genetic event (+4,  FLT3-ITD, 
or t(6;21)-RUNX1 truncation) was more pathogenetically or 
prognostically important. The case nevertheless illustrates that 
submicroscopic chromosomal rearrangements may accom-
pany visible numerical changes and perhaps should be actively 
sought for whenever a single trisomy is found. To what extent 
and at which frequency such submicroscopic changes target 
the RUNX1 gene remains unknown. An active search for them 
may provide both pathogenetic and prognostic novel informa-
tion in the future.
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