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Abstract: This meta-analysis aims to identify the diagnostic accuracy of mutations in the Kirsten
Rat Sarcoma (KRAS) oncogene in the diagnosis of pancreatic ductal adenocarcinoma (PDAC).
The survival of PDAC remains poor often due to the fact that disease is advanced at diagnosis.
We analysed 22 studies, with a total of 2156 patients, to identify if the detection of KRAS mutations
from pancreatic exocrine secretions yields sufficient specificity and sensitivity to detect patients with
PDAC amongst healthy individuals. The majority of the studies were retrospective, samples were
obtained endoscopically or surgically, and included comparator populations of patients with chronic
pancreatitis and pre-malignant pancreatic lesions (PanIN) as well as healthy controls. We performed
several analyses to identify the diagnostic accuracy for PDAC among these patient populations.
Our results highlighted that the diagnostic accuracy of KRAS mutation for PDAC was of variable
sensitivity and specificity when compared with PanINs and chronic pancreatitis, but had a higher
specificity among healthy individuals. The sensitivity of this test must be improved to prevent
missing early PDAC or PanINs. This could be achieved with rigorous prospective cohort studies,
in which high-risk patients with normal cross-sectional imaging undergo surveillance following
KRAS mutation testing.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Despite the enhanced
understanding of PDAC biology [1], developments in pre-operative imaging [2], adjuvant/neoadjuvant
chemotherapy [3,4], and image-guided surgery [5], there have been only marginal improvements in
survival over the last two decades [6,7]. Resection of PDAC with clear surgical margins (R0) [8,9]
and negative lymph nodes [10,11] predicts survivorship, indicating that early disease detection could
improve outcomes. Currently, a significant proportion of patients present with advanced disease and
so the development of diagnostic tests to identify pre-malignant or early-stage PDAC is vital.

PDAC develops through the step-wise accumulation of mutations in tumour suppressor and
oncogenes [12] accompanied by histological progression from benign precursor lesions (PanIN) to
invasive malignancy and metastases [13,14]. Mutations in the Kirsten Rat Sarcoma (KRAS) oncogene are
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present in over 90% of resected PDAC specimens [15–17]. Most of these mutations are in KRAS codon
12, with rare mutations in codons 13 and 61 [15]. KRAS mutation is one of the earliest genetic events in
PDAC evolution [15], being present in PanIN lesions prior to the development of invasive disease.
Distant, incurable metastases occur much later; between 10–15 years following the acquisition of the
initial KRAS mutation [16], indicating that there is a long period between the development of PanIN
lesions which are not visible using cross-sectional imaging and incurable disease. Identification of
KRAS mutation in at-risk individuals could therefore serve as a useful screening tool for the detection
of curative disease, or pre-invasive lesions prior to appearance using conventional imaging modalities.

The past decade has seen burgeoning interest in the detection of cell-free DNA (cfDNA)
for early cancer diagnosis [18–22]. Routinely used techniques to detect KRAS mutation include
restriction-fragment length polymorphism (RFLP) analysis [17–19], qPCR-based techniques [20] or
next-generation sequencing [21]. These techniques are highly sensitive and able to detect mutant KRAS
present in 1% of cells within PDAC tissue [17,20]. However, the detection of circulating KRAS-mutant
cfDNA has a sensitivity for the diagnosis of PDAC of only 20–25% [21,22]. This may result from the
relatively low mutant allele fraction seen in PDAC [23], or because a PDAC needs to be relatively
advanced before sufficient mutant DNA is released into the circulation. Sampling of pancreatic
exocrine secretions may offer higher sensitivity because PDAC originates from the ductal epithelium
and therefore mutant KRAS might be expected to be present in pancreatic secretions earlier in PDAC
evolution than the point at which it enters the blood. The specificity of KRAS mutant cfDNA detection
in pancreatic exocrine secretions may also be higher than blood, as mutation detected in the blood may
develop from cancers at sites other than the pancreas. These include cancers of the lung or colon which
frequently display KRAS mutation [24,25].

Here, we performed a meta-analysis of diagnostic accuracy studies for the detection of KRAS
mutation in pancreatic exocrine secretions from PDAC patients. We were primarily interested in
whether this approach yields adequate sensitivity and specificity to identify patients with PDAC
amongst a healthy population. If KRAS mutation is detectable in the pancreatic secretions of PDAC
patients but not healthy subjects at an acceptable sensitivity/specificity, this would provide an argument
for prospective, population-based or randomised analysis of its use as a screening test in patients at
high risk of PDAC based on family history or the presence of specific germ-line mutations.

2. Results

2.1. Study Inclusion

The included studies can be seen in the PRISMA flow diagram (Figure 1). We identified 22 studies
inclusive of 2156 patients eligible for systematic review and meta-analysis after review of the full-text
literature. No studies were identified from a search of the bibliographies of included studies. We made
no attempt to contact authors of the included manuscripts as all outcome data were available within
the publications meeting the inclusion criteria. The studies were generally of a moderate risk of bias
(Table 1), with particularly poor use of follow-up to assess whether patients with a control group who
are KRAS positive ultimately develop PDAC.
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Table 1. Quality of Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) table for quality
assessment of studies of diagnostic accuracy.

Study
Risk of Bias Concerns Regarding Applicability

Patient
Selection

Index
Tests

Reference
Standard

Flow and
Timing

Patient
Selection

Index
Tests

Reference
Standard

O’Mahony [26] Low Low Unclear Low Low High Low
Iguchi [27] Unclear Low Low High Low Low Low
Uehara [28] Low Unclear High High Low Unclear Low
Furuya [29] Low Low Low Unclear Low Unclear Low

Fukushima [30] High High Low Low Low High Low
Watanabe (1998) [31] Low Unclear Low Unclear Low Unclear Unclear
Watanabe (1999) [32] Low Unclear High Low Low Low Low

Yamaguchi [33] High Low Low Unclear Low Unclear Low
Futakawa [34] Low High High Unclear Low Low Low

Myung [35] Low High Unclear Low Low High Unclear
Boadas [36] High Unclear Unclear High Low Unclear Unclear

Ha [37] High Unclear Low High Low Low High
Pugliese [38] High High High High Low High Unclear

Seki [39] Unclear Unclear Unclear Unclear Low Unclear Low
Costentin [40] High High Unclear High Low Low Unclear

Wang [41] High Low High High Low Unclear Low
Trumper [42] Unclear Low High High Low Low Low

Shi [43] Unclear Low Low Unclear Low Low Low
Takano [44] High High Unclear Low Low Low Low

Eshleman [45] High Unclear Low Low Low Unclear Low
Kisiel [46] High Low Low Unclear Low Low Low

Ginesta [47] High Low Unclear Unclear Low Low Low

2.2. Study Demographics

The demographic details of the included studies are shown (Table 2). Studies were predominantly
retrospective cohort studies, where the diagnosis of pancreatic cancer was known in a total of
850 patients at the time of mutant KRAS testing, equating to a pancreatic cancer prevalence of 39%.
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Comparative diagnoses of the study populations included pancreatitis, benign pancreatic cystic lesions
or healthy patients. There were very few studies that included both groups of healthy controls and
patients with pre-malignant lesions such that understanding the ability of KRAS mucus testing to
differentiate between these two groups was not possible. Furthermore, although several studies
included groups of patients with benign lesions, the histological subgroups (IPMN, mucinous cystic
neoplasm, pseudopapillary neoplasm, etc.) were poorly documented.

Table 2. Study demographics.

Author Published Country Design Number of Patients
(% PDAC Prevalence) Patient Population Age Male (%)

O’Mahony [26] 1995 UK * 67 (30) PDAC, H * *

Iguchi [27] 1996 Japan * 60 (32) PDAC, Pc, B * *

Uehara [28] 1996 Japan Ret-Co 47 (30) PDAC, Pc, B, H * *

Furuya [29] 1997 Japan Pro-Co 70 (8.6) PDAC, Pc, B * *

Fukushima [30] 1998 Japan Ret-Co 29 (72) PDAC, Pc * *

Watanabe (1998) [31] 1998 Japan Ret-Co 66 (44) PDAC, Pc, H * (39–83) 55

Watanabe (1999) [32] 1999 Japan Ret-Co 140 (43) PDAC, Pc, B, H 61 (28–84) § *

Yamaguchi [33] 1999 Japan Ret-Co 46(57) PDAC, Pc, B * *

Futakawa [34] 2000 Japan Pro-Co 52 (23) PDAC, Pc, B, H * *

Myung [35] 2000 Korea Ret-Co 31 (39) PDAC, Pc, H 63 (46–77) ± 61

Boadas [36] 2001 Spain Pro-Co 90 (20) PDAC, Pc * *

Ha [37] 2001 Japan Ret-Co 44 (43) PDAC, Pc * (17–81) *

Pugliese [38] 2001 Italy Pro-Co 45 (76) PDAC, Pc 66 (44–88) § 56

Seki [39] 2001 Japan Ret-Co 36 (47) PDAC, Pc, H * 72

Costentin [40] 2002 France Ret-Co 57 (32) PDAC, Pc, B * *

Wang [41] 2002 Germany Pro-Co 358 (33) PDAC, Pc, B, H * *

Trumper [42] 2004 Japan Ret-Co 46 (46) PDAC, Pc * *

Shi [43] 2008 USA Ret-Co 36 (75) PDAC, Pc * *

Takano [44] 2014 Japan Ret-Co 152(26) PDAC, Pc, B, H 65 (35–85) § 58

Eshleman [45] 2015 USA Cas-Co 272 (11) PDAC, B, H 57± 48

Kisiel [46] 2015 USA Cas-Co 102 (60) PDAC, Pc, H 64 (49–76) § 52

Ginesta [47] 2016 Spain Cas-Co 135 (82) PDAC, Pc, B 68 (40–79) ± 60

Pancreatic adenocarcinoma (PDAC), pancreatitis (Pc), Benign cystic lesion (B), healthy control (H),
Retrospective cohort (Ret-Co), Prospective cohort (Pro-Co), Case-control (Cas-Co), § median (range), ± mean
(range), * missing data.

We were unable to identify any prospective cohort studies which would be considered the
gold-standard method for investigating the diagnostic accuracy of a test such as KRAS mutant testing.
Studies that included healthy controls did not report the indication for endoscopic examination.
Only four studies performed a median follow-up of over 5 years in order to determine whether patients
with benign tumours or pancreatitis and KRAS mutation ultimately developed PDAC [29,33,38,40]

2.3. Mutant KRAS Determination.

All studies provided a good description of the methodology through which mucus, secretions and
juice were obtained and analysed (Table 3). Most studies obtained pancreatic secretions through
ERCP with some sampling from the duodenum and two studies obtaining secretions directly from
the pancreatic duct at pancreatectomy. Approximately half of the studies used secretin stimulation to
increase mucus yield. Reporting of the volume of mucus obtained was poor and the use of secretin
stimulation did not appear to dramatically increase mucus yield. Included studies used similar DNA
preparation techniques, with most utilising a phenol/chloroform-based extraction method followed by
PCR-based amplification.
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Table 3. Test characteristics.

Author Modality Site Secretin
Stimulation

Mucus
Volume (mls)

DNA Extraction
Method Amplification Method Mut-KRAS

Detection Method Codon/Mutant Tested Gold Standard Test

O’Mahony [26] ERCP Bile duct n * Pheno-chlor PCR RFLP 12 Histology

Iguchi [27] Endoscopy Duodenum y (30–40) Pheno-chlor PCR RFLP, sequencing 12 Histology

Uehara [28] ERCP Pancreas n * * PCR Slot-blot 12 *

Furuya [29] Endoscopy Duodenum Y 0.5 ± Acet-chlor PCR RFLP 12 Histology

Fukushima [30] ERCP Pancreas,
bile duct n * Pheno-chlor PCR RFLP 12 Histology

Watanabe (1998) [31] ERCP Pancreas n * * PCR Hybridization probe 12 Histology

Watanabe (1999) [32] ERCP Pancreas n (2–3) Pheno-chlor, Prot-K PCR with A-sA 12 Histology

Yamaguchi [33] ERCP Pancreas y * Pheno-chlor PCR SSCP 12 Histology

Futakawa [34] ERCP Pancreas n 0.1 Pheno-chlor PCR RFLP 12 *

Myung [35] ERCP Pancreas y 0.1 * PCR RFLP 12 Histology

Boadas [36] ERCP Pancreas y 4.6 ± * PCR RFLP 12 Histology

Ha [37] Endoscopy Duodenum y * Pheno-chlor PCR with A-sA RFLP 12 Histology

Pugliese [38] ERCP Pancreas n * * PCR RFLP, sequencing 12 Histology

Seki [39] ERCP Pancreas y 2 ± * PCR SSCP 12 *

Costentin [40] ERCP Pancreas n * * PCR RFLP 12 *

Wang [41] ERCP Pancreas n (1–2) * RFLP-Targeted
enrichment RFLP, sequencing 12 *

Trumper [42] Endoscopy Duodenum y (10–15) Pheno-chlor PCR with A-sA RFLP 12 Histology

Shi [43] Surgery Pancreas n * * PCR qPCR-primer based G12V, G12D, G12R Histology

Takano [44] ERCP Pancreas n * Proprietary
(QiAMP®Kit) PCR DNA sequencing G12D, G12R, G12V, Q61H Histology

Eshleman [45] Endoscopy Pancreas y (5–10) * * HRMA *

Kisiel [46] Endoscopy Duodenum y 2 ± * * QuARTS G12D *

Ginesta [47] Surgery Pancreas n * Pheno-chlor PCR qPCR primer-based G12C, G12V, G12D,
G12A, G12s, G12R, G13D Histology

* missing data, ± mean, phenol chloroform (Pheno-chlor), acetate-chloroform (Acet-chlor), proteinase-K (Prot-K), Single-stranded conformation polymorphism (SSCP), High-resolution
melt analysis (HRMA), Quantitative allele-specific real-time target and signal amplification (QuARTS), Allelic-specific amplification (A-sA).
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KRAS mutation was predominantly detected using the restriction fragment length polymorphism
(RFLP) method with bands identified using gel electrophoresis. Some studies reported sequencing of the
DNA fragments. More recent publications used alternative techniques including high-resolution melt
analysis (HRMA) or real-time PCR-based methods (e.g., QuARTS) [46,48,49]. There were insufficient
numbers of such studies to enable the comparison of sensitivity/specificity between techniques.
Two studies used allele-specific amplification to selectively amplify the mutant allele. In most studies,
pancreatic cancer was confirmed through subsequent histological analysis and this served as the
gold-standard test on which mutation testing was benchmarked.

2.4. Assessment of Diagnostic Accuracy.

The diagnostic accuracy (sensitivity and specificity) of KRAS mutation testing was assessed across
all included studies in an analysis that compared patients with pancreatic cancer with all other test
subjects (pancreatitis, benign tumours and healthy patients). In this study, we have defined sensitivity
as the proportion of patients with PDAC that tested positive for KRAS mutation, and specificity as the
proportion of patients without PDAC that tested negative for KRAS mutation. Sensitivity (38%–89%)
and specificity (13%–100%) varied widely across studies (Figure 2a). A summary receiver operating
characteristic (ROC) curve constructed from this analysis confirmed significant heterogeneity in the
diagnostic accuracy elicited across studies (Figure 2b).
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Figure 2. Kirsten Rat Sarcoma (KRAS) mutation testing in all patients across included studies. (a)
Forest plot of included studies where error bars indicate the 95% confidence interval. True positive
(TP), False positive (FP), False negative (FN), True negative (TN); (b) SROC plot of data demonstrating
95% confidence (conf.) region for the sensitivity/specificity estimate. The Partial area under the curve
(restricted to observed estimates) is 0.71.
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We next questioned whether detection of KRAS mutation may be beneficial in the diagnosis of
PDAC within a healthy population. This would be useful for high-risk patients with a family history
of pancreatic cancer or patients carrying specific mutations relevant to PDAC risk but without imaging
abnormality [50]. To do this we repeated the meta-analysis for healthy controls, excluding patients
with a diagnosis of pancreatic cancer or benign pancreatic tumours. In this analysis (Figure 3a) the
sensitivity was still highly variable (21%–86%), but specificity (82%–100%) improved significantly,
with a reduction in heterogeneity. This was confirmed by analysis of the ROC curve (Figure 3b).
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Figure 3. KRAS mutation testing in PDAC patients and healthy controls. (a) Forest plot of included
studies where error bars indicate the 95% confidence interval; (b) SROC plot of data demonstrating
95% confidence (conf.) region for the sensitivity/specificity estimate. The Partial area under the curve
(restricted to observed estimates) is 0.53.

Finally, we analysed the diagnostic accuracy of KRAS mutation testing in a population of patients
with pancreatitis (Figure 4). Here, the sensitivity (42%–89%) and specificity (22%–100%) was, again,
highly heterogenous.
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Figure 4. KRAS mutation testing in PDAC patients and patients with pancreatitis. (a) Forest plot of
included studies where error bars indicate the 95% confidence interval; (b) SROC plot of data from
demonstrating 95% confidence (conf.) region for the sensitivity/specificity estimate. The Partial area
under the curve (restricted to observed estimates) is 0.67.

3. Discussion

In this study, we assessed the utility of detecting KRAS mutation in pancreatic secretions for the
diagnosis of PDAC. If this technique can detect PDAC with adequate sensitivity and specificity then it
may be applicable to screen high-risk individuals.

We identified a large number of studies that investigated KRAS mutation testing in the pancreatic
secretions of PDAC patients, healthy controls and those with benign pancreatic pathology. First,
it is clear that mutant KRAS is detectable in secretions from either the duodenum via standard
endoscopy or the pancreaticobiliary system via ERCP. We did not identify sufficient studies comparing
these approaches to enable understanding as to which provides optimal test accuracy. Studies using
endoscopic methods to obtain samples used a single endoscopic modality alone; if sufficient samples
could not be obtained via the single modality for a patient, that particular patient was excluded
from the study. KRAS mutation was detected in PDAC patients, but also in a significant proportion
of patients with pancreatitis or benign pancreatic tumours across multiple studies using a range of
biochemical methodologies. Our findings show that KRAS mutation testing demonstrates a high degree
of specificity once patients with pancreatitis or benign pancreatic tumours are excluded. This would,
therefore, be applicable to a patient population at high risk of PDAC but with normal cross-sectional
imaging. Several studies demonstrated that a high level of specificity was possible without appreciable
loss of sensitivity [31,32,39,45]. High specificity is a useful feature of a screening test, as it ensures few
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patients receive unnecessary subsequent investigation or treatment that risk morbidity, or in the case
of pancreatic resection, potential mortality.

Despite demonstrating promising specificity for the detection of PDAC in an otherwise healthy
population, the sensitivity varied dramatically between studies, and in some, was too low to be of
clinical use [34,42,44,46]. Heterogeneity of sensitivity estimates is an important finding and is likely
multifactorial. Potential causes include variation in population demographics, differences in methods
for exocrine secretion sampling or KRAS mutation detection and introduction of bias. We felt that the
pooling of diagnostic accuracy estimates would have been misleading and methodologically unsound
given the heterogeneity in study methodology and variability in diagnostic accuracy estimates between
studies. Instead, we chose to display estimates as HSROC curves to aid understanding of estimate
heterogeneity and identify potential links between this and study methodology.

Importantly, the study demonstrating the lowest sensitivity utilised DNA sequencing technology
to detect KRAS mutation [42] and it is well recognised that this technique has a lower sensitivity than
methods such as RFLP [47]. A second study demonstrating low sensitivity was that of Trumper et al. [42];
one of the few prospective studies identified. In this well-conducted study, the researchers went
to lengths to reduce the false-positive rate and collected pancreatic juice following the injection of
contrast into the biliary tree which diluted pancreatic secretions; both factors would have reduced
test sensitivity. Finally, in the study by Kiesel et al. [46], which demonstrated high specificity but
a sensitivity of only 54%, a real-time PCR-based mutation detection assay (QuARTS) was utilised.
The sensitivity for this method is dependent upon a number of factors including PCR primer design,
thermocycler settings, reagent chemistry and cut-off threshold. Any one or more of these factors may
have contributed to the relatively low sensitivity demonstrated in this study.

Poor reporting, retrospective data collection, non-consecutive recruitment and analysis of a
non-clinically relevant population with inflated disease prevalence all significantly over-estimate
diagnostic test accuracy [50,51]. Several of the studies demonstrating the highest sensitivity fit
several of these characteristics [31,35,39] and so are likely to have over-estimated test accuracy.
Indeed, all included studies had a significantly higher disease prevalence (Table 2) than the general
population, where approximately only four to six persons per 100,000 of the population will develop
PDAC [52]. Therefore, its diagnostic performance in a population of high-risk individuals may be
significantly lower than indicated here and this is obviously the predominant weakness of our approach.
Further investigation in high-risk populations is therefore required.

Before being considered of clinical use for the screening of high-risk patients, test sensitivity would
need to be improved to prevent false reassurance and miss underlying early PDAC or pre-malignant
PanIN lesions. Sensitivity could be improved through a number of methods including repeated testing,
improvements in pancreatic secretion capture and technological innovations that enable detection of
mutation in lesser amounts of DNA. Because of the high rate of KRAS mutation in PDAC tumours
and pre-neoplastic lesions, a combination of the perfect sampling method and mutation detection
technology should allow for a sensitivity approaching 90% for discrimination between PDAC and
the healthy state. Pancreatic secretion sampling is better suited to smaller, early pancreatic tumours
or PanIN lesions, as duct obstruction prevents washout of pancreatic mucous and a reduction in
the sensitivity with which mutant cfDNA is detected [34]. For the studies included here, there was
relatively poor reporting of the PDAC disease stage, degree of ductal obstruction or anatomical location
of the tumour within the pancreas and so it is difficult to understand the degree to which this affected
sensitivity estimates.

Alternative methods for pancreatic secretion collection that may improve sensitivity include stool
sampling, which has the benefit of remote sampling and is of a less invasive nature than endoscopic
sampling. This method has a reported sensitivity of up to 82% for the detection of KRAS mutation
in PDAC patients [53,54], however, it is likely to have a lower specificity given the propensity for
mucus to be generated by benign or malignant colorectal polyps which also frequently harbour KRAS
mutation [24]. The development of more advanced KRAS mutant detection methods will also improve
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test sensitivity [55]. This is the case for droplet digital PCR [56], a method ideally suited to the detection
of mutations existing in samples such as pancreatic secretions which contain low levels of nucleic
acid and suffer from abundant protein contamination. Alternatively, incorporation of multiple genetic
indicators such as panels of mutations, DNA methylation status [46,54] or simultaneous tumour marker
assessment [55] could be used to improve sensitivity.

Finally, we were able to assess the role of mutant KRAS testing for distinguishing between PDAC
and benign or pre-malignant pancreatic tumours. Our data indicate that the test specificity is too low
to be used alone for this purpose; a finding supported by analyses of tissue from benign pancreatic
lesions, which frequently display KRAS mutation [44]. It is possible that patients with benign tumours
and KRAS mutation from pancreatic exocrine secretions go on to develop PDAC, however, there was
insufficient long-term follow-up in the included studies to enable this to be investigated.

Analysis of pancreatic exocrine secretions may be improved by the inclusion of other mutations
known to be associated with particular tumour subtypes including GNAS mutations in intraductal
papillary neoplasms of the bile ducts (IPNBs), or von Hippel -Lindau (VHL) mutation in serous cystic
neoplasms [44,57–59]. Equally, in patients with a visible cyst on cross-sectional imaging, the use of
endoscopic ultrasound and cyst aspiration as a means of sampling cfDNA is likely to be the best
approach for differentiating between pre-malignant tumour subtypes [58–60]. Here, we chose to
exclude studies utilising Endoscopic Ultrasound (EUS) as the technical expertise required to perform
this investigation are unlikely to be available at the volume required for a screen-based investigative
strategy and our primary interest was to determine whether KRAS mutation is detectable through
simple endoscopic means. Furthermore, in the high-risk populations, because diabetes or pancreatitis
is more likely rather than the presence of a cystic neoplasm on cross-sectional imaging due to family
history, EUS is less likely to be diagnostically useful.

The limitations of our meta-analysis arise from the overall moderate risk of bias of the studies
included, as well as the high level of heterogeneity between the studies which limits the amount
of between-study comparisons that can be made. Furthermore, most studies were low power,
retrospective in data collection and non-consecutive in recruitment which limits the conclusions that
can be drawn. The analysis of publication bias is an important component of meta-analysis, however,
robust methods for its analysis in diagnostic accuracy studies have not yet been developed, and as
such, we were unable to assess for this [61]. It should also be recognised that there will be variation in
the sensitivity/specificity of the test within each included study, resulting from demographic variation
between subjects, disease stage, variability in the way the test is performed and the specific definition of
a true positive test. Because individual patient-level data were not accessible, an understanding of this
variation could not be reached in our analysis. A total of 19 articles were excluded because they were
not published in English; these may have been high-quality studies that could have yielded interesting
findings to contribute towards our meta-analysis. However, highly accurate translations would be
required to ensure the studies can be reliably incorporated into our meta-analysis. Additionally,
two studies were excluded because the full-text articles were not available. Despite our attempts at
contacting the authors, we were not able to access these articles and therefore were unable to include
potentially useful data into our study.

4. Materials and Methods

The meta-analysis was conducted according to the Meta-analysis of Observational studies in
Epidemiology (MOOSE) group and Preferred Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) protocols in diagnostic test accuracy [62,63].

4.1. Search Strategy

A structured literature search of MEDLINE (PubMed) and Embase databases was performed
on Ovid by a health care librarian (T.P) on 13th November 2018. The search string included the
following terms, “genes,” “ras,” “codon,” “KRAS,” “K RAS,” “Ki RAS,” “codon 12,” “codon 13,”
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“pancreatic neoplasm”, “adenocarcinoma”, “common bile duct neoplasms,” “biliary tract neoplasm”,
“pancreatitis”, “intestinal secretions”, “fluid OR juice OR secretion,” “mucus OR mucosa”, “aspirate”,
“stricture”, “mutation OR mutant OR alter OR variant OR variation OR modification.” Boolean
operators and MeSH (Medical Subject Headings) terms were exploded to combine these keywords.

All conference abstracts were excluded which was specified in the search string. These searches
yielded 708 and 712 articles from MEDLINE (PubMed) and Embase respectively, giving a total of
1420 articles.

Firstly, all duplicate articles and those not published in English were excluded. Following this,
articles were systematically excluded by title and then abstract. The full text of the resulting articles
were reviewed to identify those that met inclusion and exclusion criteria. Additional studies were
identified from searching the reference lists of these articles.

4.2. Inclusion/Exclusion Criteria

Studies in humans were included where samples for identification of KRAS mutations were taken
from duodenal or pancreatic secretions. Articles were included if ductal fluid was aspirated during
endoscopic retrograde cholangiopancreatography (ERCP) or endoscopy, or if obtained from surgically
resected specimens via pancreatoduodenectomy. However, studies with samples obtained from
ERCP brushings or biopsy, Endoscopic Ultrasound with Fine Needle Aspirate (EUS-FNA) samples,
or endoscopic aspirate of duodenal fluid through a cap over the major duodenal papilla were excluded.
Furthermore, review articles were excluded as were articles where samples were obtained from
circulating free or cellular DNA alone. Articles including patients with benign pathology including
intraductal papillary mucinous neoplasm (IPMN), chronic pancreatitis, mucinous cystic neoplasm
(MCN) and other benign pancreatic cysts were only included if the study also included patients with
PDAC. Animal studies, case series with fewer than 10 patients and articles on basic science without
human subjects were all excluded. Finally, articles not published in English, and studies where full-text
was unavailable were also excluded.

4.3. Data Extraction and Statistics

Data were extracted by two authors (N.P. and A.G-W.) with discussion and review performed for
any discrepant data. Risk of bias for each study was assessed by one author (N.P.), using a “Quality of
Assessment of Diagnostic Accuracy Studies-2” (QUADAS-2) tool (University of Bristol, Department of
Population Health Sciences, Bristol, UK) in this meta-analysis.

Study demographics and parameters related to sampling from specimens were extracted from
studies and tabulated. Forest plots were generated using Review Manager version 5.3 (Cochrane, UK)
and SROC curves for comparing KRAS detection in patients with pancreatic cancer with healthy
individuals, those with chronic pancreatitis, and benign pancreatic pathology were generated using
R. A bivariate random-effects model was used to generate 95% confidence regions using the media
package in R [64].

5. Conclusions

In summary, this meta-analysis indicates that the sensitivity of KRAS mutation testing in
endoscopically sampled pancreatic mucus varies considerably and is not currently ready to be used as
a diagnostic biomarker. This study identified that positive KRAS mutation has utility in discriminating
PDAC from healthy controls due to its high specificity. There remains significant scope for future work in
this field and the focus should be on performing rigorous prospective cohort studies, in which high-risk
patients with normal cross-sectional imaging undergo surveillance following KRAS mutation testing.
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