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Abstract

In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny
between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of
MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell
sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like
(CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype
was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture
medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human
umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The
perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet,
suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM
produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The
osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of
the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created
construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood
vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the
proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.
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Introduction

The interest on the cell sheet engineering concept for

regenerative medicine purposes has been increasing over the

years. Gradually, this approach is being established as a reliable

alternative for traditional tissue engineering (TE) and regenerative

medicine methods, namely the use of biodegradable scaffolds to

create tissue substitutes and the injection of isolated cells [1]. The

revolutionary concept consisted on the use of poly(N-isopropyla-

crylamide) (PIPAAm), to produce thermoresponsive culture

surfaces that allow cells recovery, within their own extracellular

matrix (ECM), as a sheet with cohesive cell-cell and cell-ECM

interactions [2]. For the past 10 years, several works have shown

the potential of this technology for cornea [3] and myocardial

tissues reconstitution [4], hepatocyte transplantation [5], renal

tube epithelial cell transfer [6] and for bone tissue engineering

applications [7]. Moreover, several reports have also proved the

advantages of cell sheets stacking and of patterned thermorespon-

sive surfaces to obtain co-cultured cell sheets [8–11], to further

enhance the similarities of the created constructs with in vivo

tissues. At the same time, the limited and non-functional

vascularization of thick cell sheet-based tissue engineering

constructs after implantation has been tackled by co-culturing

endothelial cells with other progenitor or committed cells. In fact,

like for traditional TE strategies, the pre-vascularization of cell

sheets-based constructs has been proposed as a way to circumvent

this problem [8,9]. According to Rouwkema and colleagues [12],

the pre-vascularization strategy can dramatically reduce, in

comparison to approaches that depend on scaffold design and

angiogenic factors delivery, the time needed to vascularize the

implant.

Despite endothelial cells being the cells that line the blood

vessels of the entire cardiovascular system [13], perivascular

cells, specially pericytes, were shown to have great impact over

vascularization, contributing to blood vessel stability and

maturation and for the regulation of microvascular blood flow

[14–16]. In addition, stable vessels with lowest turnover rates,

such as in brain and retina, are proved to have highest density
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of pericytes [17]. Thus, the use of endothelial cells for the

successful generation of TE constructs is still dependent on the

recruitment of host mural cells to new formed vasculature,

leading the transition from a growing vascular network to

a quiescent vascular phenotype [18,19]. Recent findings in this

field have catapulted the number of works exploring pericytes

progeny and multipotency, as well as their significance for the

advancement of the TE field [20–23]. Pericytes establish

important direct cell-cell contact with endothelial cells of

immature blood vessels [19] and some studies have suggested

that, in vivo, pericytes may serve as guiding structures aiding

outgrowth of endothelial cells to form early capillary sprouts

[24,25]. Co-expression of several surface markers between

pericytes and mesenchymal stem cells (MSCs), as well as

a mesenchymal/fibroblast-like morphology, led Caplan to

suggest in 2008 [26] that all the MSCs are pericytes and later

[27] that for almost every blood vessel in the body a perivascular

cell niche of MSCs should exist. CD146, a surface marker co-

expressed by a subpopulation of hBMSCs and by some

populations of pericytes [28], is an important adhesion molecule

for vascular endothelial cell activity and angiogenesis [29]. This

transmembrane glycoprotein has important functions in early

and late development and it has been suggested to play an

important role in cancer, angiogenesis, cardiovascular diseases

and placentation [30]. Moreover, a significant number of studies

in the field of cancer research have assigned to CD146 a critical

role in tumor growth and metastasis, as well as in tumor

angiogenesis [31,32]. At the core of an efficient cross-talk

between endothelial cells, mural cells and ECM, are thought to

be a diversity of proteins, namely PDGF, TGF, VEGF,

Collagen, laminin and others, both soluble or trapped on the

ECM [33–35]. Between them, while PDGF and TGF have an

undeniable and well-studied contribution to the pericitic-

endothelial cells interactions and vessel stabilization [33,36],

the function of VEGF seems to be more controversial because

while it mainly stimulates EC proliferation and migration also

seems to ablate pericyte coverage of nascent vascular sprouts

[37]. Interestingly, type- I collagen and laminin-1 are referred

to have positive and negative influence, respectively, over

capillary morphogenesis in vitro [35].

The main goal of this work was to develop a three-dimensional

osteogenic cell dense construct combining endothelial and

perivascular-like cells differentiated from hBMSCs, as a way to

accelerate the vascularization of the engineered construct in vivo

and thus contribute to its survival. We hypothesized that the

incorporation of perivascular-like (CD146+) cells, directly inter-

acting with endothelial cells, could further enhance the effect of

the pre-vascularization by promoting the maturation and stabili-

zation of the newly formed vasculature. To verify our assumptions

a co-culture system was created in vitro, by culturing HUVECs and

induced perivascular-like (CD146+) cells on a confluent layer of

hBMSCs-derived osteogenic cells. The in vivo transplantation of

the co-cultured constructs combining two osteogenic cell sheets

with HUVECs and perivascular-like (CD146+) cells in between

permitted to demonstrate the active role of these cells in the

formation of the new vasculature as well as its influence over its

maturation and stability as shown by the increased number and

blood vessel diameter at early time points. While these findings

and the osteogenic character of the created constructs demonstrate

their potential for bone tissue engineering purposes it is our believe

that it might be also considered as a suitable model for the in vitro

pre-vascularization of TE constructs.

Results

TGF-b1 Induces the Expression of CD146 Molecule and
Causes Cellular Morphological Changes
The expression pattern of some surface markers was followed,

on hBMSCs cultured in multiple conditions, by flow cytometry

and immunocytochemistry using several antibodies.

As previously described by others [28,38], we identified the

presence of CD146+ cells within the mononuclear fraction of

human bone marrow aspirates. Flow cytometry performed on the

mononuclear fraction from marrow at the isolation day, revealed

the presence of a small CD146+ sub-population representing

approximately 2.5% of the total cellular content (Figure 1A). The

frequency of cell markers, such as CD105, CD73 and CD90

normally associated to the mesenchymal phenotype was less than

2% in the mononuclear fraction of the marrow (Figure S1).

However, after selection by adhesion to TCPS these values

increased and were kept stable along different passages. For

a representative sample (P5) cultured in complete a-MEM, the

percentage of CD146+ cells was approximately 46% (Figure 1B),

and more than 98% of the hBMSCs expressed the surface markers

CD105, CD73 and CD90 (Figure S1).

In what concerns the effect of the TGF-b1 over the hBMSCs

surface markers expression, the number of cells expressing CD146

antigen, as well as the amount of CD146 antigen, increased after

the treatment. TGF-b1 is associated with the induction of a mature

smooth muscle phenotype in 10T1/2 cells [36], capable of

stimulating the NG2 pericyte associated marker expression in

mouse embryo fibroblasts [34] and the expression of contractile

proteins in cultured vSMC [39] while it is also referred as

a potential growth inhibitor [23]. In a representative population of

hBMSCs (P5), cultured for 7 days in a-MEM supplemented with

1 ng/mL TGF-b1, more than 97% of the analyzed cells were

positive for CD146 (Figure 1C), and maintained the expression of

CD105, CD73 and CD90 ($98%) (Figure S1). The Immunocy-

tochemistry analysis of the monocultures of the derived CD146+

cells after TGF-b1 treatment showed the ubiquity of the CD146

antigen over their surface confirming the flow cytometry results, as

well as their characteristic ‘‘star morphology’’ with extended

processes between neighboring cells (Figure 1D). This pronounced

morphological change after culture with TFG-b1 (CD146+ cells)

was also clearly observed by contrast phase microscopy in

comparison to hBMSCs (Figure 1 E;F).

Osteogenic Cells Derived from hBMSCs Support
Endothelial and Perivascular-like (CD146+) Cells Adhesion
and Survival Allowing the Fabrication of a Cell Sheet-
Based Construct
The basis of our concept relies on the production of a scaffold-

free construct with osteogenic capacity and suitable properties for

endothelial cell survival, migration and interaction with perivas-

cular-like (CD146+) cells. This approach is essentially dependent

on the fabrication of cells sheets by optimizing ECM production

accordingly to the type of cells used and the envisaged application.

In this work, hBMSCs were cultured for 14 days on PIPAAm

thermoresponsive surfaces (Figure 2) in osteogenic medium with

high concentrations of ascorbic acid in order to obtain osteogenic

cell sheets. After retrieval by temperature decrease (Figure S2), the

nature of the produced cell sheets was analyzed by H&E staining

and by immunohistochemistry for osteocalcin and type-I collagen

deposition. H&E performed on histological sections showed that

hBMSCs form thin layers of contiguous cells embedded in a matrix

(Figure 3A). Additionally, the positive staining for osteocalcin,

Pericytes Contribute for Vascularization
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a protein produced by mature osteoblasts during mineralization

(Figure 3B), and for type-I collagen (Figure 3C), the most

abundant protein in the organic bone matrix synthesized by

active osteoblasts [40], demonstrated the deposition of ECM

characteristic of the commitment of hBMSCs towards the

osteogenic lineage. Endothelial and perivascular-like (CD146+)

cells were cultured on the osteogenic cells at day 7 and maintained

for the total 14 days of culture in order to create co-cultured

osteogenic cell sheets. Histologically, the co-cultured cell sheets

showed a cellular organization similar to single osteogenic cell

sheets but with increased thickness and overlapped cells corre-

sponding to colonies of endothelial and CD146+ cells (Figure 3E).

These results were confirmed by the immunolocalization of CD31

(Figure 3F) and CD146 (Figure 3G) positive cells. As for the single

osteogenic cell sheets, the deposition of osteocalcin (Figure 3H)

and type-I collagen (Figure 3I) attested the osteogenic commitment

of the in vitro system. Both on single and co-cultured cell sheets it

was clear some intense areas of osteocalcin staining (Arrow on

figure 3B;H), which seems to indicate unequal distribution of this

protein over the substrate and differential osteogenic capacity

within the construct. The osteogenic character of the produced cell

sheets was further confirmed by Alizarin Red-S staining (Figure

S2) that revealed an intense staining due to high calcium

deposition.

Confluent Layer of Osteoblastic-like Cells Derived from
hBMSCs Act as a Remodeling and Structural Substrate for
Other Cell Types
In addition to cell-cell interactions and signaling through PDGF

and TGF on co-culture models of ECs and perivascular-like cells,

the ECM serves as an adhesive support in which cells organize in

multicellular structures and change their morphology and

contractibility [35]. With this work a new co-culture model,

composed by 3 different cell types, displaying characteristic

cellular organization and distribution pattern is proposed. When

cultured on the hBMSCs-derived osteogenic cells, HUVECs,

incorporating DiL-AcLDL (red), organized in round colonies from

2 day onward while perivascular-like (CD146+) cells (green),

displaying an elongated morphology (Figure 4A;B), were only

observed from day 5 forward. The presence of a collagen-rich

ECM produced by the osteoblastic cells appears to be the key

regulator for this singular organization since co-cultures of

HUVECs and perivascular-like (CD146+) cells on plastic adherent

substrates did not exhibited the same organizational and

morphological pattern (Figure 4C). The elongated shape of

perivascular-like (CD146+) cells is also shown by vSMC in vivo

and is strongly related to an effectively regulation of vessel

distension and diameter [41,42]. To determine whether the co-

culture medium affected the expression of CD31 and CD146 on

HUVECs and perivascular-like (CD146+) cells, monocultures of

those cell types were maintained for 7 days in co-culture medium.

The maintenance of the CD146 and CD31 phenotype (.98%) on

HUVECs was confirmed. These results confirmed that the

addition of osteo-inductive factors in the endothelial medium

(M199) did not interfere with the endothelial phenotype neither

with their survival. However, a slight decrease of CD146

expression was observed on perivascular-like (CD146+) cells, in

comparison to the cultures in the presence of TGF-b1 (Figure 1C),

both for the number of cells expressing the antigen (84%) as well as

for the amount of antigen (data not shown). Also, morphological

changes on perivascular-like (CD146+) cells were visible when

Figure 1. Representative flow cytometry and immunocytochemistry analysis of human bone marrow derived cells at different
passages and cultured with and without TGF-b1. (A) CD146 expression of bone marrow mononuclear fraction at isolation day; (B) CD146
expression on hBMSCs (P5) cultured in complete a-MEM; (C; D) CD146 expression analysis, by flow cytometry (C) and immunocytochemistry (green)
(D), on hBMSCs (P5) cultured in complete a-MEM supplemented with 1 ng/mL TGF-b1 for 7 days; Evolution of cell morphology of hBMSCs (E) before
and (F) after culture in a-MEM +1 ng/mL TGF-b1 for 7 days. For immunocytochemistry DAPI (blue) was used as nuclear staining. Right upper corner
image in D represent a higher magnification.
doi:10.1371/journal.pone.0041051.g001
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Figure 2. In vitro culture methodology to obtain a stacked co-cultured cell sheets (CS)-based model. hBMSCs were seeded and cultured
for 7 days in osteogenic medium in thermoresponsive dishes. To obtain co-cultured CS, HUVECs and perivascular-like (CD146+) cells were cultured, at
a ratio of 4:1, on the osteogenic CS in M199 supplemented with osteogenic factors for further 7 days (experimental). Control homotypic osteogenic
CS were maintained in osteogenic medium. At day 14, CS were retrieved from the thermoresponsive dishes by temperature decrease and the
experimental model was built by stacking of a homotypic osteogenic CS onto the co-cultured CS using a poly(vinylidene diuoride) (PVDF) membrane.
doi:10.1371/journal.pone.0041051.g002

Figure 3. Histological characterization of single and co-cultured cell sheets after 14 days in culture in osteogenic medium and after
detachment by temperature decrease and contraction. Single osteogenic cell sheet derived from hBMSCs A) after H&E staining and
immunostained for (B) osteocalcin and (C) type-I collagen; Co-cultured cell sheets after (E) H&E staining and immunostaining for (F) CD31, (G) CD146,
(H) osteocalcin and (I) Type-I collagen. Identification of positive signal was determined in comparison to immunocytochemistry negative controls
(D;J). * PVDF membrane used to protect cell sheet during processing.
doi:10.1371/journal.pone.0041051.g003
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cultured in the co-culture medium (Figure S3). Immunocytochem-

istry for CD146 on confluent hBMSCs after 14 days of induction

with osteogenic medium revealed no connections mediated by

CD146 adhesion molecule, nor Dil-AcLDL uptake (Figure 4D).

Transplanted Pre-vascularized Osteogenic Cell Sheets
Show Osteogenic and Angiogenic Potential
Explants were histologically analyzed in order to infer about the

osteogenic and angiogenic potential of the transplanted cell sheet-

based constructs. Single osteogenic cell sheets were used as control

condition for in vivo experiments. H&E staining revealed the

presence of some perfused blood vessels around and inside

transplanted cell sheets after 7 days of implantation, both on

control and experimental conditions (Figure 5A–D). The osteo-

genic character of the retrieved samples was confirmed by the

identification of osteocalcin (Figure 5E–H).

The contribution of the transplanted HUVECs for the de-

velopment of new blood vessels, namely their integration in the

vascular network within the explants, was confirmed by the

presence of human CD31 positive cells on those vessels both at 7

and 21 days of implantation (Figure 6A;B). In what concerns the

contribution of the perivascular-like (CD146+) cells, it is interesting

to find a differential expression of CD146 antigen on the explants

blood vessels both on experimental and control conditions

(Figure 6C–F), as not all the vessels were labeled. In order to

specifically identify human CD146+ cells, the co-localization of

CD146 antigen and of human mitochondria was performed

(Figure 6K;L). The transplanted human cells were identified

within the tissue with osteogenic characteristics resulting from the

cell sheet construct implantation (Figure 6K). Moreover, human

cells co-expressing the CD146 surface marker, corresponding to

perivascular-like (CD146+) cells and HUVECs, were also found

after 7 days of implantation, as part of a vessel-like structure

confirming the involvement of the transplanted cells in the

formation of a new vascular network (Figure 6L). The diameter of

CD146+ blood vessels, as well as the total number of new CD146

positive blood vessels formed were assessed both for experimental

and control conditions (Figure 6M;N). Only the blood vessels

formed between skin skeletal muscle and the mice connective

tissue were considered. A significant increase of the diameter of

CD146 stained blood vessels was observed, in comparison to the

control, in the experimental condition after 7 (p#0.01) and 21

(p#0.05) days of transplantation. The same was observed

regarding the total number of CD146 stained vessels although

a significant difference (p#0.05) was only observed for 7 days of

Figure 4. Immunocytochemistry for CD146 expression and Dil-AcLDL uptake by hBMSCs monocultures and co-cultures with
perivascular-like (CD146+) cells and HUVECs, after 14 days of culture. (A,B) Co-cultures on hBMSCs-derived osteogenic cells showing
endothelial colonies (red) and elongated perivascular-like (CD146+) cells (green) interacting with HUVECs and with them-self (Arrow). (C) Co-cultures
of HUVECs (red) and perivascular-like (CD146+) cells (green) on plastic adherent conditions showing random organization. (D) Confluent layer of
hBMSCs-derived osteogenic cells lacking the expression of CD146. DAPI (blue) was used as nuclear staining.
doi:10.1371/journal.pone.0041051.g004
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implantation. The CD146 stained blood vessels on the experi-

mental conditions maintained a size of approximately 20 mm from

7 to 21 days while in the control depicted an average diameter of

15 mm.

Discussion

The main objective of this work was the development of a model

combining osteogenic, endothelial and perivascular-like cells, as

a strategy to enhance the vascularization of bone TE constructs.

Considering that the pre-vascularization of tissue engineered

substitutes constitutes a valuable approach to improve its survival

after transplantation, we hypothesized that the incorporation of

perivascular-like (CD146+) cells, directly interacting with endo-

thelial cells, could further enhance that effect by promoting the

maturation and stabilization of the newly formed vasculature.

Thus, to test our hypothesis, we established a human cell-sheet

model based on our previous works that showed that rat bone

marrow-derived mesenchymal stem cells have the capacity to form

osteogenic cell sheets and, in combination with HUVECs, lead to

improved vascularized bone tissue formation [7,43]. Due to

distinct osteogenic differentiation patterns between rat and human

MSCs [44] the two main features needed to produce a workable

cell sheet-based construct, the secretion of ECM that has to be

sufficient to allow cell sheet detachment and confer robustness,

and the mineralization degree that cannot hinder its detachment

(Figure S1), were optimized. Standard osteogenic conditions gave

rise to a fragile monolayer of cells, involved by an ECM composed

by collagen type-I and osteocalcin that was not sufficient to allow

cell manipulation. Therefore we were able to compensate the

deficient integrity of the osteogenic cell sheets by inducing ECM

production through the supplementation of the osteogenic

medium with ascorbic acid, known to stimulate proliferation rate

and induce the secretion of ECM [45], at a concentration 3 times

higher than the standard conditions. The higher contractibility

degree of the cell sheets after detachment is not expected to have

consequences for their application since the standard recovery

procedures, involving the use of a PVDF membrane or gelatin

coated manipulators, avoid that effect.

Extensive research concerning the role of pericytes in vascula-

ture stabilization has been contributing for the discovery of

possible new pericyte functions, including regulation of endothelial

proliferation and differentiation, microvascular perfusion, perme-

ability regulation through paracrine agents [46,47] and regulation

of epithelial proliferation and tissue regeneration [48]. The

potential role of CD146+ cells, selected from bone marrow, to

act as pericytes was proposed by Caplan [26]. According to

Anfosso and colleges [49], CD146 can act as a signaling molecule

in the dynamics of cytoskeleton rearrangement on HUVECs. In

this work we showed the inducible characteristic of this molecule,

both in vivo and in vitro, by demonstrating changes on the CD146

expression of perivascular-like (CD146+) cells and the consequent

morphological variation observed under different in vitro condi-

tions, such as culture media and the presence of TGB-b1, and the

existence of CD146 negative and positive blood vessels in vivo.

To date, works regarding the study of cellular interactions

between osteoblasts and endothelial cells in co-culture systems

resulted in a significant collection of new data concerning the

molecular intervenients [50–56]. However, as far as we know, the

behavior of endothelial and perivascular-like (CD146+) cells,

Figure 5. H&E staining and osteocalcin immunolocalization on explants retrieved 7 and 21 days after transplantation of cell sheet-
based constructs. (A–D) H&E staining on (A;B )control and (C;D) experimental explants after 7 (A;C) and 21 days (B;D) of subcutaneous implantation
showing their localization and morphology. (E–L) Immunolocalization of osteocalcin on (E;F) control and (G;H) experimental explants at 7 (E;G) and 21
(F;H) days of implantation revealing osteogenic commitment on both test conditions. (I–L) immunostaining negative control of respective E–H
conditions.
doi:10.1371/journal.pone.0041051.g005
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cultured together over a confluent layer of osteoblastic cells, was

not documented before. In this work, the ability of the confluent

layer of osteoblastic cells derived from hBMSCs to act as an

organizational structure for endothelial and perivascular-like

(CD146+) cells was shown. In the absence of the osteogenic

substrate endothelial and perivascular-like (CD146+) cells were

randomly distributed. When cultured on the osteoblastic cells

endothelial cells organized themselves in colonies after two days.

This organization has been previously shown [52] but others have

also reported spontaneously self-assembly of endothelial cells in

tubular-like structures when co-cultured with MSCs or osteopro-

genitor cells on plastic culture surfaces [50,51,57] or as spheroids

[54]. The micro and macrovascular character of the different

endothelial cells that have been studied might contribute for the

distinct observations however, a preliminary work developed in

our lab with human dermal microvascular endothelial cells as the

endothelial cells in the proposed co-culture system, lead us to

confirm that other factors than the cell source have influence over

the organization of the endothelial cells in vitro (Data not shown). It is

well known that ECs behavior and functioning are under

regulation of angiogenic cytokines, such as VEGF, however the

appropriate ECM is equal or more important in terms of EC

migration, survival and proliferation [35]. In fact, the importance

of the ECM produced by osteoprogenitor cells for the storage and

release of chemotactic factors [58,59] as well as in the

establishment of homotypic and heterotypic gap junctions for

cell-to-cell communication on endothelial and osteoblastic cells co-

culture models [60,61] has been previously shown. TIMP-3,

a matrix metalloproteinase highly expressed by pericytes [62],

osteoblastic cells, mesenchymal stem cells and endothelial cells

[63] has been implicated in the inhibition of endothelial tube

formation [64], nevertheless, it is also strongly involved in

promoting cell-cell junction formation and stability [35].

Interestingly, perivascular-like (CD146+) cells cultured on the

osteogenic substrate also altered their ‘‘star-shape’’ morphology

and reorganized them-selves in cord-like structures. In addition to

the effect of the co-culture medium over perivascular-like

(CD146+) cells morphology and of the osteogenic ECM, the cell-

cell interactions and/or paracrine signaling are likely to contribute

to the observed behavior. Interactions between HUVECs and

CD146+ cells might be mediated by the release of some signaling

molecules, such as PDGF-b, FGF and TGF-b, by HUVECs

[36,65]. The release of TGF-b by HUVECs is also a possible

explanation for the maintenance of CD146 expression by

perivascular-like (CD146+) cells in our co-culture, as shown by

immunocytochemistry. According to Hirsch and D’Amore [66],

TGF-b is released in a latent form and its activation is led by

endothelial cells-pericytes contact, which corroborates the exis-

tence of causative cell-cell interactions in our model. PDGF-b and

FGF are chemoattractants for vSMCs and mesenchymal derived

cells [67]. Recently, Caplan and Correa [68] suggested a critical

role for PDGF-b in the vascular-pericyte-MSC-osteoblast dynam-

ics as a central connector between cellular components and

osteoblast differentiation program. Although the nature of the

mechanisms involved on this crosstalk were not addressed, the

study of endothelial cells, pericytes and osteogenic ECM

interactions are essential to understand how sprouting morpho-

genesis and vessel stabilization are regulated.

In addition to the in vivo osteogenic potential of the human cell

sheet-based constructs, we also confirmed the integration of

HUVECs within the host developed vasculature, thus demon-

strating their active role in the angiogenic process, similarly to

what was observed for rat cell sheet-based constructs [7].

Additionally the integration of human cells in host connective

tissue and the organization of the transplanted human cells in

vessel-like structures was confirmed. The specific contribution of

perivascular-like (CD146+) cells was, however, not evident due the

cross-reactivity of the CD146 antibody with mouse antigens and

because CD146 is also expressed by endothelial cells. We can

correlate the diameter of the CD146 positive blood vessels, higher

on the experimental condition, with the presence of perivascular-

like (CD146+) cells and with vessels maturation and stability.

According to a theoretical model proposed by Pries et al. [69],

increased vessel diameter and wall mass are needed to ensure

stable vascular adaptation. Also, other work has demonstrated the

development of larger caliber vessels in vivo when SMC were co-

engrafted with EC into collagen gels, contributing to accelerate,

stabilize and promote remodeling of tissue engineered microvessels

[70]. This is considered indicative of vessel maturation and an

effect of the recruitment of mural cells that induce vessel

maturation by promoting the structural stabilization [71].

Furthermore, considering the importance of CD146 molecule

for angiogenesis, the observed differential expression of CD146 on

the developed vasculature seems to indicate that the expression of

this molecule is related to increased blood vessels stability.

In summary, this work proved the capacity of hBMSCs to form

osteogenic cell sheets and its role in modulating the assembly of

two cell types intimately related to vasculature, the endothelial

cells and perivascular-like (CD146+) cells. Moreover, the capacity

of the human cell sheet-based construct to form vascularized

osteogenic tissue in vivo with improved maturation and vessel

stability reinforced that the proposed model constitutes a suitable

starting element to further develop thicker cell dense constructs.

This can be easily achieved by combining several layers of cells,

including pre-vascularized cell sheets. In this context, the

conception of using bone marrow cells as a source of perivas-

cular-like and osteogenic-derived cells to create a co-culture model

combining these with endothelial cells appears to be a useful

strategy for the in vitro pre-vascularization of TE constructs and to

improve its survival after implantation by promoting a stable and

mature supplying vasculature.

Materials and Methods

Cell Isolation and Culture
Bone marrow aspirates were obtained after informed consent

from patients undergoing hip replacement surgery, at Hospital da

Prelada, Porto, Portugal. Human bone marrow-derived mesen-

chymal stem cells (hBMSCs) were isolated by gradient centrifu-

gation as previously described [72] and maintained in complete a-
MEM (Gibco, USA) supplemented with 2 ng/mL FGF-b (Pepro-

Tech, USA). Cells were used at passage between 2 and 3.

Figure 6. Angiogenic potential of the transplanted cell sheet-based constructs. Immunohistochemistry for (A;B) CD31 and (C–F) CD146 on
(C;D) control and (E,F) experimental conditions at days 7 (C;E) and 21 (D;F) of implantation; (G–J) Immunostaining negative control of respective
conditions. R negative blood vessels for CD146; c positive blood vessel for CD146. (K) Human cells (green) detected using human-specific anti-
mitochondria antibodies on the experimental condition 7 days after implantation. (L) Co-localization (yellow) of CD146 (red) and human-specific anti-
mitochondria (green) revealed cellular assembling in a blood vessel-like structure (arrow) on the experimental condition 7 days after implantation.
DAPI (blue) was used as nuclear staining. Representation of (M) the mean diameter and (N) the number of CD146 positive vessels present on control
and experimental conditions at days 7 and 21 of implantation. *p#0.05; **p#0.01.
doi:10.1371/journal.pone.0041051.g006
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Umbilical cords (UCs) obtained by caesarean section from healthy

donors were provided by Hospital de S. Marcos, Braga, Portugal

and delivered to the cell culture laboratory in transport buffer,

containing 0.14 M NaCl, 0.004 MKCI and 0.011 M glucose in

0.001 M phosphate buffer at pH 7.4. The isolation of the human

umbilical cord vein endothelial cells (HUVECs) was carried out as

described in the literature by Jaffe and others [73], and cells were

used up to passage 5. Biological samples were provided under

a protocol approved by the Hospitals Ethical Committees and

established with the 3B’s Research Group.

Induction of CD146+ Phenotype
hBMSCs were cultured for 7 days in complete a-MEM

supplemented with 1 ng/mL TGF-b1 (ebiosciences, USA).

Culture medium was replaced twice during culture time and the

differentiated CD146+ cells were used as perivascular-like

(CD146+) cells to establish the co-cultures.

Co-cultured Cell Sheets Fabrication
hBMSCS, at a density of 35.000 cells/cm2, were cultured on

thermo-responsive dishes (Nunc, Danmark) for 7 days in complete

a-MEM (Gibco, USA) supplemented with osteogenic differentia-

tion factors, 10 mM b-Glycerophosphate (Sigma, USA), 150 mg/
mL ascorbic acid (Sigma, USA) and 161028 M dexamethasone

(Sigma, USA). HUVECs and perivascular-like (CD146+) cells, in

a total of 45.000 cells/cm2 and at a final ratio of 4:1, were then

seeded onto the confluent layer of hBMSCs and cultured in

Medium 199 (Sigma, USA) supplemented with the osteogenic

differentiation factors described above. After further 7 days, co-

cultured cell sheets were retrieved by temperature decrease as

previously described [74], fixed with 3.7% buffered formalin and

paraffin embedded for histological characterization. For immuno-

fluorescence characterization, the co-cultures were established on

tissue culture polystyrene (TCPS) coverslips under the described

conditions.

Cell Sheet Stacking and Transplantation
Two types of cell sheets, single monocultured osteogenic cell

sheets and co-cultured osteogenic cell sheets stacked with a second

monocultured osteogenic cell sheets were transplanted, respec-

tively as control and experimental conditions. To stack the two cell

sheets, a poly(vinylidene diuoride) (PVDF) membrane (Millipore,

USA) with 2 cm of diameter was placed over an osteogenic cell

sheet and incubated at RT for 15 minutes. After this time, the cell

sheets spontaneously detached from thermoresponsive dishes and

were attached to the membrane which allowed its manipulation

and stacking over the co-cultures, still in TR dishes. The all

construction was further incubated at room temperature for 15

minutes to allow the detachment of the co-cultured cell sheet from

the TR dish and adhesiveness to the osteogenic one on top,

forming a double cell sheet construct that combined two

osteogenic cell sheets with HUVECs plus perivascular-like

(CD146+) cells in between.

The transplantation of in vitro cultured cells sheets was carried

out as previously reported [75]. Briefly, 5 weeks old male nude

mice (Charles River, USA), n= 5 per condition and timepoint,

were anesthetized with a mixture of ketamine (1.2 mg/mouse s.c.,

ImalgeneH 1000, Merial, Lyon, France) and medetomidine

(20 mg/mouse s.c., DomitorH, Orion Corp., Finland) prepared in

physiological serum. After the confirmation of analgesia/anaes-

thesia, dorsal skin flap was cut opened using 363 cm cutting sides.

Recovered cell sheets were placed on mouse subcutaneous dorsal

flap and left to adhere to the connective tissue of dorsal skin for 5

minutes. After that time, the PVDF membrane was removed, and

the skin flap was brought back to the original location and sutured.

Cell Sheets Recovery
At each time point, animals were euthanized with an in-

tracardiac overdose of anesthesia and implants were recovered for

histological characterization by removing the skin flap following

the suture marks. Skin flaps were then pinned on a piece of cork to

prevent curling up and emerged in 3,7% formalin for 24 hours at

4uC before processing.

Flow Cytometry
Flow cytometry was performed using mouse anti-human

antibodies CD146 (unconjugated, abcam, UK), CD73 (PE-

conjugated, BD biosciences, USA), CD90 (APC-conjugated,

ebiosciences, USA) and CD105 (FITC-conjugated, AbD Serotec,

UK). Experiments were performed using cells in different passages,

from isolation day to P6, and obtained from different donors

(n = 3). hBMSCs, perivascular-like (CD146+) cells and HUVECs

were trypsinized, counted and resuspended in a 2% BSA (Sigma,

Canada) solution in PBS (BSA/PBS) at a concentration of

2500 cells/mL. For indirect staining, cells were first incubated

for 45 min at 4uC, protected from light, with CD146 antibody

(1:100). After a washing step with PBS, cells were incubated for 45

minutes, protected from light, at room temperature with AF488

conjugated secondary antibody (goat anti-mouse, Molecular

probes, USA) at a concentration 1:500. For direct staining, cells

were incubated for 20 minutes at room temperature, protected

from light, with the fluorescence-conjugated primary antibodies

listed above. After a washing step, cells were resuspended in PBS

and 20.000 counts were analyzed using a FACSCalibur flow

cytometer (BD Biosciences) and the CELLQuest software V3.3.

Immunofluorescence
Monocultures of perivascular-like (CD146+) cells and co-

cultures established on the TCPS were incubated for 30 minutes

with 3% BSA/PBS at room temperature. Then, cells were washed

with PBS and incubated overnight at 4uC with mouse:anti-human

CD146 antibody (1:100) diluted in 3% BSA/PBS. Cells were then

washed in PBS and incubated for 1 hour at room temperature

with AF488 conjugated secondary antibody (goat:anti-mouse,

Molecular probes, USA), diluted in 3%BSA/PBS to a 1:500

concentration. Nuclei were counterstained with DAPI (3 mg/mL)

by incubation for 30 minutes at room temperature. The co-

cultures were previously incubated overnight at 37uC in humid-

ified atmosphere and 5%CO2 with Dil-AcLDL (Molecular Probes,

USA), at a final concentration 0.2 mg/mL and before fixation, to

label HUVECs.

For the co-localization of human cells and CD146+ cells on the

in vivo explants at different implantation periods, samples were

treated for 5 minutes with alizarin red-S solution (2%) (Sigma,

China) in order to quench auto-fluorescence. Mouse:anti-human

CD146 and human specific anti-mitochondria (Milipore, USA)

antibodies were incubated for 1 hour at room temperature

followed by the incubation with AF488-conjugated (donkey anti-

rabbit, Molecular probes, USA) and AF594-conjugated secondary

antibodies (goat anti-mouse, Molecular probes, USA) at a concen-

tration of 1:500 for 1 hour at room temperature. DAPI was used as

nuclei staining. Samples were analyzed using an Axioplan Imager

Z1 fluorescence microscope (Zeiss, Germany) and images were

acquired and treated with AxioVision V.4.8 software.
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Hematoxylin and Eosin Staining
Histological sections (5 mm) were first deparaffinized with Clear-

rite3 (Thermo-Scientific, Germany) and rehydrated in graded

alcohol series. Samples were stained with Mayer’s Haematoxylin

(Sigma, USA), for 5 minutes, followed by a washing under tap

water. Then samples were incubated in eosin solution (BioOptica,

Italy) for 45 seconds, dehydrated in grade alcohol series and

mounted.

Immunohistochemistry
Immunohistochemistry was performed both for in vitro cultured

cell sheets and in vivo explants using mouse:anti-human antibodies

against CD146 (1:100) (abcam, UK), CD31 (1:40) (Dako, USA),

Osteocalcin (1:100) (AbD Serotec, UK) and type-I collagen

(abcam, UK). Histological sections (5 mm) were first deparaffinized

with Clear-rite3 (Thermo-Scientific, Germany) and rehydrated in

graded alcohol series, followed by antigen retrieval with 10 mM

sodium citrate buffer solution (pH 6) at 98uC for 20 minutes. For

intracellular antigens, sections were treated with 0.5% Triton

X100 (Sigma, USA) in PBS for 10 minutes. Unspecific binding

was blocked using 2.5% normal horse serum (NHS) (Vector Labs,

USA) for 30 minutes, flowed by 3 washing steps, 5 minutes each,

with PSB-0.1%Tween20 (Sigma, Germany). Antibodies were

diluted in 1.5% normal horse serum and incubated at room

temperature for 1 hour. Sections were then washed 3 times in

PBS-Tween, 5 minutes each, and the endogenous peroxidase

activity was quenched with 0.3% in methanol (30 minutes). After

a washing step, 3 times in PBS-Tween, 5 minutes each, sections

were incubated for 30 minutes with biotinylated anti-mouse

secondary antibody (Vector Labs, USA). After washing, sections

were incubated for 30 minutes with R.T.U. vectastain elite ABC

reagent (Vector Labs, USA) before HRP enzymatic activity was

revealed with DAB (Vector Labs, USA). Nuclei were counter-

stained with Mayer’s hematoxylin followed by sections dehydra-

tion in graded ethanol series and mounting. In the case of in vivo

samples, mouse Ig blocking reagent (M.O.M. kit, Vector Labs,

USA) was applied for 1 hour before primary antibody incubation

in order to reduce background. Samples were analyzed using the

Axioplan Imager Z1 fluorescence microscope (Zeiss, Germany)

and images were acquired and treated with AxioVision V.4

software.

Statistical Analysis
Quantification of the mean diameter and the number of CD146

positive blood vessels formed on control and experimental groups

in vivo was conducted in 3 animals per group and replicated in at

least 6 sections per condition. The statistical analysis was

performed using one-way ANOVA and results are considered

statistically different for P values lower than 0.05.

Supporting Information

Figure S1 Representative flow cytometry analysis of
CD73, CD90 and CD105 expression on hBMSCs. (A;B)

Expression of MSCs markers CD73, CD90 and CD105 on bone

marrow mononuclear fraction at isolation day. (C;D) CD73,

CD90 and CD105 expression on hBMSCs (P5) cultured in

complete a-MEM; (E;F) CD73, CD90 and CD105 expression on

hBMSCs (P5) cultured for 7 days in complete a-MEM

supplemented with 1 ng/mL TGF-b1.
(TIF)

Figure S2 Macroscopic view of hBMSCs cell sheets
cultured in thermoresponsive dishes with osteogenic
medium. (A) Osteogenic cell sheet cultured for 14 days in

osteogenic medium after detachment and contraction. (B)

Osteogenic character of cell sheet after 21 days in culture with

osteogenic medium reveal by Alizarin Red-S staining.

(TIF)

Figure S3 Contrast phase microscopy of perivascular-
like (CD146+) cells cultured for 7 days in Medium 199
supplemented with osteogenic factors. Morphological

chances were visible when compared with the same cells in

culture with complete a-MEM or a-MEM supplemented with

TGF-b1.
(TIF)
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