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Objective: Turn-amplitude clouds were widely used in automatic

electromyography (EMG) interference pattern analysis. Earlier works employed

the intercept ± 2SD (standard deviation) of the linear regression equation as

the upper and lower boundaries of the clouds. The goal of this study was to

employ the linear regression method and percentile method to calculate the

reference value of turn-amplitude clouds, identify the determining criteria in

accordance with the receiver operator characteristic curve (ROC), and analyze

the sensitivity and specificity of the linear regression cloud, percentile cloud,

and quantitative assessment of the motor unit potential (QMUP).

Methods: First, we explore what factors a�ect the number of turns per second

and the mean amplitude. Then, their logarithms were taken for the normal

test. All muscle data were used to calculate the reference values of percentile

clouds. However, the reference values of the linear regression clouds were

obtained for the muscles with a bivariate normal distribution, homogeneous

variances and a linear correlation. We calculated the prediction interval with

the standard errors of the intercept and slope of the linear regression equation,

which can determine the upper and lower boundaries of the linear regression

clouds. Furthermore, we obtained ROCs of these clouds, which were used

as the determining criteria to determine the optimum cut-o� values. Finally,

our study analyzed the sensitivity and specificity of the linear regression cloud,

percentile cloud, and QMUP.

Results: We here presented the reference values and ROCs of the linear

regression clouds and percentile clouds. We suggest the determining criteria

be based on ROCs. The areas under the curve (AUC) of both clouds are larger
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than 0.8, revealing that they have significant diagnostic value. Our results

display that the specificities of the linear regression clouds, percentile clouds,

and QMUP are almost identical to each other, whereas the sensitivity of

percentile cloud is higher than those of QMUP and linear regression clouds.

Conclusion: According to ROCs, the researchers determine the determining

criteria of the linear regression clouds and percentile clouds. Our findings

suggest that the percentile clouds possess a wide application range and

significant diagnostic value, therefore it may be the optimum for automatic

EMG interference pattern analysis.

KEYWORDS

electromyography, linear regression clouds, percentile clouds, reference values,

sensitivity, specificity

Introduction

Needle electromyography (EMG) plays a key role in

medical electrodiagnostics. By observing insertional electrical

activity, spontaneous electrical activity, quantitative assessment

of the motor unit potential (QMUP), and visual assessment

of the interference pattern, we analyzed electrical activity of

skeletal muscle to identify neuropathic or myopathic lesion.

In particular, QMUP reveals the electrical activity of the

motor units through analyzing the motor units activated by

small force contraction of muscle. By contrast, via the visual

assessment, we observe the interference pattern formed by the

recruitment of various motor units during maximal voluntary

muscle contraction. This assessment can evaluate a wider range

of motor units. There is no difference in the sensitivity and

specificity of QMUP and the visual assessment (1).

In 1941, Buchthal and Clemmensen (2) proposed QMUP.

This method was suitable to the single motor unit potential

(MUP) of muscle contraction force that was only about 4%

of the maximum random contraction force. Therefore, the

QMUP only reflects the state of the motor unit activated by

small force contraction. Also, the collection of motor units

and measurement of its duration depended on the subjective

judgment of EMG examiners (2, 3). To improve inspection

efficiency and objective judgment, there was an urgent need

to develop a simple inspection method to implement easily.

Currently, researchers have developed a variety of automatic

analysis techniques of electromyography (EMG) interference

pattern, including the turn-amplitude clouds (4–7), the number

of small segments (NSS)-activity clouds analysis (8–10), and

quantitative evaluation of interference patterns on EMG in

Abbreviations: AUC, area under the curve; EMG, Electromyography;

MUP, motor unit potential; QMUP, Quantitative assessment of the motor

unit potential; ROC, receiver operator characteristic curve; SD:standard

deviation.

neuropathy (11). It is worth mentioning that turn-amplitude

clouds were widely used for these methods.

In 1983, Stålberg et al. first employed the mean amplitude

and the number of turns per second at various levels of muscle

contraction force to establish clouds in the Plane Rectangular

Coordinate System. The upper and lower boundaries of the

clouds were determined by the ±2 standard deviation (SD)

of the regression line in the linear regression equation, which

yields the 95% prediction interval for the mean amplitude at

a specific number of turns per second (4). Nandedkar et al.

also used the identical method to determine the upper and

lower boundaries of the clouds (5). To determine the upper and

lower boundaries of the clouds, other turn-amplitude clouds

investigations (6, 7) usually employ intercept ± 2 SD of the

linear regression equation. Jabre et al. (6) found that the linear

regression was only suitable for muscle contraction from small

to moderate force, when the contraction force was increased

from 50% of the maximum contraction force, there was no

linear correlation between the number of turns per second and

the mean amplitude. In a word, the upper and lower borders

of the clouds created using the linear regression approach in

the study mentioned above contain the confidence interval of

the overall mean of amplitude, and they did not provide the

evidence of judgment standard of the clouds. In this study, the

intercept and slope of the linear regression equation were used

to determine the upper and the lower boundaries of the clouds

that contains the prediction interval of the mean amplitude

corresponding to the number of turns per second, rather than

the confidence interval.

There are restrictions on the application of the linear

regression clouds, namely, it can be applied only when there

is linear correlation between the number of turns per second

and the mean amplitude with normal distribution and the linear

regression equation can be established. However, some muscle

data do not fit the condition listed above, which makes it

impossible to develop the linear regression clouds. Therefore,

we found the percentile clouds have the following advantages

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.917308
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2022.917308

over the linear regression clouds: first, it does not require

normal distribution of data and is appropriate for all muscles;

second, the data collected from the slightest contraction force

to the strongest contraction force can reflect the information

of more motor units more comprehensively; third, there was

no significant statistical difference in the specificity of the

linear regression clouds, percentile clouds, and QMUP, but the

sensitivity and Youden’s index of the percentile clouds were the

highest, indicating that it has significant diagnostic value.

This study analyzes the factors that affect the number of

turns per second and the mean amplitude of electromyographic

interference patterns. By the linear regression equation, we

calculated the prediction interval of themean amplitude with the

given the number of turns per second, which can determine the

upper and lower boundaries of the linear regression clouds. To

achieve this goal, the linear regressionmethod and the percentile

method are adopted to establish reference values of EMG clouds

for the eight muscles commonly used in EMG examination.

With ROCs as the judging criteria of two clouds, the sensitivity

and specificity of the linear regression clouds, the percentile

clouds, and QMUP are analyzed.

Methods

Healthy subjects and patients information

This study was approved by the Ethics Committee of

the First Affiliated Hospital of Kunming Medical University

(Approval No. 2020.1.13). All subjects were informed and

signed informed consents. From February 2020 to July 2020,

healthy subjects were recruited in the First Affiliated Hospital

of Kunming Medical University, and the data were collected to

establish reference values of clouds. From August 2020 to April

2021, the patients who were hospitalized in the First Affiliated

Hospital of Kunming Medical University were informed and

received an EMG examination. Then, the collected data were

used to analyze the sensitivity and specificity of QMUP, the

linear regression clouds, and percentile clouds.

The inclusion criteria for healthy subjects are (1) ≥18

years old; (2) healthy people; (3) no neurological symptoms

or signs. The exclusion criteria for healthy subjects are

(1) abnormal blood coagulation function; (2) suffering from

systemic disease; (3) muscle strength to measure manually

below level 5. The inclusion criteria for inpatients are (1) ≥18

years old; (2) accepting nerve conduction study and needle

EMG. The exclusion criteria for inpatients are (1) unclear

diagnosis; (2) neuromuscular junction disease; (3) abnormal

blood coagulation function; (4) suffering from systemic diseases.

Two physicians with EMG examination qualifications

collected data and determined the measurement duration of

motor unit potential (MUP). The results of EMG diagnosis

were performed by an attending physician. The examiners

have received strict professional training and did not know the

patient’s final clinical diagnosis.

The data collection of healthy volunteers involved

inquiry of medical history and comprehensive nervous

system examination. First, the nerve conduction studies

were performed. Then, the needle EMG examinations were

carried out to evaluate the insertional activity, spontaneous

activity, QMUP, and the interference pattern of each muscle.

Normal muscles of healthy volunteers were included in the

healthy group.

The data collection of inpatients involved inquiry of medical

history and neurological physical examination. According to

the results of the nerve conduction study, insertional activity,

spontaneous activity, QMUP, and the interference pattern of

EMG, the muscles of inpatients were classified into neuropathic

lesion group, myopathic lesion group, or healthy muscles group,

respectively. The data from −20% to +20% of the average

duration of the normal MUP developed in our research unit was

considered as normal values (12).

Recording and analysis

The data were collected using EDX20.0 EMG machine

from Nicolet, USA. The concentric needle electrodes are from

Technomed Europe, Netherlands, with a length of 37mm, a

diameter of 0.45mm, and a recording area of 0.068 square

millimeter. The parameter settings were scanning speed of 20

ms/div, gain of 1 mV/div, filter bandwidth from 20 to 10 kHz,

data sampling rate ≥90 kHz/channel, ADC capacity of 24 bits,

noise suppression ≤1 µV, common -mode rejection ratio ≥120

dB, notch filter of 50Hz, and signal acquisition time of 400 ms.

Data collection of electromyographic interference pattern:

For each subject, the data collection was performed on muscles

of different name, including sternocleidomastoid, deltoid, biceps

brachii, extensor digitorum communis, abductor digiti minimi,

vastus medialis, tibialis anterior, and gastrocnemius. Four parts

were randomly selected from each muscle. The examinees were

instructed to contract the muscles against the examiner, starting

from a small contraction force to the maximum contraction

force (see Supplementary material). Under different contraction

forces, five data records were collected for each part of the

muscle, and the data collection interval was 1min In this

process, a total of 20 data records were collected for each muscle,

and each data record contained the number of turns per second

and its corresponding mean amplitude. The data records of

the muscles of same name collected from different subjects

were classified into the same group, and the dominant and

non-dominant limb muscles were distinguished.

Since most of the number of turns per second and mean

amplitude of the collected data were not normally distributed,

their logarithms based on 10 were taken to test the normality.

The use of t-test or one-way analysis of variance or Wilcoxon

rank sum test or Kruskal-Wallis H test depended on whether
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FIGURE 1

Developing method of the linear regression clouds. (A) There are 260 data points for the right gastrocnemius muscles in the older men. Scatter

plots are made using the number of turns per second and the mean amplitude. (B) Take lg (number of turns per second) as the independent

variable and lg (mean amplitude) as the dependent variable for linear correlation analysis. A linear regression relationship exists between the two

variables, with the linear regression equation of Y = a + b*X. (C) The standard error of intercept and slope of the linear regression equation are

used to determine the upper and the lower boundaries of the cloud that contains the prediction interval of the mean amplitude corresponding

to the number of turns per second. (D) After exponentiating the logarithm, the original data of the number of turns per second is used as the

independent variable. The standard error of the intercept and slope are substituted into the linear regression equation. Each independent

variable (the number of turns per second) has two corresponding dependent variables (the mean amplitude), as the upper and lower boundaries

of the clouds. And the 99th percentile of the number of turns per second as the right boundaries of the clouds.

the lg (number of turns per second) and lg (mean amplitude)

were normally distributed and the variances were homogeneous.

Also, lg (the number of turns per second) and lg (the

mean amplitude) of the dominant and non-dominant limb

muscles groups, groups of different genders, and groups of

different age were compared to find whether there are the

differences of statistical significance. If there were no differences,

the data of the muscles of same names were combined to

establish a reference value; otherwise, the reference values were

established separately.

Two methods to develop the clouds

Twomethods were exploited to develop clouds and establish

reference values:

(1) The linear regression clouds: Referring to the turns-

amplitude analysis technique created by Stålberg in 1983,

with the number of turns per second as the independent

variable and the mean amplitude as the dependent variable,

a scatter plot was made (see Figure 1A), where it was

found that for most muscles, the mean amplitude increased

with the number of turns per second, and there was a

positive linear correlation between the two variables. The

normality tests were performed on the lg (number of turns

per second) and lg (mean amplitude) of all muscles. As

for the muscles with bivariate normal distribution and

homogeneous variance, lg (number of turns per second)

and lg (mean amplitude) were taken as the independent

variable and the dependent variable, respectively, to make

the scatter plot, which revealed that there was a linear

positive correlation between the two variables.
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FIGURE 2

Developing method of the percentile clouds. (A) A scatter plot was made of the number of turns per second and the mean amplitude of 650

data points of the right vastus medialis in the middle-aged female group. (B) The 2.5 percentile of the number of turns per second is used as the

left boundary of the clouds, and the 97.5 percentile is used as the right boundary of the clouds. (C) The 97.5 percentile of the mean amplitude is

used as the upper boundary of the clouds, and the 2.5 percentile is used as the lower boundary of the clouds.

Linear regression was performed on the lg (number of

turns per second) and the lg (mean amplitude), the results of

which showed that there was a linear regression relationship

between the two variables in some muscles (see Figure 1B).

X0 and Y0 denote the number of turns per second and

mean amplitude for original data, respectively. X0 includes

the minimum of the number of turns per second. By

applying X= lg(X0) and Y= lg(Y0) to the linear regression

equation, we obtained the relationship between X and Y

for some muscles with the linear regression equation of

Y=a+b∗X. Consequently, the relationship corresponding

to the original data is Y0 = 10a∗Xb
0 . When the standard

error (SE) of the intercept a and slope b are included in

the relationship, we then obtained a new relationship: Y0

= [10a(±SEa)]∗ (X0)
b(±SEb), where SEa and SEb were the

standard error of the intercept and slope, respectively. It is

obvious that there exist two Y0 values for each X0 when

we calculated the prediction interval (Figure 1C). These two

Y0 values correspond to the upper and lower boundaries of

the clouds. Namely, we obtain two curves corresponding

to two boundaries. With 99 percentiles of the number of

turns per second as the right boundary, and the minimum

value of the number of turns per second of the muscle as the

left boundary, the cloud was obtained (see Figure 1D). The

intercept, slope, standard error of the intercept and slope,

and 99 percentiles of the number of turns per second were

used as reference values for linear regression clouds.

(2) The percentile clouds: The percentile clouds can be applied,

whereas the linear regression clouds cannot for all muscles

including these three cases: (1) if lg (number of turns

per second) and lg (mean amplitude) were not normally

distributed; (2) there was no linear correlation between the

two variables; (3) the two variables were linearly related,

but the linear regression equation was not statistically

significant. A scatter plot was drawn in Figure 2A. The 2.5

and 97.5 percentiles of the number of turns per second were

used as the left and right boundaries of the clouds (see

Figure 2B), and the 2.5 and 97.5 percentiles of the mean

amplitude were used as the upper and lower boundaries of

the clouds (see Figure 2C). A cloud was drawn to include
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95% of the normal data records. The 2.5 and 97.5 percentiles

of the number of turns per second and the mean amplitude

were used as reference values of the percentile clouds.

Determining the judgment criteria

For the muscles with a linear positive correlation between

lg (number of turns per second) and lg (mean amplitude), the

linear regression clouds were drawn. Meanwhile, the percentile

clouds were drawn on all the muscle data, and the percentage

of data records beyond the boundaries of the two clouds

was calculated. The percentage was exploited to draw ROCs.

Then, taking priority of specificity for determining criteria,

specificity >94% was taken as a criterion to determine the

optimum cut-off value according to ROCs, which can be

used to discriminate between neuropathic lesion vs. non-

neuropathic lesion, myopathic lesion vs. non-myopathic lesion,

and abnormal muscles vs. normal muscles. According to the

criteria, the sensitivity and specificity of the linear regression

clouds, the percentile clouds, and QMUP were calculated.

According to the area under the curve (AUC) of ROCs, the

diagnostic values of the two methods were judged.

The clinical diagnosis was taken as the gold standard, and

the sensitivity and specificity of the linear regression clouds,

percentile clouds, and QMUP were investigated. Also, the AUC

and Youden’s index of the linear regression clouds and percentile

clouds were compared.

Statistical analysis

SPSS version 26.0 software (IBM Corp., Armonk, NY, USA)

was used to determine whether lg (number of turns per second)

and lg (mean amplitude) were normally distributed and whether

the variances were homogeneous. According to the results, t-

test, one-way analysis of variance or Wilcoxon rank sum test or

Kruskal-Wallis H test were adopted to determine whether there

are statistical differences in the lg (number of turns per second)

and lg (mean amplitude) of different genders groups, different

ages groups, and dominant limb muscles and non-dominant

limb muscles groups, which with statistical differences of the

results, were further analyzed throughmultiple linear regression.

The linear correlation analysis was performed on lg (number of

turns per second) and lg (mean amplitude). If there was a linear

positive correlation between the two variables, the least square

method was used for linear regression. Besides, hypothesis

tests were performed on linear correlation coefficient, linear

regression equation, and regression coefficient, with α = 0.05.

When P ≤ 0.05, the results indicated that lg (number of turns

per second) and lg (mean amplitude) had a linear regression

relationship.

TABLE 1 Demographic data of healthy subjects.

Groups No. of Gender Mean age

(years) subjects(Male/Female)(years, mean± SD)

Young group (18–44) 32 15/17 35.40± 6.33

Middle-aged group (45–59) 48 17/31 47.82± 2.56

Older group (≥60) 27 15/12 62.47± 2.88

Total 107 47/60

Then, a chi-square test with two degrees of freedom was

performed to evaluate the significance of the sensitivity and

specificity of the three methods of linear regression cloud, the

percentile clouds, and QMUP. It was shown that when P ≤ 0.05,

the difference was statistically significant.

Results

Subject demographic data

A total of 107 healthy subjects were recruited, and the data

of electromyographic interference patterns were collected to

establish reference values of clouds. According to gender and

age, the subjects were grouped, as seen in Table 1. Meanwhile,

a total of 249 inpatients were recruited. 190 normal muscles, 276

neuropathic lesion muscles, and 43 myopathic lesion muscles

were collected. The demographic data were listed in Table 2,

which is used to analyze the sensitivity and specificity of the

linear regression clouds, percentile clouds, and QMUP.

The reference values for two clouds were
established

The lg (number of turns per second) and lg (mean

amplitude) of different genders, ages, and the dominant limb

muscles and non-dominant limb muscles were compared, and

the differences were statistically significant (see Tables 3–6).

Besides, there were significant differences between the linear

regression clouds and percentile clouds (see Figures 3, 4) of

different genders, ages, and the dominant limb muscles and

non-dominant limb muscles. The reference values for the linear

regression clouds and percentile clouds were established for

different groups (see Tables 7, 8).

The judgment criteria

The ROCs were drawn with the percentage of data points

beyond the boundaries of the linear regression clouds and

percentile clouds, respectively (see Figure 5). The sensitivity

and specificity corresponding to the percentage calculated
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TABLE 2 Clinical diagnosis and the number of muscles sample.

Diagnosis Number of subjects Age range ADM Biceps EDC Deltoid Tibialis Gastrocnemius Vastus SCM Total number

(male/female) (years) brachii anterior medialis of muscles

Neuropathic 142 (82/60) 91 17 6 20 56 40 41 5 276

Mononeuropathy 75 (43/32) 40–63 62 0 0 12 5 1 1 0 81

Polyneuropathy 16 (8/8) 18–60 21 0 0 0 21 16 4 0 62

Radiculopathy 46 (28/18) 32–70 4 7 6 6 25 22 27 0 97

ALS 5 (3/2) 45–52 4 10 0 2 5 1 9 5 36

Myopathic 15 (4/11) 0 5 3 12 8 4 11 0 43

Dermatomyositis 3 (0/3) 20–30 0 1 0 4 0 0 3 0 8

Polymyositis 11 (3/8) 18–60 0 3 3 7 6 3 7 0 29

Progressive

muscular

dystrophy

1 (1/0) 19 0 1 0 1 2 1 1 0 6

Normal 92 (47/45) 17 7 24 20 40 27 45 10 190

Healthy 49 (29/20) 23–63 13 5 14 11 28 16 27 7 121

Low calcium

seizures

2 (2/0) 40–49 0 0 0 2 2 2 0 0 6

Anxiety 41 (16/25) 37–61 4 2 10 7 10 9 18 3 63

Total 249 (133/116) 18–63 108 29 33 52 104 71 97 15 509

ADM, abductor digiti minimi; ALS, amyotrophic lateral sclerosis; EDC, extensor digitorum communis; SCM, sternocleidomastoid.

through the data point of normal muscle, neuropathic and

myopathic lesions muscle beyond the boundaries of clouds

are shown in Tables 9–11. With priority of specificity for

determining criteria, according to ROC, the cut-off value

corresponding to the specificity > 94% was taken as a

criterion which discriminate between neuropathic lesion vs.

non-neuropathic lesion, myopathic lesion vs. non-myopathic

lesion, and abnormal muscles vs. normal muscles (see Tables 9–

11, Figure 6). For the linear regression clouds, if over 25% of

the data points exceed the upper boundaries, neuropathic lesion

was determined; if over 18% of the data points exceed the

lower and right boundaries, myopathic lesion was determined

(see Figure 7). For the percentile clouds, if over 20% of the

data points exceed the upper boundaries, neuropathic lesion

was determined; if over 30% of the data points exceed the

lower and right boundaries, myopathic lesion was determined

(see Figure 8). When the data points exceed the upper

boundaries and the lower-right boundaries simultaneously, the

determination was made according to whether the difference

between the data points beyond the bilateral boundaries exceeds

the determining criteria. The AUC of the linear regression

clouds and percentile clouds were both>0.8, revealing that both

clouds have high diagnostic values (see Figure 5, Tables 9, 10).

Sensitivity and specificity

In a word, QMUP, the linear regression clouds, and

percentile clouds can accurately discriminate the neuropathic

or non-neuropathic lesion, the myopathic or non-myopathic

lesion. It should be noted that the specificities of QMUP, the

linear regression clouds, and percentile clouds were basically

identical to each other, whereas the sensitivity and Youden′s

index of the percentile clouds were higher than those of QMUP

and the linear regression clouds (Tables 9, 10). These findings

revealed that, with the same specificity, the true positive rate of

the percentile clouds was the highest and the percentile clouds

had thus significant diagnostic values.

Discussion

There are mainly three limitations in the application of

QMUP. First, the measurement of duration of MUP through

QMUP depended largely on the subjective judgment of the EMG

technician (3), and the sampling of MUP are subjective. As

a result, sampling bias can be caused easily (1). Furthermore,

QMUP only analyzes the motor units activated by small force

contractions, and it can only find motor unit damage with a

lower excitement threshold (3). Therefore, QMUP cannot reflect

the overall situation of all the motor units. If the motor units

with a higher excitement threshold were affected at an earlier

stage of the disease and the reduction of motor unit amplitude

appear before the duration reduction in myopathic lesion, the

duration of motor unit potential did not change, therefore,

abnormalities cannot be detected by QMUP (1). Finally, the

QMUP examination takes a long time, and some patients cannot

complete it due to pain (13).
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TABLE 3 The comparison of the results of lg (number of turns per second) and lg (mean amplitude) for di�erent genders groups.

Muscle Age Data point Data point lg (number of lg

(years) of male of female turns per second) (mean amplitude)

t/t′ Z P t/t′ Z P

Non-dominant ADM 18–44 279 317 −1.673 0.094 1.816 0.070

45–59 338 620 −7.826 <0.001# −8.571 <0.001#

≥60 296 240 4.736* <0.001# 7.146 <0.001#

Dominant ADM 18–44 274 331 −4.025 <0.001# −1.026 0.305

45–59 318 618 −13.216 <0.001# −11.136 <0.001#

≥60 256 239 −3.696 <0.001# 3.196 0.001#

Non-dominant EDC 18–44 300 338 −4.205 <0.001# 9.611* <0.001#

45–59 340 617 −6.034* <0.001# 0.021* 0.983

≥60 298 238 −3.941 <0.001# 6.596* <0.001#

Dominant EDC 18–44 298 340 −4.808 <0.001# 7.307 <0.001#

45–59 320 614 −10.079 <0.001# −9.105 <0.001#

≥60 283 238 −2.666* 0.008# 8.989 <0.001#

Non-dominant biceps brachii 18–44 297 339 1.604* 0.109 −8.926 <0.001#

45–59 340 613 −3.660* <0.001# −0.870 0.384

≥60 298 234 4.009* <0.001# −4.907 <0.001#

Dominant biceps brachii 18–44 300 338 −4.319 <0.001# −9.392 <0.001#

45–59 338 615 −3.770 <0.001# 3.538* <0.001#

≥60 295 239 −1.660 0.097 −3.495 <0.001#

Non-dominant deltoid 18–44 300 339 4.506 <0.001# −2.572 0.010#

45–59 340 616 1.748* 0.081 −7.570* <0.001#

≥60 294 234 −1.885 0.059 3.324* 0.001#

Dominant deltoid 18–44 298 329 7.115* <0.001# 3.549* <0.001#

45–59 319 606 −2.11 0.027# −5.658* <0.001#

≥60 297 239 −3.313 0.001# −2.690* 0.007#

Non-dominant tibialis anterior 18–44 300 338 −2.199 0.028# 10.630* <0.001#

45–59 340 616 −5.237* <0.001# −6.715 <0.001#

≥60 259 239 −2.081 0.037# 3.732 <0.001#

Dominant tibialis anterior 18–44 299 338 −0.316 0.752 7.489 <0.001#

45–59 340 615 −4.793* <0.001# −2.321 0.020#

≥60 258 239 −3.374 0.001# 5.090 <0.001#

Non-dominant gastrocnemius 18–44 277 337 −2.442 0.015# 2.961 0.003#

45–59 339 619 −6.656 <0.001# −4.438 <0.001#

≥60 280 240 −2.761 0.006# 1.581* 0.114

Dominant gastrocnemius 18–44 280 335 −0.969 0.333 −0.077 0.939

45–59 319 611 −4.926 <0.001# −2.633 0.008#

≥60 260 240 −2.591 0.010# 4.314 <0.001#

Non-dominant vastus medialis 18–44 279 338 5.477* <0.001# −6.403 <0.001#

45–59 339 612 −5.388 <0.001# −6.742* <0.001#

≥60 240 238 −0.869 0.385 5.174 <0.001#

Dominant vastus medialis 18–44 277 340 −5.270 <0.001# 7.431 <0.001#

45–59 340 615 −5.875* <0.001# −2.691 0.007#

≥60 277 240 −3.843* <0.001# 0.035 0.972

Non-dominant SCM 18–44 298 320 1.492 0.136 −4.290 <0.001#

45–59 339 618 −6.770 <0.001# −1.859 0.063

≥60 299 220 1.625 0.105 8.820 <0.001#

Dominant SCM 18–44 299 339 −3.311 0.001# −5.745 <0.001#

45–59 337 620 −7.625 <0.001# −7.121 <0.001#

≥60 300 220 2.620 0.009# −6.082 <0.001#

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid. *using t-test, #p ≤ 0.05.
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TABLE 4 The comparison of the results of lg (number of turns per second) and lg (mean amplitude) for di�erent age groups.

Muscle Gender Data point for Data point for the Data point for lg (number of turns lg

the youth group middle-aged group the older group per second) (mean amplitude)

F/H P F/H P

Non-dominant ADM Male 279 338 296 13.452 0.001# 11.694 0.003

Female 317 620 240 134.931 <0.001# 150.096 <0.001#

Dominant ADM Male 274 318 256 22.276 <0.001# 9.623 0.008#

Female 331 618 239 131.440 <0.001# 206.601 <0.001#

Non-dominant EDC Male 300 340 298 20.136 <0.001# 0.068 0.967

Female 338 617 238 133.337 <0.001# 103.688 <0.001#

Dominant EDC Male 298 320 283 1.040 0.595 41.544 <0.001#

Female 340 614 238 201.605* <0.001# 202.141 <0.001#

Non-dominant biceps brachii Male 297 340 298 0.761 0.683 24.766 <0.001#

Female 339 613 234 91.274 <0.001# 85.833 <0.001#

Dominant biceps brachii Male 300 338 295 21.322 <0.001# 61.641 <0.001#

Female 338 615 239 29.347 <0.001# 14.206 0.001#

Non-dominant deltoid Male 300 340 294 38.493 <0.001# 25.860 <0.001#

Female 339 616 234 1.425 0.241 61.923 <0.001#

Dominant deltoid Male 298 319 297 9.738 0.008# 3.647 0.159

Female 329 606 239 63.710 <0.001# 50.913* <0.001#

Non-dominant tibialis anterior Male 300 340 259 0.126 0.939 39.262 <0.001#

Female 338 616 239 8.231 0.016# 161.899 <0.001#

Dominant tibialis anterior Male 299 340 258 4.482 0.106 5.034 0.081

Female 338 615 239 2.562 0.078 24.212* <0.001#

Non-dominant gastrocnemius Male 277 339 280 2.865 0.239 3.981* 0.019#

Female 337 619 240 139.895 <0.001# 150.280 <0.001#

Dominant gastrocnemius Male 280 319 260 15.091 0.001# 50.960 <0.001#

Female 335 611 240 83.654 <0.001# 83.519 <0.001#

Non-dominant vastus medialis Male 279 339 240 3.315 0.191 10.599 0.005#

Female 338 612 238 83.993 <0.001# 161.100 <0.001#

Dominant vastus medialis Male 277 340 277 19.772 <0.001# 11.855* <0.001#

Female 340 615 240 204.783 <0.001# 157.116 <0.001#

Non-dominant SCM Male 298 339 299 4.921 0.085 11.477 0.003#

Female 320 618 220 194.646 <0.001# 164.849 <0.001#

Dominant SCM Male 299 337 300 8.547 0.014# 32.634 <0.001#

Female 339 620 220 111.374 <0.001# 99.114 <0.001#

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid. *Using one-way analysis of variance, #P ≤ 0.05.

Development of automatic analysis
technology of EMG interference pattern

With the increase of contraction force, many motor units

were excited simultaneously, forming interference patterns. In

the past, the visual assessment of interference patterns was often

used, which was qualitative and subjective (1). To solve these

problems, automatic analysis technology of EMG interference

pattern was developed.

In 1964, Willison reported a technique to measure the

turn of various activated motor units for the first time (14).

In 1967, Rose and Willison first analyzed the number of

turns per second and the mean amplitude of EMG under

standard contraction force (15). In 1975, Fuglsang-Frederiksen

and Månsson exploited the maximum contraction force of a

single subject to measure the turn and mean amplitude (16).

In 1983, Stålberg et al. found that for different muscles, there

were different linear correlations between the number of turns

per second and the mean amplitude. Also, the number of turns

per second and the mean amplitude of most muscles were

linearly positively correlated, but those of the vastus medialis

were not linearly correlation (4). Following the same technique,

in 1991, Nandedkar et al. (5) found that the cloud of the tibialis

anterior was similar to that obtained by Stålberg, while the cloud

of biceps brachii was quite different.

The shape and reference values of the turn-amplitude

clouds obtained by different researchers were different

(4–7). Nandedkar et al. (5) and Jabre et al. (6) believed
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TABLE 5 The comparison of the results of lg (number of turns per second) and lg (mean amplitude) for the non-dominant and dominant muscles.

Muscle Gender Age Non-dominant Dominant lg (number of lg

(years) data point data point turns per second) (mean amplitude)

t/t′ Z P t/t′ Z P

ADM Male 18–44 279 274 9.307* <0.001# 5.968 <0.001#

45–59 338 318 −5.178 <0.001# −4.917 <0.001#

≥60 296 256 7.445* <0.001# 6.650 <0.001#

Female 18–44 317 331 −3.131 0.002# 3.843 <0.001#

45–59 620 618 3.080 0.002# −1.554 0.120

≥60 240 239 −1.022 0.307 2.365 0.018#

EDC Male 18–44 300 298 −0.633 0.527 6.966 <0.001#

45–59 340 320 −1.137 0.256 6.555 <0.001#

≥60 298 283 −3.964 <0.001# 0.923* 0.356

Female 18–44 338 340 −0.682 0.495 3.536* <0.001#

45–59 617 614 −2.896* 0.004# −1.815* 0.070

≥60 238 238 −2.163 0.031# 2.209 0.028#

Biceps brachii Male 18–44 297 300 −3.819* <0.001# −2.745 0.006#

45–59 340 338 0.718 0.473 −0.021 0.983

≥60 298 295 1.239 0.216 0.767 0.443

Female 18–44 339 338 −2.315 0.019# −2.408 0.016#

45–59 613 615 −0.862 0.388 4.436 <0.001#

≥60 234 239 −4.346* <0.001# −0.498 0.618

Deltoid Male 18–44 300 298 3.250 0.001# −7.793 <0.001#

45–59 340 319 4.252 <0.001# 1.842 0.066

≥60 294 297 −1.231 0.218 7.420* <0.001#

Female 18–44 339 329 6.155* <0.001# 8.401 <0.001#

45–59 616 606 0.937* 0.349 4.763* <0.001#

≥60 234 239 0.052 0.958 0.050 0.960

Tibialis anterior Male 18–44 300 299 −0.405 0.685 −0.176 0.860

45–59 340 340 1.614 0.107 −5.065 <0.001#

≥60 259 258 0.867* 0.386 1.796 0.073

Female 18–44 338 338 −1.328 0.184 −3.441* 0.001#

45–59 616 615 3.041 0.002# 3.285 0.001#

≥60 239 239 −0.279 0.780 3.450* 0.001#

Gastrocnemius Male 18–44 277 280 −1.123 0.261 −0.417 0.677

45–59 339 319 0.495 0.621 −1.656 0.098

≥60 280 260 −1.724 0.085 −3.885 <0.001#

Female 18–44 337 335 −0.515 0.606 −2.720 0.007#

45–59 619 611 −2.228 0.026# −0.364 0.716

≥60 240 240 −1.986 0.047# −1.133* 0.258

Vastus medialis Male 18–44 279 277 5.355 <0.001# −1.372 0.170

45–59 339 340 1.212 0.226 −2.966* 0.003#

≥60 240 277 −5.365 <0.001# 3.515 <0.001#

Female 18–44 338 340 −4.897 <0.001# 2.128 0.034#

45–59 612 615 −2.155 0.031# −1.622 0.105

≥60 238 240 2.743 0.006# −1.662 0.097

SCM Male 18–44 298 299 −9.473 <0.001# −5.785 <0.001#

45–59 339 337 −1.082 0.279 −2.487 0.013#

≥60 299 300 −4.437 <0.001# −1.782 0.075

Female 18–44 320 339 −5.808 <0.001# −3.092 0.002#

45–59 618 620 −4.011 <0.001# −3.370 0.001#

≥60 220 220 −3.024 0.003# −4.121 <0.001#

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid. *Using t-test, #P ≤ 0.05.
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TABLE 6 The comparison of the results of lg (number of turns per second) and lg (mean amplitude) using multiple linear regression model.

lg(number of turns per second) lg(mean amplitude)

Muscle Factors R2 B t p R2 B t p

ADM Gender 0.118 −0.010 −1.115 0.265 0.129 −0.060 −6.311 <0.001#

Dominant vs. non-dominant 0.118 −0.045 −10.394 <0.001# 0.129 −0.046 −9.702 <0.001#

Young man vs. old man 0.118 −0.043 −5.091 <0.001# 0.129 −0.036 −3.895 <0.001#

Middle-Aged man vs. old man 0.118 −0.028 −3.451 0.001# 0.129 −0.032 −3.583 <0.001#

Young man vs. middle-aged man 0.118 0.015 1.854 0.064 0.129 0.004 0.475 0.635

Young woman vs. old woman 0.118 −0.023 −2.773 0.006# 0.129 0.019 2.082 0.037#

Middle-Aged woman vs. old woman 0.118 0.084 11.060 <0.001# 0.129 0.140 17.123 <0.001#

Young woman vs. middle-aged woman 0.118 0.107 15.720 <0.001# 0.129 0.121 16.415 <0.001#

EDC Gender 0.107 0.033 3.664 <0.001# 0.118 −0.092 −10.045 <0.001#

Dominant vs. non-dominant 0.107 0.012 2.621 0.009# 0.118 −0.029 −6.137 <0.001#

Young man vs. old man 0.107 0.030 3.516 <0.001# 0.118 −0.029 −3.319 0.001#

Middle-Aged man vs. old man 0.107 0.033 3.973 <0.001# 0.118 −0.026 −3.119 0.002#

Young man vs. middle-aged man 0.107 0.003 0.376 0.707 0.118 0.002 0.282 0.778

Young woman vs. old woman 0.107 −0.058 −6.728 <0.001# 0.118 −0.040 −4.442 <0.001#

Middle-Aged woman vs. old woman 0.107 0.080 10.314 <0.001# 0.118 0.106 13.264 <0.001#

Young woman vs. middle-aged woman 0.107 0.138 20.045 <0.001# 0.118 0.146 20.515 <0.001#

Biceps brachii Gender 0.023 −0.018 −1.982 0.048# 0.060 −0.053 −5.373 <0.001#

Dominant vs. non-dominant 0.023 0.012 2.623 0.009# 0.060 −0.005 −1.073 0.283

Young man vs. old man 0.023 0.021 2.550 0.011# 0.060 0.087 9.356 <0.001#

Middle-Aged man vs. old man 0.023 0.010 1.227 0.220 0.060 0.035 3.868 <0.001#

Young man vs. middle-aged man 0.023 −0.011 −1.402 0.161 0.060 −0.052 −5.781 <0.001#

Young woman vs. old woman 0.023 0.008 0.892 0.373 0.060 0.021 2.203 0.028#

Middle-Aged woman vs. old woman 0.023 0.061 7.830 <0.001# 0.060 0.062 7.048 <0.001#

Young woman vs. middle-aged woman 0.023 0.053 7.736 <0.001# 0.060 0.040 5.209 <0.001#

Deltoid Gender 0.033 0.024 3.668 <0.001# 0.071 −0.006 −0.682 0.495

Dominant vs. non-dominant 0.033 −0.022 −6.736 <0.001# 0.071 −0.049 −11.816 <0.001#

Young man vs. old man 0.033 0.037 5.864 <0.001# 0.071 0.011 1.479 0.139

Middle-Aged man vs. old man 0.033 0.020 3.264 0.001# 0.071 −0.007 −0.921 0.357

Young man vs. middle-aged man 0.033 −0.017 −2.748 0.006# 0.071 −0.018 −2.443 0.015#

Young woman vs. old woman 0.033 −0.041 −6.375 <0.001# 0.071 −0.012 −1.551 0.121

Middle-Aged woman vs. old woman 0.033 −0.003 −0.500 0.617 0.071 0.061 8.395 <0.001#

Young woman vs. middle-aged woman 0.033 0.038 7.398 <0.001# 0.071 0.073 11.385 <0.001#

Tibialis anterior Gender 0.019 0.027 3.420 0.001# 0.053 −0.049 −5.648 <0.001#

Dominant vs. non-dominant 0.019 −0.010 −2.520 0.012# 0.053 0.001 0.151 0.880

Young man vs. old man 0.019 0.007 0.979 0.328 0.053 0.016 1.904 0.057

Middle-Aged man vs. old man 0.019 −0.005 −0.683 0.495 0.053 −0.022 −2.733 0.006#

Young man vs. middle-aged man 0.019 −0.012 −1.760 0.079 0.053 −0.037 −4.885 <0.001#

Young woman vs. old woman 0.019 −0.009 −1.251 0.211 0.053 −0.032 −4.001 <0.001#

Middle-Aged woman vs. old woman 0.019 0.013 2.006 0.045# 0.053 0.050 6.835 <0.001#

Young woman vs. middle-aged woman 0.019 0.023 3.821 <0.001# 0.053 0.082 12.690 <0.001#

Gastrocnemius Gender 0.067 0.031 3.400 0.001# 0.066 −0.040 −4.107 <0.001#

Dominant vs. non-dominant 0.067 −0.002 −0.367 0.714 0.066 0.015 2.986 0.003#

Young man vs. old man 0.067 −0.034 −3.884 <0.001# 0.066 −0.068 −7.234 <0.001#

Middle-Aged man vs. old man 0.067 0.001 0.113 0.910 0.066 −0.014 −1.515 0.130

Young man vs. middle-aged man 0.067 0.035 4.188 <0.001# 0.066 0.055 6.060 <0.001#

Young woman vs. old woman 0.067 −0.086 −9.815 <0.001# 0.066 −0.043 −4.652 <0.001#

Middle-Aged woman vs. old woman 0.067 0.022 2.802 0.005# 0.066 0.066 7.890 <0.001#

Young woman vs. middle-aged woman 0.067 0.108 15.372 <0.001# 0.066 0.110 14.648 <0.001#

Vastus medialis Gender 0.091 0.035 3.550 <0.001# 0.076 −0.031 −3.462 0.001#

Dominant vs. non-dominant 0.091 −0.040 −8.413 <0.001# 0.076 −0.009 −2.092 0.036#

(Continued)
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TABLE 6 (Continued)

lg(number of turns per second) lg(mean amplitude)

Muscle Factors R2 B t p R2 B t p

Young man vs. old man 0.091 0.039 4.175 <0.001# 0.076 0.036 4.286 <0.001#

Middle-Aged man vs. old man 0.091 0.041 4.581 <0.001# 0.076 0.014 1.727 0.084

Young man vs. middle-aged man 0.091 0.002 0.215 0.830 0.076 −0.022 −2.817 0.005#

Young woman vs. old woman 0.091 −0.069 −7.499 <0.001# 0.076 −0.021 −2.527 0.012#

Middle-Aged woman vs. old woman 0.091 0.060 7.252 <0.001# 0.076 0.089 11.840 <0.001#

Young woman vs. middle-aged woman 0.091 0.128 17.530 <0.001# 0.076 0.110 16.494 <0.001#

SCM Gender 0.095 −0.027 −2.832 0.005# 0.076 −0.082 −9.541 <0.001#

Dominant vs. non-dominant 0.095 0.044 9.347 <0.001# 0.076 0.020 4.745 <0.001#

Young man vs. old man 0.095 0.003 0.395 0.693 0.076 −0.012 −1.560 0.119

Middle-Aged man vs. old man 0.095 −0.026 −3.073 0.002# 0.076 −0.034 −4.441 <0.001#

Young man vs. middle-aged man 0.095 −0.029 −3.476 0.001# 0.076 −0.022 −2.831 0.005#

Young woman vs. old woman 0.095 −0.004 −0.458 0.647 0.076 0.009 1.082 0.279

Middle-Aged woman vs. old woman 0.095 0.104 12.398 <0.001# 0.076 0.104 13.770 <0.001#

young woman vs. Middle-aged woman 0.095 0.108 14.854 <0.001# 0.076 0.095 14.467 <0.001#

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid. #P ≤ 0.05.

FIGURE 3

The influence of di�erent factors on the shape of the linear regression clouds. (A) The clouds of di�erent gender for same muscle (right deltoid)

in the youth group (18–44 years old). (B) The clouds of di�erent age groups for the same gender (male) in the same muscle of left extensor

digitorum communis (EDC). (C) The clouds of di�erent muscles (right tibialis anterior and right EDC) for the same gender (female) in

middle-aged group (45–49 years old). (D) The clouds of left and right limb muscles (left and right deltoid) for the same gender (male) in

middle-aged group (45–49 years old). EDC, extensor digitorum communis.
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FIGURE 4

The influence of di�erent factors on the shape of the percentile clouds. (A) The clouds of di�erent gender for same muscle (left abductor digiti

minimi) in the middle-aged group (45–49 years old). (B) The clouds of di�erent age groups for the same gender (female) in the same muscle

(right biceps brachii muscle). (C) The clouds of di�erent muscles (right biceps brachii and left vastus medialis) for the same gender (female) in

the middle-aged group (45–49 years old). (D) The clouds of left and right muscles (left and right abductor digiti minimi) for the same gender

(male) in middle-aged group (45–49 years old).

that the differences in the shape of the clouds were

caused by the differences in the contraction force of

the examinees when the data were collected. Also,

the shape of the clouds largely depended on whether

the data were collected in the maximum contraction

force (6).

Nandedkaret et al. (5) used a dynamometer to collect data

at 10–80% of the maximum contraction force. It was found

that when starting from a small contraction force to 50% of

the maximum contraction force, the increase of the number of

turns per second was greater than that of the mean amplitude,

while the increase of the mean amplitude was greater than that

of the number of turns per second at a higher contraction

force. Jabre et al. (6) found that for a small to moderate

contraction force, the number of turns per second and the

mean amplitude were linearly correlated, with a small standard

deviation. When the contraction force was increased from

50% of the maximum contraction force, the increase in mean

amplitude was more significant than that in the number of

turns per second. There was no linear correlation between

the number of turns per second and the mean amplitude,

and the standard deviation became larger. The Stålberg linear

regression method was not suitable for analyzing the data

collected from a small contraction force to the maximum

contraction force.

In our study, we used linear regression and percentile

method to establish two kinds of clouds. This study analyzed the

factors that affect the number of turns per second and the mean

amplitude of electromyographic interference patterns, including

gender, age, and dominant and non-dominant limb muscles.

For all the muscles, the reference values of the percentile clouds

for different genders, ages, and dominant and non-dominant
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TABLE 7 The reference values of the linear regression clouds.

Muscle Gender Age

(years)

Data

record

(number)

Intercept Standard

error

of

intercept

Slope Standard

error of

slope

99

percentiles

of the

number of

turns

per second

Maximum

value of

the

number of

turns

per second

Maximum

value of

the mean

amplitude

R2

Non-dominant ADM Male 18–44 279 1.461 0.222 0.513 0.084 806 827 1,456 0.119

45–59

≥60

Female 18–44

45–59

≥60

Dominant ADM Male 18–44 274 1.201 0.150 0.603 0.059 636 705 1,680 0.277

45–59

≥60 256 1.891 0.147 0.340 0.057 686 765 1,072 0.124

Female 18–44

45–59 618 1.660 0.132 0.453 0.049 944 1,077 1,856 0.123

≥60 239 2.213 0.162 0.199 0.062 729 752 1,104 0.042

Non-dominant EDC Male 18–44 300 1.620 0.159 0.467 0.059 976 1,045 1,632 0.175

45–59 340 2.023 0.150 0.314 0.055 991 1,125 1,600 0.087

≥60 298 1.499 0.172 0.519 0.065 915 960 1,712 0.178

Female 18–44

45–59 617 1.280 0.110 0.575 0.040 1,198 1,345 1,952 0.256

≥60

Dominant EDC Male 18–44 298 1.495 0.137 0.482 0.051 1,023 1,167 1,456 0.235

45–59

≥60 283 2.020 0.171 0.313 0.063 788 792 1,536 0.080

Female 18–44

45–59 614 2.039 0.118 0.304 0.042 1,154 1,355 1,840 0.078

≥60 238 1.785 0.117 0.359 0.043 1,273 1,387 1,056 0.230

Non-dominant biceps

brachii

Male 18–44 297 1.798 0.135 0.417 0.051 1,021 1,055 1,824 0.186

45–59

≥60 298 1.305 0.139 0.577 0.052 858 1,025 1,840 0.292

Female 18–44

45–59 613 2.304 0.128 0.206 0.047 857 967 1,760 0.030

≥60

Dominant biceps brachii Male 18–44 300 1.612 0.151 0.492 0.056 985 1,092 1,872 0.205

45–59 338 1.747 0.168 0.422 0.063 1,016 1,117 1,968 0.117

≥60 295 1.202 0.150 0.615 0.057 825 830 1,840 0.286

Female 18–44

45–59

≥60

Non-dominant deltoid Male 18–44

45–59 340 2.032 0.227 0.284 0.083 939 1,000 1,616 0.034

≥60

Female 18–44

45–59 616 2.540 0.127 0.126 0.047 1,033 1,265 1,632 0.012

≥60 234 2.339 0.235 0.170 0.086 982 1,067 1,792 0.017
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TABLE 7 (Continued)

Muscle Gender Age

(years)

Data

record

(number)

Intercept Standard

error

of

intercept

Slope Standard

error of

slope

99

percentiles

of the

number of

turns

per second

Maximum

value of

the

number of

turns

per second

Maximum

value of

the mean

amplitude

R2

Dominant deltoid Male 18–44 298 1.854 0.176 0.340 0.064 912 1,025 1,312 0.087

45–59 319 1.769 0.179 0.377 0.066 954 1,065 1,408 0.094

≥60

Female 18–44 329 1.484 0.129 0.474 0.048 971 1,040 1,376 0.228

45–59

≥60 239 1.761 0.230 0.381 0.084 911 962 1,408 0.080

Non-dominant tibialis

anterior

Male 18–44

45–59

≥60 259 1.370 0.128 0.558 0.048 851 865 1,536 0.346

Female 18–44

45–59 616 2.023 0.130 0.311 0.048 909 1,007 1,664 0.065

≥60

Dominant tibialis

anterior

Male 18–44 299 1.568 0.167 0.486 0.062 845 907 1,600 0.171

45–59

≥60 258 1.379 0.172 0.549 0.065 860 922 1,488 0.221

Female 18–44 338 2.180 0.157 0.228 0.058 906 985 1,360 0.044

45–59 615 2.202 0.130 0.237 0.048 944 1,055 1,568 0.038

≥60 239 1.786 0.186 0.370 0.069 926 1,052 1,264 0.109

Non-dominant

gastrocnemius

Male 18–44

45–59 339 1.292 0.139 0.576 0.052 950 1,057 1,616 0.269

≥60 280 0.868 0.159 0.737 0.059 812 930 1,552 0.357

Female 18–44 337 1.200 0.111 0.595 0.042 883 1,035 1,216 0.374

45–59

≥60

Dominant

gastrocnemius

Male 18–44

45–59

≥60 260 0.689 0.147 0.818 0.054 849 860 1,920 0.467

Female 18–44

45–59

≥60 240 1.559 0.163 0.466 0.060 998 1,117 1,424 0.203

Non-dominant vastus

medialis

Male 18–44

45–59 339 1.413 0.128 0.532 0.048 890 920 1,664 0.266

≥60

Female 18–44 338 1.494 0.087 0.496 0.034 896 1,055 1,408 0.394

45–59

≥60 238 1.752 0.145 0.389 0.055 960 1,027 1,184 0.177

(Continued)
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TABLE 7 (Continued)

Muscle Gender Age

(years)

Data

record

(number)

Intercept Standard

error

of

intercept

Slope Standard

error of

slope

99

percentiles

of the

number of

turns

per second

Maximum

value of

the

number of

turns

per second

Maximum

value of

the mean

amplitude

R2

Dominant vastus

medialis

Male 18–44 277 1.750 0.130 0.422 0.050 839 900 1,744 0.206

45–59 340 1.197 0.099 0.630 0.038 893 932 1,504 0.454

≥60 277 1.498 0.086 0.510 0.034 694 802 1,312 0.454

Female 18–44

45–59

≥60 240 1.825 0.144 0.374 0.055 807 852 1,440 0.163

Non-dominant SCM Male 18–44 298 1.546 0.138 0.421 0.052 831 977 976 0.184

45–59

≥60 299 1.664 0.116 0.385 0.043 1,032 1,132 1,040 0.212

Female 18–44

45–59

≥60 220 2.084 0.128 0.197 0.048 1,007 1,110 736 0.071

Dominant SCM Male 18–44

45–59

≥60 300 1.240 0.122 0.540 0.044 997 1,025 1,120 0.332

Female 18–44

45– 620 1.232 0.101 0.539 0.036 1,287 1,427 1,280 0.266

≥60

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid.

side of the muscles of same name have been established. For

the muscles that can adopt the linear regression clouds, the

reference values of the linear regression clouds were established

for different groups according to gender, age, and dominant

and non-dominant limb muscles of same name. The common

characteristics of the two clouds were as follows: Firstly, the data

were collected from a small force to the maximum contraction

force, which included most of the motor unit information.

Secondly, in this study, the threshold of 100 µV was not

subtracted from the mean amplitude, and the data points with

the mean amplitude of less than 100 µV were deleted after

data collection. Based on this, the obtained the clouds were

closer to the true distribution of the data points. Previous

studies of turn-amplitude clouds used mean amplitude minus

the threshold of 100 µV to draw the clouds (1, 4, 6, 7).

Thirdly, the grouping was more complete, and the reference

values were established according to gender, age, and dominant

and non-dominant limb muscles of same name. Finally, it was

reproducible and intuitive. It can present the position of each

data record in the clouds during the examination, enabling

quick judgments and shortening the examination time to

reduce pains.

The feature of the linear regression
clouds

The turn-amplitude clouds drawn in this study differ from

previous clouds in three aspects. First, there was no linear

correlation between the number of turns per second and the

mean amplitude of some muscles, and the linear correlation

method cannot be applied to draw the clouds. Unless a

dynamometer was used, it was difficult to accurately measure

the contraction force in actual work. As a result, for some

muscles, there does not exist a linear correlation between the

number of turns per second and the mean amplitude collected.

Second, takes the standard errors of the intercept and slope of

the linear regression equation and substitute they into the linear

regression equation as the upper and lower boundaries of the

clouds, including the prediction interval of the mean amplitude

corresponding to the given number of turns per second. The

methods to draw turn-amplitude clouds previously (1, 4, 6, 7)

all take intercept ± 2SD of the linear regression equation as

the upper and lower boundaries of the clouds, including the

95% confidence interval of the mean amplitude corresponding

to a given number of turns per second. Third, also, the right
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TABLE 8 The reference values of the percentile clouds.

Muscle Gender Age (years) Data

record

(number)

2.5 percentiles of

the number of

turns per second

97.5 percentiles of

the number of

turns per second

2.5 percentiles of

the mean

amplitude

97.5 percentiles of

the mean

amplitude

Non-dominant ADM Male 18–44 279 250 727 288 1,280

45–59 338 182 811 336 1,201

≥60 296 226 846 375 1,401

Female 18–44 317 174 748 335 1,216

45–59 620 295 897 384 1,504

≥60 240 210 735 288 1,024

Dominant ADM Male 18–44 274 160 627 240 1,150

45–59 318 165 627 240 1,168

≥60 256 178 621 336 992

Female 18–44 331 170 727 256 1,163

45–59 618 286 877 360 1,512

≥60 239 220 670 304 912

Non-dominant EDC Male 18–44 300 230 836 360 1,424

45–59 340 277 918 360 1,296

≥60 298 204 782 343 1,464

Female 18–44 338 243 790 272 1,192

45–59 617 277 1,124 336 1,577

≥60 238 137 965 304 1,056

Dominant EDC Male 18–44 298 246 935 336 1,170

45–59 320 225 797 352 1,104

≥60 283 256 775 354 1,262

Female 18–44 340 178 878 240 976

45–59 614 350 1,094 400 1,424

≥60 238 260 1,103 352 960

Non-dominant biceps

brachii

Male 18–44 297 196 875 375 1,664

45–59 340 245 971 376 1,560

≥60 298 232 775 368 1,428

Female 18–44 339 228 785 320 1,353

45–59 613 283 825 368 1,477

≥60 234 176 726 282 1,504

Dominant biceps brachii Male 18–44 300 243 894 400 1,688

45–59 338 213 931 296 1,728

≥60 295 217 729 342 1,466

Female 18–44 338 230 919 304 1,209

45–59 615 243 795 336 1,546

≥60 239 232 765 304 1,312

Non-dominant deltoid Male 18–44 300 334 872 368 1,176

45–59 340 356 863 352 1,280

≥60 294 316 820 416 1,326

Female 18–44 339 295 810 384 1,216

45–59 616 240 895 448 1,337

≥60 234 313 900 336 1,410

Dominant deltoid Male 18–44 298 353 860 352 1,040

45–59 319 332 892 368 1,104

≥60 297 286 779 375 992

Female 18–44 329 243 856 292 1,020

45–59 606 340 825 352 1,408

≥60 239 327 827 368 1,120

Non-dominant tibialis

anterior

Male 18–44 300 258 792 368 1,456

45–59 340 240 806 336 1,280

≥60 259 248 805 448 1,264

(Continued)
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TABLE 8 (Continued)

Muscle Gender Age (years) Data

record

(number)

2.5 percentiles of

the number of

turns per second

97.5 percentiles of

the number of

turns per second

2.5 percentiles of

the mean

amplitude

97.5 percentiles of

the mean

amplitude

Female 18–44 338 238 859 336 1,016

45–59 616 310 859 384 1,280

≥60 239 237 825 400 1,104

Dominant tibialis

anterior

Male 18–44 299 245 797 408 1,384

45–59 340 221 852 360 1,400

≥60 258 284 730 424 1,168

Female 18–44 338 258 862 368 1,144

45–59 615 310 861 352 1,242

≥60 239 305 825 368 1,152

Non-dominant

gastrocnemius

Male 18–44 277 157 848 269 1,298

45–59 339 257 856 304 1,272

≥60 280 215 767 304 1,312

female 18–44 337 160 816 447 1,081

45–59 619 293 843 400 1,376

≥60 240 136 812 337 1,152

Dominant

gastrocnemius

Male 18–44 280 192 759 208 1,136

45–59 319 212 847 304 1,312

≥60 260 231 804 328 1,487

Female 18–44 335 153 811 262 1,178

45–59 611 258 861 357 1,403

≥60 240 251 951 304 1,151

Non-dominant vastus

medialis

Male 18–44 279 227 852 448 1,728

45–59 339 190 822 304 1,312

≥60 240 132 770 352 1,328

Female 18–44 338 142 837 304 1,136

45–59 612 255 823 405 1,323

≥60 238 262 872 336 1,072

Dominant vastus

medialis

Male 18–44 277 175 792 383 1,378

45–59 340 197 816 408 1,248

≥60 277 132 677 319 1,152

Female 18–44 340 102 646 304 1,215

45–59 615 251 814 374 1,232

≥60 240 210 745 336 1,264

Non-dominant SCM Male 18–44 298 260 776 240 800

45–59 339 197 971 240 928

≥60 299 254 916 256 840

Female 18–44 320 215 801 208 848

45–59 618 316 1,027 304 968

≥60 220 235 881 264 640

Dominant SCM Male 18–44 299 344 1,014 304 888

45–59 337 127 979 192 866

≥60 300 279 932 240 912

Female 18–44 339 204 926 192 824

45–59 620 340 1,182 304 1,032

≥60 220 249 871 192 704

ADM, abductor digiti minimi; EDC, extensor digitorum communis; SCM, sternocleidomastoid.
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FIGURE 5

Comparison of ROCs and AUC between the linear regression clouds and percentile clouds. The ROCs were drawn with the percentage of data

points beyond the boundaries of the linear regression clouds and percentile clouds, The AUC of the linear regression clouds and percentile

clouds were both >0.8. AUC = area under the curve. (A) The AUC of both the linear regression clouds and percentile clouds that were used to

discriminate neuropathic vs. non-neuropathic lesion were >0.8. (B) The AUC of both the linear regression clouds and percentile clouds that

were used to discriminate myopathic vs. non-myopathic lesion were >0.8.

TABLE 9 The sensitivity and specificity of each method for discrimination of neuropathic vs. non-neuropathic lesion muscles.

The

percentage

beyond the

upper

boundary of

the clouds

AUC Youden’s

index

Sensitivity Specificity P of sensitivity

comparison of

the three

methods

P of specificity

comparison of

the three

methods

QMUP 0.4145 47.46% 93.99%

Linear regression

clouds

>25% 0.852 0.4424 48.44% 95.80%

Percentile clouds >20% 0.826 0.4659 52.17% 94.42%

0.521 0.767

AUC, Area under the curve; QMUP, Quantitative assessment of the motor unit potential.

TABLE 10 The sensitivity and specificity of each method for discrimination of myopathic vs. non-myopathic lesion muscles.

The

percentage

beyond the

lower-right

boundary of

the clouds

AUC Youden’s

index

Sensitivity Specificity P of sensitivity

comparison of

the three

methods

P of specificity

comparison of

the three

methods

QMUP 0.2297 27.91% 95.06%

Linear regression

clouds

>18% 0.811 0.3643 42.31% 94.12%

Percentile clouds >30% 0.821 0.4115 46.51% 94.64%

0.186 0.871

AUC, area under the curve; QMUP, Quantitative assessment of the motor unit potential.

boundary takes 99 percentiles, and the left boundary takes the

minimum value of the number of turns per second of themuscle.

The previous developing methods of the turn-amplitude clouds

all adopted the 99 percentile of the number of turns per second

as the right boundaries of the clouds (1, 4, 6, 7). The definitions

of the high boundaries were different in previous studies.
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TABLE 11 The sensitivity and specificity of each method for discrimination of abnormal vs. normal muscles.

The

percentage

beyond the

upper

boundary of

the clouds

The

percentage

beyond the

lower-right

boundary of

the clouds

Youden’s

index

Sensitivity Specificity P of sensitivity

comparison of

the three

methods

P of specificity

comparison of

the three

methods

QMUP 0.2536 44.83% 80.53%

Linear regression

clouds

>25% >18% 0.3322 49.35% 83.87%

Percentile clouds >20% >30% 0.3615 51.41% 84.74%

0.241 0.531

QMUP, Quantitative assessment of the motor unit potential.

FIGURE 6

The boundaries of the the linear regression clouds and percentile clouds are shown in the figure. (A) The normal linear regression clouds and its

boundary. The right vastus medialis muscle in a middle-aged (45–59) male. (B) The normal percentile cloud and its boundary. The left deltoid

muscle in a Young-aged (18–44) female.

The application of the linear regression clouds has its

limitations. That means, it can be applied only when there

is linear correlation between the number of turns per second

and the mean amplitude with normal distribution and the

linear regression equation can be set up. The linear regression

clouds cannot be applied to all muscles, we thus developed the

percentile clouds.

The feature of the percentile clouds

By contrast, percentile clouds have the following advantages.

Firstly, it did not require the data to be normally distributed,

and it was applicable to all the muscles. Secondly, the percentile

clouds collect data from a small contraction force to the

maximum contraction force, which can more comprehensively

reflect the motor unit information. Notice that it was impossible

to use a dynamometer to measure contraction force in

clinical practice, therefore examiners can hardly determine

the contraction force accurately. The percentile clouds have

no precise requirements for contraction force, thus it can

be extensively used in automatic EMG interference pattern

analysis. Thirdly, the sampling bias was smaller because it does

not rely on the subjective judgment of the examiners, and the

subjects can cooperate to complete data collection. Additionally,

there was no statistical difference in the specificity of the linear

regression clouds, the percentile clouds, and QUMP, but the

sensitivity and Youden’s index of the percentile clouds were
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FIGURE 7

The distribution of data points for normal, neuropathic lesion, and myopathic lesion muscles in the linear regression clouds. The linear

regression clouds of the right vastus medialis muscle in three middle-aged men (44–59 years old). (A) The right vastus medialis muscle of a

middle-aged man is defined as normal, with the muscle stats distributed within the linear regression cloud. (B) The right vastus medialis muscle

of a middle-aged man is defined as neuropathic lesion, with the data points of muscle beyond the upper boundary of the linear regression

cloud, which exceed 25% of all data points. (C) The right vastus medialis muscle of a middle-aged man is defined as myopathic lesion, with the

data points of muscle beyond the lower and right boundaries of the linear regression cloud, which exceed 18% of all data points..

the highest and had significant diagnostic value. Therefore, the

percentile clouds were recommended to apply for automatic

analysis of electromyography interference pattern.

The evidence and advantage of judgment
criteria

Our study is the first to determine criteria based on ROCs.

The previous studies of the turn-amplitude clouds adopted

different judgment criteria that is the percentage of the data

records beyond the boundaries of the clouds, the evidence of

which had not been explained (1, 4, 6, 7). The EMG is a

diagnostic examination. Due to its long examination time and

great pain on the subject, it is not suitable for screening of

disease. Therefore, the determination of determining criteria

should be given priority to the improvement of specificity, so

that the false positive rate is as low as possible. The judgment

criteria with a higher specificity usually have a lower sensitivity.

The low sensitivity corresponds to the low true positive rate,

namely, the high false negative rate. As a result, the false

negatives cannot be excluded from a normal result of EMG.

In this study, according to the principle of giving priority

to specificity and referring to ROCs, the cut-off value with

specificity >94% was selected as the judgment criteria for

distinguishing neuropathic lesion vs. non-neuropathic lesion

and myopathic lesion vs. non-myopathic lesion in both clouds,

which is statistically reasonable. Since the criteria have taken

into account the specificity of the EMG examination (namely,

the consumption of examination time, pain for the subjects, and

requiring Subjects’ cooperation), they are suitable for diagnostic

examination. Since the sensitivity and specificity of the two

clouds are different, the judgment criteria of the two clouds

are different, namely, the percentages beyond the boundaries of

the two clouds are different when the judgment criteria with

the specificity >94% are adopted for both clouds. The AUC
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FIGURE 8

The distribution of data points for normal, neuropathic lesion, and myopathic lesion muscles in the percentile clouds. The percentile clouds of

left deltoid muscle in three young women (18–44 years old). (A) The left deltoid muscle of a young women is defined as normal, with the

muscles data points distributed within the linear regression cloud. (B) The left deltoid muscle of a young women is defined as neuropathic

lesion, with the data points of muscle beyond the upper boundary of the percentile cloud, which exceed 20% of all data points. (C) The left

deltoid muscle of a young women is defined as myopathic lesion, with the data points of muscle beyond the lower and right boundaries of the

percentile cloud, which exceed 30% of all data points.

of both the linear regression clouds and percentile clouds are

>0.8, indicating that both clouds have high authenticity and

diagnostic values.

Analysis of sensitivity and specificity

The percentile clouds possess higher sensitivity and

authenticity. With clinical diagnosis as the gold standard, this

study compared the sensitivity and specificity of the linear

regression clouds, percentile clouds, and QMUP, and there

is no significant statistical difference in the specificity of the

three methods, but the sensitivity and Youden’s index of

the percentile clouds are the highest, indicating that there

is significant diagnosis value for the percentile clouds. On

the premise of similar specificity, the Youden’s index of the

percentile clouds is higher than that of the linear regression

clouds, indicating that the percentile clouds possess higher

authenticity and stronger ability to discriminate neuropathic

lesion vs. non-neuropathic lesion and myopathic lesion vs.

non-myopathic lesion. Nirkko et al. (1) reported that the

turn-amplitude cloud had the same specificity as QMUP, but

its sensitivity was higher than that of QMUP. Peng et al.

(12) demonstrated that the turn-amplitude clouds had higher

sensitivity for discriminating myopathic and non-myopathic

lesion than QMUP and there was no statistical difference in

specificity; there was no statistical difference in the sensitivity

and specificity of the turn-amplitude clouds and QMUP for

discriminating neuropathic vs. non-neuropathic lesion and

normal vs. abnormal.

This study also has its limitations. Above all, the analysis

of sensitivity and specificity adopts clinical diagnosis as the

gold standard, so it is not independent. Also, the results of

QMUP are taken into account in the clinical diagnosis, which

may overestimate the sensitivity and specificity of QMUP

(1, 14). Besides, the sample size is small, because the EMG

examination is painful for subjects, which makes it difficult to

recruit volunteers.
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Conclusions

In this work, we study reference values of the linear

regression clouds and percentile clouds, and compare the

sensitivity and specificity of both clouds and QMUP, and we

have developed a new judgment criterion. First, we analyze

the factors that affect the number of turns per second and

the mean amplitude of the EMG interference pattern. Second,

the linear regression method and the percentile method are

exploited to draw the turn-amplitude clouds and establish

their reference values. Third, it is more rational to determine

their judgment criteria respectively according to the ROCs of

the two clouds. Compared with the specificity of the linear

regression cloud, the percentile cloud, and QUMP, there is

no difference, but the sensitivity and Youden’s index of the

percentile clouds are highest and have higher diagnostic value.

Fourth, it is more reasonable for the upper and lower boundaries

of the linear regression clouds to include the prediction interval.

However, the linear regression cloud cannot be applied to all

muscles. Fifth, it is easy for subjects to cooperate that inspection

process of the percentile clouds has no precise requirements for

contraction force when the data collection is performed from

small to the maximum contraction force. Besides, it is faster

than QMUP and has no selection bias. Finally, the percentile

clouds have no special requirements that the number of turns

per second and the mean amplitude have normal distribution,

consequently it has a wider range of applications than the

linear regression clouds. Therefore, the percentile clouds can

be adopted as the optimum for automatic electromyography

interference pattern analysis.
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