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Abstract

Spring maize sowing occurs during a period of low temperature (LT) in Northeast China,

and the LT suppresses nitrogen (N) metabolism and photosynthesis, further reducing dry

matter accumulation. Diethyl aminoethyl hexanoate (DA-6) improves N metabolism; hence,

we studied the effects of DA-6 on maize seedlings under LT conditions. The shoot and root

fresh weight and dry weight decreased by 17.70%~20.82% in the LT treatment, and

decreased by 5.81%~13.57% in the LT + DA-6 treatment on the 7th day, respectively. Exog-

enous DA-6 suppressed the increases in ammonium (NH4
+) content and glutamate dehy-

drogenase (GDH) activity, and suppressed the decreases in nitrate (NO3
–) and nitrite

(NO2
–) contents, and activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine

synthetase (GS), glutamate synthase (GOGAT) and transaminase activities. NiR activity

was most affected by DA-6 under LT conditions. Additionally, exogenous DA-6 suppressed

the net photosynthetic rate (Pn) decrease, and the suppressed the increases of superoxide

anion radical (O2�
−) generation rate and hydrogen peroxide (H2O2) content. Taken together,

our results suggest that exogenous DA-6 mitigated the repressive effects of LT on N metab-

olism by improving photosynthesis and modulating oxygen metabolism, and subsequently

enhanced the LT tolerance of maize seedlings.

Introduction

Throughout the growing season, crops frequently suffer from various types of environmental

stress. As one of the major abiotic stresses, low temperature (LT) negatively affects plant

growth and development [1]. Brief exposure to LT may disrupt plant physiological processes,

such as water status, photosynthesis and nitrogen (N) metabolism, but plants generally survive

[2,3]; prolonged exposure to LT may lead to plant necrosis or death. Northeast China is one of

the major agricultural production areas in China, accounting for approximately 20% of total

domestic grain production. This region has a typical temperate continental monsoon climate
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with few heat resources. The frost-free period of the whole year is generally 100–150 days, and

plants frequently encounter LT during the spring sowing stage and seedling growth stage,

which negatively affects agricultural production [4].

As the crop with the third largest cultivated and highest yield worldwide, maize (Zea mays
L.) plays an important role in ensuring global food security [5]. As a thermophilic C4 plant that

originates from subtropical regions, maize growth is highly susceptible to LT. N metabolism,

including N uptake, transport, reduction and assimilation as well as amino acid metabolism, is

a fundamental process in plants [6]. Moreover, most plant stress-responsive physiological pro-

cesses involve N metabolism, such as enhanced nutrient uptake and transport, improved photo-

synthetic regulation, rapid synthesis of osmotic solutes and structural alterations [7]. Hence, N

metabolism is extremely important for the growth and LT tolerance of plants.

Chemical regulation is widely applied in agricultural production as a strategy to prevent or

alleviate the adverse effects induced by abiotic stresses. Diethyl aminoethyl hexanoate (DA-6),

a plant growth regulator, is involved in the regulation of a wide range of metabolic and physio-

logical responses of crop plants such as maize, cotton, soybean, peanut, tomato and wheat [8–

11]. Exogenous DA-6 increases grain weight through involvement in the synthesis of sucrose

and starch [8]; promotes seeds germination and seedling establishment by mediating fatty acid

metabolism and glycometabolism [9]; enhances seedling growth through altered photosynthe-

sis by accelerating chlorophyll biosynthesis and increasing the activities of phosphoenolpyr-

uvate carboxylase (PEPcase) and ribulose-1,5-bisphosphate carboxylase (RuBPcase); and

regulates hormone balance by enhancing the contents of auxin, zeatin riboside and gibberellin

but decreasing the content of abscisic acid [10]. Exogenous DA-6 also has positive effects on

the improvement of plant stress resistance, such as resistance to salinity stress and heavy metal

stress [11,12].

Despite accumulating research that has enriched our understanding of the improvement of

growth and development following DA-6 application, the possible role of DA-6 in alleviating

LT stress has not yet been explored. In this study, N metabolism, photosynthesis and the anti-

oxidant system were examined to investigate whether exogenous DA-6 could enhance the LT

resistance of maize seedlings and how doses exogenous DA-6 affect N metabolism in stressed

plants.

Materials and methods

Material and growth conditions

Maize (Zea mays L.) inbred line Q319 and DA-6 were obtained from the Heilongjiang Acad-

emy of Agricultural Sciences and the China Zhengzhou Zhengshi Chemical Limited Company,

respectively. After sterilization (0.2% HgCl2 for 10 min and rinsing with abundant distilled

water), seeds were soaked in deionized water for 24 h and then germinated in Petri dishes at

28˚C for 96 h in the dark. Afterward, uniformly germinated seedlings were transferred to

opaque plastic containers containing 20 L of 1/2 modified Hoagland’s nutrient solution, which

was continuously aerated and adjusted to 6.30 (±0.05) daily. The whole experiment was con-

ducted in a controlled growth room under the following conditions: relative humidity 60–

70%, light intensity 350 μmol�m-2�s-1 and a 15-h photoperiod.

Experimental design and sampling

In our preliminary experiment, a wide range of temperatures (9˚C~15˚C) and various concen-

trations of DA-6 (5, 10, 15, 20 and 25 mg/L) were employed. Finally, 11˚C and 10 mg/L DA-6

were chosen on the basis of the growth parameters as the optimum combination for investigat-

ing the effects of DA-6 on maize seedlings. Seedlings at the three-leaf stage were exposed to
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treatments in different nutrient solutions as follows: (1) Control = nutrient solution was not

supplemented with DA-6 under non-LT conditions (28±1˚C); (2) DA-6 = nutrient solution

was supplemented with DA-6 under non-LT conditions (28±1˚C); (3) LT = nutrient solution

was not supplemented DA-6 under LT conditions (11±1˚C); and (4) LT + DA-6 = nutrient

solution was supplemented with DA-6 under LT conditions (11±1˚C). There were a total of

100 plants per container, and the nutrient solution was aerated daily at 7:00~9:00, 11:00~13:00

and 15:00~17:00.

For growth parameters and root hydraulic conductivity (Lp) measurements, plants were

sampled only on the 7th day after LT stress. At 0, 1, 3, 5 and 7 days after LT treatment, the 3rd

leaves from the base of the seedlings were sampled for gas exchange parameters. A total of 15

plants were sampled at each sampling time from each container. The leaves were immediately

frozen in liquid N, stored at −80˚C and used for related analyses.

Plant measurements and analysis

Growth parameters and Lp

The fresh weight (FW) of roots and shoots was measured after the plants were harvested and

immediately divided. After FW measurement, the plants were oven-dried at 105˚C for 30 min

and held at 80˚C for 48 h to obtain dry weight (DW). The mean values of 10 plants were con-

sidered one replication. The length, surface area and volume of roots were measured using the

WinRHIZO Image Analysis system (Version 2013e) (Regent Instruments Inc., Canada). The

Lp was assayed with a Scholander pressure chamber according to the description of López-

Pérez et al. (2007) [13].

RNA isolation and real-time RT-PCR

Total RNA was extracted from the maize roots using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA). The gene-specific primers are listed in S1 Table. The synthesis of cDNA and real-

time PCR were performed as previously described by Liu et al. (2012) [14]. The relative expres-

sion of the target genes was calculated using the 2−44Ct method [15].

Related indicators of photosynthesis, antioxidant system and N

metabolism

The gas exchange parameters of seedlings at the 3~4 leaf stage were assayed with a calibrated

portable LI-6400 gas exchange system (Li-6400, Li-Cor Inc., USA) that maintained an external

CO2 concentration at 380 ± 10 μmol mol-1 and a light intensity of 1,000 lmol photons�m-2�s-1.

The 3th leaf (numbered basipetally) was sampled, and the measurements were performed from

10:00~12:00.

The total chlorophyll content was measured based on the chlorophyll absorbances by the

supernatant measured at 663 nm according to the method of Arnon (1949) [16]. The activities

of PEPcase and RuBPcase were assayed according to Omoto et al. (2012) [17] and Xie et al.

(2017) [18], respectively.

The generation rate of superoxide anion radicals (O2�
−) and hydrogen peroxide (H2O2)

content were determined according to the methods of Elstner and Heupel (1976) [19] and

Jana and Choudhuri (1982) [20], respectively.

Superoxide dismutase (SOD) activity was determined by measuring its ability to inhibit the

photochemical reduction of NBT as described by Giannopolitis and Ries (1977) [21]. Peroxi-

dase (POD) activity was measured according to the guaiacol method described by Zheng and

Huystee (1992) [22]. Catalase (CAT) activity was measured as described by Aebi (1984) [23].
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APX activity (EC 1.11.1.11) was measured by monitoring the decrease in AsA absorbance at

290 nm according to the guaiacol method described by Nakano and Asada (1980) [24].

The contents of foliar NO3
−, NO2

− and NH4
+ were determined according to the methods of

Cataldo et al. (1975) [25], Barro et al. (1991) [26] and Bräutigam et al. (2007) [27].

The activities of foliar nitrate reductase (NR), nitrite reductase (NiR) and glutamine

synthase (GS) were determined as described by Barro et al. [28], Ida and Morita [29] and

O’neal and Joy [30], respectively. The activities of foliar glutamine oxoglutarate aminotransfer-

ase (GOGAT) and glutamate dehydrogenase (GDH) were determined as described by Groat

and Vance [31]. The activities of foliar alanine aminotransferase (AlaAT) and aspartate amino-

transferase (AspAT) were determined according to the methods of Jia et al. (2015) [32].

Free amino acid and soluble protein contents and proteinase activity

The contents of free amino acids and soluble protein, and the protease activity were deter-

mined by the methods of Yemm and Cocking (1955) [33], Bradford (1976) [34] and Drapeau

(1974) [35], respectively.

Statistical analysis

The experiment used a randomized complete block design (RCBD), and 5 experimental repli-

cations were considered during statistical analysis. The data were analysed using the Software

Package for Social Science (SPSS) version 17.0, and all of the values are presented as the

mean ± SE. Tukey’s test at the 5% probability level was applied to examine the differences

among mean values on a given day of stress treatment. The results are indicated in tables and

figures such that the letters a, b c, and d represent the first, second, third, and fourth levels of

statistical significance, respectively.

Results

Effects of LT and/or exogenous DA-6 on growth parameters

Exogenous DA-6 promoted growth under non-LT conditions and partially alleviated the

growth inhibition induced by LT (Table 1). Compared with those in the control, shoot FW,

root FW, shoot DW and root DW decreased by 18.75%, 19.92%, 20.82% and 17.70% in the LT

treatment, decreased by 7.04%, 5.81%, 13.57% and 9.06% in the LT + DA-6 treatment, and

increased by 6.83%, 7.92%, 6.43% and 7.51% in the DA-6 treatment, respectively.

The values represent the mean±SE (n = 5). Values with the same letters in the columns are

not significantly different at P<0.05 (Tukey test). Control: Non-low temperature conditions

(28±1˚C), DA-6: Diethyl aminoethyl hexanoate treatment under non-low temperature condi-

tions (28±1˚C), LT: Low temperature conditions (11±1˚C), LT + DA-6: Diethyl aminoethyl

hexanoate treatment under low temperature conditions (11±1˚C).

Table 1. Effects of LT and/or DA-6 treatment on the fresh weight (FW) and dry weight (DW) of the shoots and roots of the maize seedlings on the 7th day after LT

stress (4-leaf stage).

Treatment FW (g�plant-1) DW (g�plant-1)

Shoot Root Shoot Root

Control 1.948±0.074ab 0.847±0.023b 0.156±0.005a 0.072±0.001a

DA-6 2.081±0.076a 0.914±0.049a 0.166±0.003a 0.078±0.004a

LT 1.583±0.086c 0.678±0.014c 0.124±0.007c 0.059±0.006b

LT+DA-6 1.811±0.096b 0.798±0.029b 0.135±0.007b 0.066±0.002b

https://doi.org/10.1371/journal.pone.0232294.t001
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Exogenous DA-6 positively impacted the root morphology of plants under non-LT and LT

conditions (Fig 1). Compared with those in the control, the length, surface and volume of

roots decreased by 46.85%, 63.50% and 59.95% in the LT treatment, decreased by 30.03%,

42.17% and 33.01% in the LT + DA-6 treatment, and increased by 9.23%, 12.33% and 10.04%

in the DA-6 treatment, respectively.

Effects of LT and/or exogenous DA-6 on Lp

Exogenous DA-6 partially suppressed the decrease in Lp during LT (Fig 2). On the 1st, 3rd, 5th

and 7th days, the Lp decreased by 41.23%, 44.59%, 53.92% and 53.51% in the LT treatment;

Fig 1. Effects of LT and/or exogenous DA-6 treatment on the root morphology of maize seedlings on the 7th day. Data in the figure are

treatment: root length (cm), surface (cm2) and volume (cm3), in order. Values with the same letters are not significantly different at P<0.05

(Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g001

Fig 2. Effects of LT and/or exogenous DA-6 on Lp. The values represent the mean ± SE (n = 5). Values with the same letters

in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g002
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decreased by 33.31%, 36.24%, 44.21% and 43.91% in the LT+DA-6 treatment; and increased

by 25.13%, 29.26%, 27.60% and 26.61% in the DA-6 treatment, respectively, compared with

the levels in the control. Exogenous DA-6 significantly increased Lp on the 5th and 7th days by

10.39% and 7.53%, respectively, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on the relative expression levels of

NRT 1;1, NRT 1;2 and NRT 2;5

Exogenous DA-6 suppressed the downregulated relative expression levels of NRT 1;1, NRT 1;2

and NRT 2;5 during LT (Fig 3). On the 1st, 3rd, 5th and 7th days, NRT 1;1 relative expression

Fig 3. Effects of LT and/or exogenous DA-6 on the relative expression levels of NRT1;1 (A), NRT1;2 (B) and NRT2;5 (C). The

values represent the mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at P<0.05

(Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g003
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levels were downregulated by 66.19%, 76.14%, 76.75% and 72.99% in LT treatment; by 32.61%,

26.40%, 35.75% and 37.97% in LT +DA-6 treatment, respectively; NRT 1;2 relative expression

levels were downregulated by 51.85%, 56.06%, 57.10% and 61.76% in LT treatment; by 27.33%,

19.85%, 30.65% and 35.25% in LT +DA-6 treatment, respectively; NRT 2;5 relative expression

levels were downregulated by 53.38%, 48.58%, 61.40% and 69.18% in LT treatment; by 26.31%,

29.15%, 28.60% and 30.42% in LT +DA-6 treatment, respectively, compared with the levels in

the control. Exogenous DA-6 significantly upregulated NRT 1;2 relative expression levels on

the 5th day by 30.73%, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on total chlorophyll content

Exogenous DA-6 partially suppressed the decrease in total chlorophyll content during LT (Fig

4). On the 1st, 3rd, 5th and 7th days, the total chlorophyll content decreased by 24.13%, 50.56%,

59.86% and 76.98% in the LT treatment and decreased by 12.42%, 24.69%, 32.70% and 37.70%

in the LT+DA-6 treatment, respectively, compared with the levels in the control. Exogenous

DA-6 increased the total chlorophyll content on the 3rd, 5th and 7th days by 4.91%, 9.92% and

9.66%, respectively, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on gas exchange parameters

Exogenous DA-6 partially suppressed Pn, Gs and Tr during LT (Fig 5). On the 1st, 3rd, 5th and 7th

days, Gs decreased by 44.27%, 55.97%, 64.85% and 73.55% in the LT treatment and decreased by

30.63%, 39.27%, 37.41% and 42.21% in the LT +DA-6 treatment, respectively; Tr decreased by

32.44%, 43.68%, 36.63% and 48.52% in the LT treatment and decreased by 13.92%, 21.34%,

13.52% and 25.16% in the LT+DA-6 treatment, respectively; and Pn decreased by 22.35%,

37.40%, 43.52% and 49.08% in the LT treatment and decreased by 18.78%, 23.48%, 26.03% and

32.06% in the LT+DA-6 treatment, respectively, compared with the levels in the control.

Over 7 days of LT, Ci decreased during the early period and then gradually increased, and

minimum Ci levels were observed on the 3rd day. Ci decreased by 29.02% and 30.90% on the

1st and 3rd days, respectively, and increased by 12.49% on the 7th day in the LT treatment. Ci

decreased by 24.82%, 23.28%, 21.32% and 14.80% on the 1st, 3rd, 5th and 7th days in the LT

+DA-6 treatment, respectively, compared with the levels in the control. DA-6 had no signifi-

cant effect on Ci under non-LT conditions.

Fig 4. Effects of LT and/or exogenous DA-6 on the total chlorophyll content. The values represent the mean ± SE (n = 5),

and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g004
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Fig 5. Effects of LT and/or exogenous DA-6 on Pn (A), Gs (B), Tr (C) and Ci (D). The values represent the mean ± SE (n = 5), and

values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g005
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Effects of LT and/or exogenous DA-6 on PEPcase and RuBPcase activities

The application of DA-6 mitigated the LT-induced reduction in PEPcase and RuBPcase activi-

ties in maize leaves over the experimental period (Fig 6). On the 1st, 3rd, 5th and 7th days, PEP-

case activity decreased by 30.32%, 37.69%, 40.77% and 61.67% in the LT treatment, decreased

by 13.21%, 23.87%, 21.82% and 30.21% in the LT+DA-6 treatment, and increased by 4.89%,

4.30%, 14.61% and 13.04% in the DA-6 treatment, respectively; RuBPcase activity decreased

by 29.44%, 39.55%, 41.18% and 55.51% in the LT treatment, decreased by 21.34%, 25.50%,

23.99% and 29.80% in the LT+DA-6 treatment, and increased by 9.67%, 4.47%, 12.94% and

13.11% in the DA-6 treatment, respectively, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on O2�
− generation rate and H2O2

content

Exogenous DA-6 partially suppressed increases in the O2�
− generation rate and H2O2 content

during the LT treatments (Fig 7). On 1st, 3rd, 5th and 7th days, the O2�
− generation rate

increased by 134.09%, 132.85%, 193.30% and 127.05% in the LT treatment and increased by

83.86%, 91.50%, 118.22% and 70.71% in the LT+DA-6 treatment, respectively; H2O2 content

increased by 102.44%, 98.98%, 103.13% and 111.41% in the LT treatment and increased by

63.05%, 39.93%, 50.61%, 39.22% in the LT+DA-6 treatment, respectively, compared with the

levels in the control.

Fig 6. Effects of LT and/or exogenous DA-6 on the activities of PEPcase (A) and RuBPcase (B). The values represent the

mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g006
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Effects of LT and/or exogenous DA-6 on SOD, POD, CAT and APX activities

The activities of SOD and APX first increased and then declined slowly with the increasing

duration of LT (Fig 8). Compared with the levels in the control, SOD activity increased by

139.40%, 89.74% and 56.83% on the 1st, 3rd and 5th days and decreased by 48.83% on the 7th

day in the LT treatment; and increased by 133.42%, 108.85%, 75.18% and 79.50% on the 1st,

3rd, 5th and 7th days in the LT+DA-6 treatment, respectively; APX activity increased by

133.43% and 79.35% on the 1st and 3rd days, decreased by 16.97% and 44.75% on the 5th and

7th days in the LT treatment, and increased by 139.40%, 120.95%, 119.88% and 36.29% on the

1st, 3rd, 5th and 7th days in the LT+DA-6 treatment, respectively.

Over 7 days of LT, the activities of POD and CAT decreased gradually. On the 1st, 3rd, 5th

and 7th days, compared with the control, POD activity decreased by 44.29%, 46.65%, 52.52%

and 66.71% in the LT treatment and by 33.83%, 43.90%, 42.05% and 54.03% in the LT+DA-6

treatment, respectively; CAT activity decreased by 26.08%, 36.72%, 52.25% and 68.85% in the

LT treatment and by 25.01%, 24.37%, 38.60% and 48.11% in the LT+DA-6 treatment, respec-

tively. Exogenous DA-6 had no significant effect on the activities of POD and CAT.

Effects of LT and/or exogenous DA-6 on NO3
−, NO2

− and NH4
+ contents

and the NO3
− uptake rate

The decreases in NO3
– and NO2

– contents and the increases in NH4
+ content were signifi-

cantly suppressed by DA-6 under LT conditions (Fig 9). On the 1st, 3rd, 5th and 7th days, the

Fig 7. Effects of LT and/or exogenous DA-6 on the activities of SOD (A), POD (B) and CAT (C). The values represent the

mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g007

PLOS ONE Exogenous DA-6 ameliorates low temperature stress by improving N metabolism in maize seedlings

PLOS ONE | https://doi.org/10.1371/journal.pone.0232294 April 30, 2020 10 / 23

https://doi.org/10.1371/journal.pone.0232294.g007
https://doi.org/10.1371/journal.pone.0232294


Fig 8. Effects of LT and/or exogenous DA-6 on the activities of SOD (A), POD (B), CAT (C) and APX (D). The values represent

the mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g008
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NO3
– content decreased by 24.71%, 33.18%, 35.27% and 36.82% in the LT treatment and by

19.34%, 20.16%, 19.26% and 15.06% in the LT + DA-6 treatment, respectively; the NO2
– con-

tent decreased by 9.44%, 16.91%, 20.81% and 21.81% in the LT treatment and by 7.16%,

10.19%, 9.21% and 9.71% in the LT + DA-6 treatment, respectively. On the 5th and 7th days,

the contents of NO3
– (increased by 9.78% and 9.45%, respectively) and NO2

– (increased by

7.67% and 7.50%, respectively) were significantly increased compared with the levels in the

control. On the 1st, 3rd, 5th and 7th days, the NH4
+ content increased by 30.15%, 36.32%,

52.51% and 55.02% in the LT treatment and by 22.37%, 17.81%, 26.50% and 22.43% in the LT

+ DA-6 treatment, respectively, compared with that of the control. No significant differences

in the NH4
+ contents were observed between the control and DA-6 treatments.

Fig 9. Effects of LT and/or exogenous DA-6 on the contents of NO3
− (A), NO2

− (B) and NH4
+ (C). The values represent the

mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g009
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Effects of LT and/or exogenous DA-6 on the activities of NR and NiR

Under LT conditions, the activities of foliar NR and NiR decreased initially and then remained

stable (Fig 10). The activities of foliar NR and NiR were significantly increased by DA-6 under

the same conditions. On the 1st, 3rd, 5th and 7th days, the NR activity decreased by 34.21%,

55.84%, 65.48% and 60.49% in the LT treatment and by 28.95%, 31.17%, 34.52% and 25.93%

in the LT + DA-6 treatment, respectively; the NiR activity decreased by 45.04%, 73.22%,

83.71% and 78.83% in the LT treatment and by 38.17%, 40.88%, 44.15% and 46.45% in the

LT + DA-6 treatment, respectively, compared with the levels in the control. NR activity

increased by 14.29%, 19.05% and 17.28% and NiR activity increased by 18.77%, 24.35% and

18.36% on the 3rd, 5th and 7th days, respectively, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on GS, GOGAT and GDH activities

Under LT conditions, the activities of GS and GOGAT in the leaves decreased during the early

period and then remained stable (Fig 11). The activities of GS and GOGAT were significantly

increased by DA-6 under the same conditions. On the 1st, 3rd, 5th and 7th days, the GS activity

decreased by 20.01%, 33.97%, 41.16% and 36.04% under LT conditions and by 16.44%,

18.96%, 21.72% and 19.61% in the LT + DA-6 treatment; the GOGAT activity decreased by

30.54%, 49.90%, 59.06% and 55.97% in the LT treatment and by 25.87%, 27.86%, 31.15% and

33.52% in the LT + DA-6 treatment, respectively. GS activity increased by 8.68%, 7.26% and

9.71% and GOGAT activity significantly increased by 12.79%, 12.08% and 11.41% on the 3rd,

5th and 7th days in the DA-6 treatment, respectively, compared with the levels in the control.

Fig 10. Effects of LT and/or exogenous DA-6 on the activities of NR (A) and NiR (B). The values represent the mean ± SE (n = 5).

Values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g010

PLOS ONE Exogenous DA-6 ameliorates low temperature stress by improving N metabolism in maize seedlings

PLOS ONE | https://doi.org/10.1371/journal.pone.0232294 April 30, 2020 13 / 23

https://doi.org/10.1371/journal.pone.0232294.g010
https://doi.org/10.1371/journal.pone.0232294


Fig 11. Effects of LT and/or exogenous DA-6 on the activities of GS (A), GOGAT (B), NAD-GDH (C) and NADH-GDH (D).

The values represent the mean ± SE (n = 5), and values with the same letters in the columns are not significantly different at

P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g011
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In contrast, LT enhanced the activities of NAD-GDH and NADH-GDH: NAD-GDH activ-

ity increased by 24.22%, 31.97%, 41.45% and 34.76% and NADH-GDH activity increased by

26.37%, 31.16%, 38.99% and 34.76%, respectively, compared with that in the control on the 1st,

3rd, 5th and 7th days. However, NAD-GDH activity was increased by 9.49%, 15.20%, 21.27%

and 13.43%, and NADH-GDH activity was increased by 17.21%, 18.48%, 24.05% and 13.43%

in the LT+ DA-6 treatment compared with that in the control on the 1st, 3rd, 5th and 7th days.

Effects of LT and/or exogenous DA-6 on AlaAT and AspAT activities

The AlaAT and AspAT activities decreased after LT treatment (Fig 12). Upon DA-6 applica-

tion, the AlaAT and AspAT activities were all significantly elevated, especially in the stressed

plants. On the 1st, 3rd, 5th and 7th days, AlaAT activity decreased by 13.50%, 22.35%, 32.62%

and 32.93% in the LT treatment, decreased by 4.37%, 8.27%, 14.62% and 16.64% in the LT

+DA-6 treatment, and increased by 3.22%, 8.10%, 10.95% and 9.79% in the DA-6 treatment,

respectively; AspAT activity decreased by 30.12%, 44.73%, 48.24% and 56.57% in the LT treat-

ment, decreased by 22.58%, 28.38%, 24.50% and 34.21% in the LT+DA-6 treatment, and

increased by 4.24%, 10.39%, 14.77% and 10.53% in response to the DA-6 treatment, respec-

tively, compared with the levels in the control.

Effects of LT and/or exogenous DA-6 on free amino acid and soluble

protein contents and proteinase activity

No difference in the contents of free amino acids and soluble protein or in proteinase activity

was noted between the DA-6 application and the non-DA-6 application under LT conditions

Fig 12. Effects of LT and/or exogenous DA-6 on the activities of AlaAT (A) and AspAT (B). The values represent the mean ± SE

(n = 5), and values with the same letters in the columns are not significantly different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g012

PLOS ONE Exogenous DA-6 ameliorates low temperature stress by improving N metabolism in maize seedlings

PLOS ONE | https://doi.org/10.1371/journal.pone.0232294 April 30, 2020 15 / 23

https://doi.org/10.1371/journal.pone.0232294.g012
https://doi.org/10.1371/journal.pone.0232294


on the 1st day (Fig 13). DA-6 application suppressed the increase in the free amino acid con-

tent and proteinase activity and the decrease in the soluble protein content that were induced

by LT. On the 3rd, 5th and 7th days, the free amino acid content increased by 28.25%, 44.95%

and 60.06% in the LT treatment and increased by 8.27%, 14.62% and 16.64% in the LT+DA-6

treatment, respectively; the soluble protein content decreased by 24.65%, 33.72% and 50.78%

in the LT treatment, decreased by 15.32%, 17.73% and 23.36% in the LT+DA-6 treatment, and

increased by 4.94%, 4.97% and 12.14% in the DA-6 treatment, respectively; the proteinase

activity increased by 43.88%, 225.13% and 152.12% in the LT treatment and decreased by

6.91%, 113.61% and 84.67% in the LT+DA-6 treatment, respectively, compared with the levels

in the control.

Fig 13. Effects of LT and/or exogenous DA-6 on the free amino acid content (A), soluble protein content (B), and proteinase

activity (C). The values represent the mean ± SE (n = 5), and values with the same letters in the columns are not significantly

different at P<0.05 (Tukey test).

https://doi.org/10.1371/journal.pone.0232294.g013
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Discussion

The growth inhibition of maize seedlings under LT conditions in the present study has been

observed previously and may be attributable to a reduction in cell enlargement and cell divi-

sion induced by the stunting of physiological activities [36,37]. Similar to prior findings, exoge-

nous DA-6 promoted the growth of maize seedlings under non-stress conditions in this study

[10]. Moreover, the growth inhibition of maize seedlings induced by LT was partially counter-

acted by exogenous DA-6 application, as demonstrated by the significantly increased growth

parameters compared with those under LT conditions (Table 1). These results suggested that

exogenous DA-6 could enhance the LT tolerance of maize seedlings.

Although various forms of N, such as NO3
–, NH4

+ and amino acids, are available for meta-

bolic processes, NO3
– is the predominant N form used by crops. As in previous reports, LT sig-

nificantly diminished the foliar NO3
– content in this study (Fig 9A) [38]. This may be

attributed to the suppression of NO3
– absorption by the roots and the disturbance of NO3

–

transport in xylem under LT conditions.

Plant roots are a vital organ system for water and nutrient acquisition and play critical roles

in plant adaptations to stress [39]. In the root system, NRT protein family members are

responsible for NO3
– transport. Wang et al. showed that water limitation enhanced the expres-

sion of NRT1;2 and NRT2;5 but had no significant effect on NRT1;1 expression [40]. In the

present study, the relative expression levels of NRT1;1, NRT1;2 and NRT2;5 were downregu-

lated by LT (Fig 3). These results suggested that the regulation of the relative expression levels

of NRT1;1, NRT1;2 and NRT2;5 may be related to the types and intensities of stresses. The

inhibition of root growth and the downregulated NRT1;1, NRT1;2 and NRT2;5 relative

expression levels may be the main cause of the suppression of NO3
– uptake in roots. In the LT

+DA-6 treatment, the decrease in foliar NO3
– content was partly alleviated by exogenous DA-

6. This can primarily be attributed to the improved uptake of NO3
− due to the upregulated

expression levels of NRT1;1, NRT1;2, and NRT2;5 and the larger root system, as measured by

the increased length, surface area, and volume of roots.

Once taken up into the roots, NO3
− undergoes long-distance transport to the leaves. This

process depends on transpiration intensity and root pressure. In this study, exogenous DA-6

reduced the continued decline of Gs during LT and maintained the transport of water and

nutrients in xylem sap from the roots to the leaves of the maize seedlings (Fig 5B). This may be

due to the balance between water loss by transpiration and water uptake from the extensive

root system induced by the exogenous DA-6 [41]. In addition, exogenous DA-6 increased Lp,

which may be due to the enhanced physiological activity of the whole root system. The higher

transpiration occurred in conjunction with greater Lp, leading to the significantly improved

transport of NO3
− from roots to shoots during LT.

NO3
− is the only storage form of N and is converted to NH4

+ prior to its incorporation into

amino acids [42]. NO3
– is first reduced to NO2

– by NR; this process is highly sensitive to envi-

ronmental stress conditions and is considered the rate-limiting step in NO3
− assimilation [43].

NR activity is primarily regulated by the NO3
− concentration and is very sensitive to H2O2

[44]. In this study, NR activity continuously declined under LT conditions (Fig 10A). This

may be attributed to the decrease in foliar NO3
− concentration and the excessive accumulation

of H2O2 due to the imbalanced generation and scavenging of ROS under LT conditions (Figs

7B and 9A). Interestingly, the negative effect of LT on NR was ameliorated to some extent by

exogenous DA-6. One possible reason is the increased foliar NO3
− content induced by exoge-

nous DA-6. Plants can defend against oxidative stress through the combined action of enzy-

matic and nonenzymatic antioxidants to eliminate ROS. O2�
− is converted into O2 and H2O2

by SOD as the first step in ROS scavenging. Then, H2O2 is further detoxified via conversion
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into H2O by antioxidant enzymes, such as POD and CAT, as well as the ascorbate-glutathione

(AsA-GSH) cycle. In this study, the decrease in foliar O2�
− and H2O2 accumulation in the DA-

6+LT treatment may be attributed to the enhanced antioxidant protection of the increased

activities of SOD, POD, CAT and APX in the leaves of the maize seedlings. The decreased

foliar H2O2 accumulation may partly contribute to the increased NR activity in plants under

LT conditions (Fig 8). The reduction in foliar NO2
− content was significantly reversed by exog-

enous DA-6 under LT conditions, which may be a result of the increases in both the foliar

NO3
− content and the NR activity. Subsequently, NO2

– is reduced to NH4
+ by NiR. As in NR,

a significant reduction in NiR activity was also noted under LT conditions. This inhibition was

associated with reductions in both the NO3
− and NO2

− contents. Exogenous DA-6 upregulated

NiR activity, which was downregulated by LT, and promoted the conversion of NO2
− to NH4

+.

These results suggest that exogenous DA-6 could effectively regulate the activities of NR and

NiR and maintain the NO3
− assimilation process under LT conditions.

NH4
+, formed by the disruption of NO3

− assimilation and the hydrolysis of N-containing

metabolites, is harmful to cells and must be quickly assimilated. For higher plants, the GS/

GOGAT cycle is the main NH4
+ assimilation pathway [45]. In this cycle, NH4

+ is converted to

glutamine by GS and then to glutamate by GOGAT, which is integrated directly into the struc-

tures of amino acids. Although LT decreased NR and NiR activities, the NH4
+ content signifi-

cantly increased compared with that in the plants under LT conditions. The activities of GS

and GOGAT decreased in a range of plants in response to a variety of environmental stresses.

Since GS is the primary enzyme responsible for NH4
+ assimilation in plants, the reduced GS

activity induced by LT might result in a partial increase in the foliar NH4
+ content (Fig 11).

The decline in GOGAT activity found in the LT-treated plants could have a detrimental

impact on the conversion of glutamine to glutamate in leaves. The reductions in both GOGAT

and GS activities observed in LT-stressed plants may be partly attributed to oxidative modifica-

tions of enzyme proteins [46]. However, the foliar NH4
+ content was reduced in the LT+DA-6

treatment, which may be attributed to the increased activities of GS and GOGAT, which pro-

moted the integration of NH4
+ into the structure of organic compounds.

In green tissues, GOGAT and GS obtain reducing power directly from photosynthesis [47].

Exogenous DA-6 mitigated the reductions in the total chlorophyll content under LT condi-

tions and maintained the quantum harvesting ability of the leaves, thereby contributing to the

maintenance of a more efficient process in the light reactions of photosynthesis and supplying

GOGAT and GS with sufficient reducing powers in the form of NADPH, ATP, or Fdred. The

results suggested that the effective GOGAT/GS cycle in the maize seedling leaves under LT

conditions was potentially attributable to the ameliorated photosynthesis. In addition, the

restraint of O2�
− and H2O2 accumulation in the leaves of maize seedlings may be another cause

for the stable GS and GOGAT activity in the LT+DA-6 treatment.

As in previous studies on maize seedlings, exogenous DA-6 also enhanced Rubisco and

PEPCase activities under non-stress conditions in this study [10]. Moreover, seedlings treated

with DA-6 maintained stable PEPCase and RuBPCase activities during LT. This may be due to

the GOGAT/GS cycle effectively removing the toxic NH4
+ derived from photorespiration to

protect the photosynthetic enzymes, promoting the fixation of atmospheric CO2 into oxaloace-

tate through the carboxylation of phosphoenolpyruvate and the released of CO2 re-fixed dur-

ing the Calvin cycle, and causing an increase in the CO2 assimilation capacity which was

inhibited by LT, as observed in this study and a previous study [48]. The carbohydrates gener-

ated through photosynthesis are major building blocks and energy sources for biomass pro-

duction and maintenance. The growth promotion of maize seedlings treated with DA-6 may

be partly attributed to the stable photosynthetic capacity under LT conditions.
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When the GS/GOGAT cycle pathway is inhibited under stress conditions, the NH4
+ con-

tent in the plant cells increases considerably. NH4
+ can serve as a substrate for glutamate for-

mation via the reversible amination of 2-oxoglutarate through the catalytic effect of the GDH

enzyme, although GDH has a lower affinity for NH4
+ [49]. The increased activity of GDH dur-

ing the early period of LT promoted the conversion of NH4
+ to glutamate and alleviated NH4

+

toxicity. However, GDH activity was subsequently decreased, accompanied by the NH4
+ con-

tent increasing considerably (Fig 4E and 4F). DA-6 application reduced NADH-GDH activity

and NH4
+ content, which may be associated with enhanced GS and GOGAT activities. These

results suggested that exogenous DA-6 could effectively regulate the activities of GS, GOGAT

and GDH and maintain the conversion of NH4
+ to glutamate under LT conditions.

Glutamate produced by the GS/GOGAT cycle and the GDH pathway is the primary amino

acid responsible for the synthesis of other amino acids [50]. Transamination reactions, which

transfer amino groups from glutamate to other amino acids, serve as a link between carbohy-

drate and amino acid metabolism and are essential for plant growth. In this study, the stress-

induced decreases in foliar AlaAT and AspAT activities may be attributable to the weakened

GS/GOGAT pathway (Fig 12) [51]. Moreover, exogenous DA-6 inhibited the reduction in the

AlaAT and AspAT activities induced by LT to some extent. This finding may be associated

with increased GS/GOGAT activities, which generate more glutamate to serve as a substrate

for transamination reactions in maize seedlings treated with DA-6 under LT. Therefore, exog-

enous DA-6 could effectively regulate AlaAT and AspAT activities and promote the formation

of alanine from pyruvate and glutamate, the synthesis of aspartate from glutamate and oxalo-

acetate, and subsequently the synthesis of other amino acids.

Most soluble proteins are enzymes that participate in various metabolic pathways in plants;

therefore, the soluble protein content is considered one of the most important indices reflect-

ing the overall metabolic level in plants [52]. Protein synthesis in plants is very sensitive to abi-

otic stresses and is positively correlated with stress tolerance [53]. In the present study, the

amount of foliar soluble protein significantly decreased after LT exposure on the 1st day com-

pared with that in the control (Fig 13). Possible explanations include the following: the prote-

ase activity was enhanced [54], the stability of proteins was altered [55], and/or protein

degradation occurred due to the toxic effects of ROS induced by stress [56]. The maize seed-

lings treated with DA-6 maintained higher levels of soluble protein than the non-DA-6-treated

seedlings in response to LT. The results suggested that exogenous DA-6 might inhibit protein

degradation and/or accelerate the synthesis process of some original proteins; subsequently,

the treated plants may maintain a certain turgor and further ensure that a series of physiologi-

cal and biochemical processes occur normally under LT conditions. Free amino acids are the

building blocks of proteins. The increased foliar free amino acid contents in plants exposed to

LT may be attributed to increases in proteolysis or a decrease in protein synthesis (Fig 6B).

DA-6 may promote the biosynthesis and accumulation of amino acids, which in turn may reg-

ulate osmotic adjustment, protect cellular macromolecules, store nitrogen, and maintain the

cellular pH [57].

Conclusion

Low temperature inhibited the growth of maize seedlings, disturbed the processes of nitrogen

metabolism and photosynthesis, and induced oxidative stress. Under LT conditions, exoge-

nous DA-6 enhanced NO3
− uptake by promoting root growth and stable relative expression

levels of NRT1;1, NRT1;2 and NRT2;5; maintained the transport of NO3
− from roots to shoots

by increasing Gs and Lp; and promoted the assimilation of NO3
− and the conversion of NH4

+

to glutamate by effectively regulating the activities of NR, NiR, GS, GOGAT and GDH, which
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may be associated with improved photosynthesis and antioxidant metabolism. In addition,

exogenous DA-6 maintained transamination through stable AlaAT and AspAT activity and

increased the protein content and decreased the free amino acid content under LT conditions

to ensure normal growth. These results indicate that the negative effects of LT on maize seed-

ling growth can be eased to some extent by exogenous DA-6.
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