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Abstract
Ensemble forecasting is advocated as a way of reducing uncertainty in species distribution

modeling (SDM). This is because it is expected to balance accuracy and robustness of

SDMmodels. However, there are little available data regarding the spatial similarity of the

combined distribution maps generated by different consensus approaches. Here, using

eight niche-based models, nine split-sample calibration bouts (or nine random model-train-

ing subsets), and nine climate change scenarios, the distributions of 32 forest tree species

in China were simulated under current and future climate conditions. The forecasting en-

sembles were combined to determine final consensual prediction maps for target species

using three simple consensus approaches (average, frequency, and median [PCA]). Spe-

cies’ geographic ranges changed (area change and shifting distance) in response to climate

change, but the three consensual projections did not differ significantly with respect to how

much or in which direction, but they did differ with respect to the spatial similarity of the three

consensual predictions. Incongruent areas were observed primarily at the edges of species’

ranges. Multiple stepwise regression models showed the three factors (niche marginality

and specialization, and niche model accuracy) to be related to the observed variations in

consensual prediction maps among consensus approaches. Spatial correspondence

among prediction maps was the highest when niche model accuracy was high and margin-

ality and specialization were low. The difference in spatial predictions suggested that more

attention should be paid to the range of spatial uncertainty before any decisions regarding

specialist species can be made based on map outputs. The niche properties and single-

model predictive performance provide promising insights that may further understanding of

uncertainties in SDM.

PLOSONE | DOI:10.1371/journal.pone.0120056 March 18, 2015 1 / 18

OPEN ACCESS

Citation: Zhang L, Liu S, Sun P, Wang T, Wang G,
Zhang X, et al. (2015) Consensus Forecasting of
Species Distributions: The Effects of Niche Model
Performance and Niche Properties. PLoS ONE 10(3):
e0120056. doi:10.1371/journal.pone.0120056

Academic Editor: Stefan Lötters, Trier University,
GERMANY

Received: September 19, 2014

Accepted: February 3, 2015

Published: March 18, 2015

Copyright: © 2015 Zhang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was funded by the China’s
National Natural Science Foundation (41301056) and
the Special Foundation of Chinese Academy of
Forestry (CAFYBB2014QB006, RIF2012-04). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0120056&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Species distribution modeling (SDM) techniques, which attempt to provide detailed predic-
tions of distributions by statistically relating present-day species distribution to environmental
predictors, have been widely used to model and project the changes of species’ geographic dis-
tributions in response to climate change[1]. The most important criticism of niche models is
their failure to take biotic interactions, evolutionary change, and dispersal processes into ac-
count [2,3]. Many of the biological processes are not easily predictable under current and fu-
ture environmental conditions at either the continental or regional scale [3]. Niche-based
models postulate that species distribution and environmental conditions are in a state of equi-
librium. Specifically, the speed of plant migration is consistent with that of climate change. Un-
fortunately, there is often a time lag between changes in environmental conditions and species
migration into a more suitable habitat from a newly unsuitable one [4,5]. Correlative (not caus-
al) models have shown considerable predictive accuracy in current distribution simulations,
but not all of them have high model transferability [6–8]. Due to the limited availability of bio-
logical processes (e.g. species dispersal processes), only simulated data regarding potentially
suitable habitats have been generated. These were created based on the environmental condi-
tions of these species’ existing niches. In this way, niche models are only an incomplete descrip-
tion of the relationships between species distribution and environment. Despite conceptual
and technical shortcomings, niche-based static models are still considered a suitable first ap-
proximation of climate-change-induced effects on species geographical distribution at a large
scale because of their simplicity and flexibility when used for a large number of species [1,2,9].
Process-based models that can make predictions of species range shifts at the continental scale
are still rare, but they are not yet widely used because they require life histories and physiolo-
gies of each species [1, 2, 9]. The amount of information required for each species limits pro-
cess-based models to only a small number of species [1,9].

In practice, any modeling exercise into an unknown future involves uncertainty. Four
sources of uncertainty in niche-based SDM have been identified, including initial dataset con-
ditions (IC), model classes (MC), model parameters (MP), and boundary conditions (BC) [10–
12]. IC refers to an incomplete realization of species distribution (e.g. sample size [13,14],
range size [15]). Projected changes in species range may differ substantially in both magnitude
and direction due to the use of alternate MCs [2,11,16–18]. Predictions are also subject to MP
selection. For instance, the two user-defined parameters of random forest (RF) (the number of
trees and the number of randomly selected variables to split the nodes) should be optimized to
improve predictive accuracy [19]. BC affects distribution projection because of future varia-
tions in climate caused by different global circulation models (GCM) and Special Report of
Emission Scenarios (SRES) outcomes [15, 20–22].

Uncertainty in distribution projections can skew policy making and planning intended to ad-
dress and respond to climate change, especially where the conservation of threatened and endan-
gered species is concerned [23]. One recent recommendation is to fit a number of alternative
models and to explore the range of projections across more than one set of IC, MP, MC, and BC
combinations (herein termed ensemble forecasting) and then to find consensus in model projec-
tions (herein termed consensus forecasting) [7,10,24]. The accuracy of the forecast can be sub-
stantially improved by combining multiple individual forecasts [25]. Ensemble forecasting has
been applied to a variety of fields [10]. Applications involving ensemble forecasting in SDM are
still in their infancy, and little is known about the relative performance of different consensus ap-
proaches in handling and combining large groups of projections [7,24]. Previous studies on the
use of consensual approaches have focused primarily on assessment of model-level variations
and have not taken the differences among GCMs into account. However, climate models may
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involve much less uncertainty than statistical methods in the prediction of species distribution
[12,21,22]. The majority of these assessments have focused on the accuracy of prediction as a
measure of the performance of consensus approaches [7,24]; few studies have quantified the spa-
tial similarity among consensual prediction maps generated by different consensus approaches.
Consensual prediction maps are expected to see increasing use for decision-making in resource
management or designation of land in conservation planning. In this way, measuring the incon-
gruent area among consensual predictions may provide important information about the ade-
quacy of consensual approaches that may not be apparent from global comparison in terms of
prediction accuracy.

Most available studies have demonstrated that species distribution traits could substan-
tially influence the accuracy of species distribution predictions [15,20,21]. To date, there is
no single niche model that always provides the most accurate predictions for all species
[6,26]. A general conclusion is that habitat-specialist species yield models are more accurate
than habitat-generalist ones [16,26]. However, the manner in which different traits of species
distribution patterns affect the results of the consensual predictions derived from different
consensus approaches remains unexplored. For consensus approaches to be used effectively
in biodiversity and conservation management, thorough examinations of their relevance to
species with different geographical distribution characteristics are necessary.

In this study, using eight niche models, nine random data-splitting bouts and nine different
climate change scenarios, the distributions of 32 forest tree species in China were simulated
under current and projected future climate conditions. Forecasting ensembles were combined
by means of three widely-used consensus approaches, i.e., on the basis of median (PCA), aver-
age, and frequency of species occurrence under given climatic conditions. The primary objec-
tives were 1) to determine whether there is substantial variation in consensual prediction maps
among different consensus approaches and 2) to determine whether these variations could be
best explained by species traits and niche mode predictive performance.

Materials and Methods

Study area and plant species
The study area encompassed all of China. Thirty-two common forest tree species, which collec-
tively account for more than 50% of forest cover in China, were selected for comparison of var-
ious consensus approaches in projecting the species distribution under current and future
climate and potential range shifts. See S1 Table for ecological requirements and biological char-
acteristics of these 32 tree species. Information regarding the current distribution of the 32 tree
species was originally derived from the Vegetation Distribution Map of China (1:1,000,000
scale)[27]. They were then rasterized to a cell size of 8 km×8 km. The data consisted solely of
whether any individual of these 32 tree species was present in the area. These data, together
with a soil map of China (see below), were obtained from the Environmental and Ecological
Science Data Center for West China of the National Natural Science Foundation of China
(http://westdc.westgis.ac.cn).

Environmental variables
Seven climatically derived variables are considered critical to plant physiological function and
survival: mean annual temperature (MAT,°C), mean warmest month temperature (MWMT,°C),
mean coldest month temperature (MCMT,°C), difference (TD,°C) between MWMT and
MCMT, mean annual precipitation (mm), mean annual summer precipitation (May to Septem-
ber, mm), and degree-days above 5°C (DD,°C). Baseline climate data were averaged for the peri-
od 1961–1990. These seven climatic variables were calculated using ClimateChina (Ver 4.4) [28],
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which was developed using the same methodologies as ClimateBC [29]. See S1 Appendix for de-
tailed information on ClimateChina. In addition to climatic variables, 10 soil variables known to
affect plant species distributions were also selected: organic matter content (%), N, P, K content
(%), coarse, fine, silty, clay sand content (%), soil depth (cm), and pH. These soil variables were
derived from the 1:1,000,000 scale soil map of China database and rescaled to a spatial resolution
of 8 km × 8 km to match the species data grid. A total of 17 environmental predictor variables
were selected based on understanding of their biological relevance to the distribution of
plant species.

Future climate scenarios
To assess the uncertainties related to future projections of climate change, three SRES emis-
sions scenarios (A2, A1B, and B1) and three GCMs (MIROC32_medres, Center for Climate
System Research at the University of Tokyo, National Institute for Environmental Studies, and
Frontier Research Center for Global Change; CCCMA_CGCM3, Canadian Centre for Climate
Modeling and Analysis; BCCR-BCM2.0, Bjerknes Centre for Climate Research) were used in
this study. Climate change scenarios were averaged for three 30-year periods: 2010–2039
(2020s), 2040–2069 (2050s), and 2070–2099 (2080s). For the future climatic projections,
the same set of seven climate variables were calculated using ClimateChina software for all
8 km×8 km grids.

Niche models
The distribution of the 32 tree species was predicted using a BIOMOD framework [30] pro-
grammed in R software [31]. BIOMOD includes eight niche-based models: generalized linear
models (GLM), generalized additive models (GAM), multivariate adaptive regression spines
(MARS), mixture discriminant analysis (MDA), classification tree analysis (CTA), generalized
boosting method (GBM), artificial neural network (ANN), and RF. MPs were selected based on
modeling techniques. One set of MPs was assigned to each model for each split-sample bout.
For example, RF and GBM needed the maximum number of trees to be specified. We used
three target degrees of freedom for smoothing spline in the GAM [15,30].

Pseudo-absence selection and split-sample
All eight niche-based models require species presence and absence records. One solution was
to generate pseudo-absences when no reliable absence data were available [13,32,33]. Recent
studies have indicated that pseudo-absence data should be restricted to locations where condi-
tions are distinctly unsuitable for this species occurrence [13,34]. To improve sampling accura-
cy, method described by Engler et al. (2004) [34], was used to select absences with a presence-
only environment envelop model (surface response envelop model, SRE). SRE is a submodel of
the BIOMOD platform, which identifies locations where all predictor variables fall within the
extreme values (both maximum and minimum limits of each predictor) as determined by spe-
cies occurrence sites. Any site identified by SRE was precluded from pseudo-absences, and the
remaining pseudo-absences were considered true absences.

Then 70% true absences were selected for model development. This may prevent bias attrib-
utable to inclusion of an extremely high number of absences and reduce the computation bur-
den [32,35]. The prediction dataset (i.e. 70% true absences plus entire presence) was randomly
divided into a set of calibration data and a set of testing data at a ratio of 7:3. In order to have
an equal chance of selecting true absences and splitting data, these two processes were replicat-
ed three times each (i.e. nine random training and testing subsets were generated) to reduce
variability in model-building process and subsequent predictions. In the data splitting process,
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the ratio between the number of presences and absences in the calibration and testing dataset
was kept to be constant. In this way, a total of 72 different models were calibrated for each
species.

Model evaluation
The evaluation dataset generated by split-sample was used to assess the accuracy of the model.
Model accuracy was determined using three measures: The Kappa, true skill statistic (TSS),
and area under the curve values (AUC) of receiver operator characteristic (ROC) curves. These
three measures attribute different weights to the various types of prediction errors (e.g. omis-
sion, commission or confusion). AUC is an effective, threshold-independent model evaluation
indicator and is also independent of prevalence (i.e. the frequency of occurrence) of target spe-
cies [36]. AUC values below 0.7 were here considered poor, 0.7–0.9 moderate, and> 0.9 good.
Both Kappa and TSS are threshold-dependent measures of model accuracy. They both ranged
from −1 to +1, where +1 indicates perfect agreement between predictions and observations
and values of 0 or less indicate agreement no better than random classification [37]. The fol-
lowing ranges were used to interpret Kappa and TSS statistics: values< 0.4 were poor, 0.4–0.8
useful, and> 0.8 good to excellent.

Combination of ensemble forecasting
A total of 648 projections (72 models × 3 GCMs × 3 SERSs) were generated for each tree spe-
cies. To reduce uncertainty in species distribution projections, the following three most-widely
used consensus approaches were used to combine ensemble model projections after deleting
models with AUC< 0.70, Kappa, and TSS< 0.4.

Median (PCA) approach. A two-step method was used: (1) An individual projection was
selected among the eight niche-based model projections for each of the nine split-sample bouts
and each of the nine climate scenarios by using principal components analysis (PCA) (e.g.
[7,24]). These projections were closely correlated to the PCA consensus axis (or the first princi-
pal component) and represented the general trend of model projections (see also [6]). (2) The
median values of the 81 projections (nine predictions for current distribution) selected by the
first step were then computed to integrate modeling uncertainties and to represent the final
consensus forecast of future distributions.

Average. The simple average of all models outputs (predictions or projections)
was calculated.

Frequency. The frequency of predictions or projections that indicated a given species was
present in each grid was calculated after transforming each probability map into binary values
(presence/absence) at threshold 0.5.

Statistical analysis
Repeated-measures ANOVA was used to analyze the variations in model performance (AUC)
between model classes and species. Model classes and species types served as fixed factors and
nine split-sample bouts served as random factors. The analysis was performed using the linear
mixed effect model of R statistical package (“lme” function) [38].

Because all consensus approaches produced predictive probabilities, the comparisons of
range area changes among different projections require a threshold to classify predicted pres-
ences and absences. A species is considered present at a given grid if the probability of occur-
rence is above 0.5. To track changes in latitudinal distributions, we compared geographic
centers (or centroids) of current and future species range. The geographic center for probability
value of each species was calculated by using the mean center function in ArcGIS9.3 (ESRI
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Inc., http://www.esri.com/). The coordinates of the centroid were used to calculate distance
and direction of habitat shift. A two-way ANOVA was performed to investigate variations in
the changes in species range among three consensus approaches for each time period using
species changes in range (i.e. area change percentage or shifting distance) as a response variable
and consensus approach and tree species as factors. Because the levels in the factor (tree spe-
cies), are a sample of possibilities (i.e. other trees), we could think the factors as random effects.

Pearson’s correlation coefficient was used to quantify spatial similarity among prediction
maps for each species, pairwise among consensus approaches. Kappa value was also used to
evaluate the similarity of prediction maps after the probability maps were transformed into a
binary presence-absence map using a 0.5 threshold. To distinctively characterize the incongru-
ent pattern between species distribution maps, the current work focused on the locations
where the probability of species occurrence was above 0.5 as predicted by any one of the three
consensus approaches.

To investigate which variable best explains spatial correspondence among consensual pre-
diction maps, the average single-model predictive accuracies (AUC, Kappa, and TSS) and six
species ecological and biogeographical properties (prevalence, specialization, marginality and
latitudinal, thermal, and elevation ranges) were defined as explanatory variables. Pairwise map
correlations (Pearson’s correlation and Kappa) were averaged among all consensus approaches
for each species for baseline and future time to use as the dependent variables and related dif-
ferences in map correlation to explanatory variables using multiple stepwise regression models.

The latitudinal and elevation ranges were described as the differences between the average
values of the 10% most extreme sites (maximum and minimum) where each species was found.
To define the species thermal range, a PCA was performed on the five thermal variables (MAT,
MWMT, MCMT, TD, and DD). The first two axes of this PCA, which account for more than
95% of the total variability, were kept as a synthetic variable describing thermal gradients. The
thermal range was calculated as the difference between the average positions of the 10% highest
and lowest values along this synthetic variable where each species was found. Prevalence is
here defined as the proportion of species’ presence in the model-training data. The two mea-
sures of environmental niche, specialization and marginality, were calculated using ecological
niche factor analyses (ENFA in R package “adehabitatHS” [39]). Specialization describes the
species’ niche breadth by comparing variability in environmental conditions within a species’
range to the variability in environmental conditions in the entire study area. Strong specializa-
tion indicates that the niche is narrow. Marginality is a measure of the departure between the
species optimum and the mean environmental conditions in the study area and is therefore
representative of the species’ ecological niche position.

Results

Niche model performance
The split-sample procedure (or data-splitting process) influenced the model performance
(Fig. 1; S2 Table). For Larix principis-rupprechtii, niche models, like RF, GAM, GBM, and
GLM, showed higher predictive accuracy (AUC, Kappa, and TSS) and were less sensitive to the
procedure than other models (Fig. 1).

The predictive accuracies of the models also varied among modeling techniques when data
were pooled for all species and split-sample bouts, with MDA showing the worst average per-
formance and largest deviation. It was followed by ANN, CTA, and MARS. RF, GLM, GAM,
and GBM showed the better average performance (Fig. 2).

Variations in predictive accuracy were clearly demonstrated among the 32 species when
data were pooled for all niche models and split-sample bouts (S1 Fig.). These observations
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Fig 1. Predictive accuracies (AUC, Kappa, and TSS) of Larix principis-rupprechtii. Nine different symbol
types (dark circles) indicate nine random split-sample bouts (original data were randomly divided into two
sets: a calibration set and a validation set) and the same symbols are linked by the same straight lines.

doi:10.1371/journal.pone.0120056.g001
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Fig 2. Box-whisker plot of differences in model performance (AUC, Kappa, and TSS) amongmodel
classes when data were pooled for all species and split-sample bouts. Dots show the mean predictive
accuracy across species and split-sample bouts.

doi:10.1371/journal.pone.0120056.g002
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were consistent with repeated-measure ANOVA analysis, which indicated the variations in
model performance among modeling approaches and tree species were significant (Table 1).

A simple regression model was used to evaluate the relationship between average model per-
formance (AUC, Kappa, and TSS) and species traits (latitudinal, thermal, and elevation ranges,
prevalence, specialization, and marginality). Results from this analysis showed that AUC and
TSS were negatively related to latitudinal and elevation ranges (Table 2). Prevalence was the
only significant predictor that was positively correlated with Kappa.

Changes in species range
Changes in the potential distribution area of tree species and changes in distance and direction
of mean centers of suitable habitat were predicted for the periods of 2020s, 2050s and 2080s
using three different consensus forecasting methods. The period 1961–1990 served as a base-
line. Results are presented in S3 Table. Of the 32 tree species, 27 were consistently predicted
using three consensus approaches to expand their potential distribution ranges (3.7–107.4%)
or contract their potential habitats (0.4–86.0%) under altered climate, whereas the remaining
five species did not change in concert (S3 Table). In future climates, most tree species showed a
consistent tendency to shift their ranges in the same direction (northwest or southwest) ac-
cording to the three consensus approaches (S3 Table). Two-way ANOVA indicated no signifi-
cant difference in species’ relative changes in range (changes in relative area and distance of
range shift) among three consensus approaches (Table 3).

Table 1. Repeated-measures ANOVA assessing changes in model predictive accuracy (AUC, Kappa and TSS) between modeling approaches
and tree species.

Metrics Source of variation Numerator freedom Denominator freedom F-value P-value

AUC Intercept 1 2257 395733.1 <0.0001

Niche models 7 2257 75.6 <0.0001

Tree species 31 2257 2.3 0.0001

Kappa Intercept 1 2257 78272.5 <0.0001

Niche models 7 2257 197.0 <0.0001

Tree species 31 2257 85.8 <0.0001

TSS Intercept 1 2257 142053.9 <0.0001

Niche models 7 2257 135.9 <0.0001

Tree species 31 2257 7.4 <0.0001

Linear mixed effects models were used to perform this analysis with niche models (eight levels) and tree species (32 levels) as fixed factors and split-

sample replicates (nine levels) as random factors.

doi:10.1371/journal.pone.0120056.t001

Table 2. Linear regression modeling of the effects of specie traits on niche model performance.

Model parameters

Coefficient P-value R square

AUC Elevation range −6.629E-06 0.001 0.296

Latitudinal range −0.001 0.021 0.164

Kappa Prevalence 3.746 0.001 0.314

TSS Elevation range −2.688E-05 0.001 0.335

Latitudinal range -0.006 0.003 0.261

doi:10.1371/journal.pone.0120056.t002
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Comparison of consensual prediction maps
The overlay maps of the three final consensual binary maps were produced for each species
and each period (Fig. 3, S2 Fig.). Overlay analysis showed that, for most (but not all) species,
the area of species occurrence collectively predicted by the three consensus approaches was lo-
cated mainly in the core of the species range, while the incongruent area was located mainly at
the edges of the species range or discrete locations (Fig. 3, S2 Fig.). For a majority of the 32 spe-
cies, the ratio of incongruent to congruent area increased over time (S4 Table). For example,
the ratio of incongruent to congruent area decreased with increasing time horizon for Pinus
yunnanensis, but it increased with time for Pinus tabulaeformis (Fig. 3).

Mean correlation among consensual prediction maps varied according to the consensus ap-
proaches used to produce the maps, and there was substantial variability in the correlations
among species (Fig. 4). For both consensual binary and probabilistic maps, analysis of variance
showed that correlations were different (P< 0.001) among pairs for each time period.

When averaging the Pearson’s correlation coefficients across all trees species, the correlation
between probabilistic maps between average and frequency was higher than that between me-
dian (PCA) and average or frequency (Fig. 4). Pairwise correlation analysis for the three con-
sensual binary maps indicated that the correlation between average and frequency was also
higher than that between median (PCA) and average or frequency (Fig. 4). The correlation be-
tween median (PCA) and average was not significantly different from that between median
(PCA) and frequency in terms of either Kappa or Pearson’s correlation.

Species traits and map correlation
When all of the explanatory variables (latitudinal, thermal, and elevation ranges, prevalence,
specialization, marginality, AUC, Kappa, and TSS values) were included in multiple stepwise
regression models, only Kappa, marginality, and specialization remained significant predictors,
of map correlation (Table 4). Under both current and future climates, Pearson’s correlation in-
creased with increasing Kappa and decreasing marginality. In future climates, specialization ex-
erted a negative effect on the Pearson’s correlation. In the current climate, the map correlation
represented by Kappa increased as the accuracy of the model increased (Kappa).

Discussion

Model-building datasets and model performance
Ideally, SDMmodels would be verified on an entirely independent dataset. Model evaluations
should be performed in at least two different time periods undergoing climate change [24]. Al-
ternatively, a model can be developed in one area and then evaluated using species distribution

Table 3. Significance (P-value) of difference in the changes in species’ range (relative to baseline) predicted by three different consensual
approaches.

Time Change in area Distance of range shift

Total range change New habitat Habitat lost Northward shift Eastward shift

2020s 0.365 0.072 0.063 0.253 0.513

2050s 0.638 0.263 0.469 0.328 0.308

2080s 0.635 0.568 0.822 0.222 0.345

A two-way ANOVA was used to investigate differences in the changes in species range among three consensual approaches for each time period using

changes in species range as the response variable and consensual approach and tree species as factors.

doi:10.1371/journal.pone.0120056.t003
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Fig 3. Overlap maps of current and future potential presence-absence distributions predicted using
three different consensual approaches for Pinus yunnanensis (left column) and Pinus tabulaeformis
(right column).Good (green) indicates species predicted to be present by all three consensus approaches.
Moderate (blue) indicates species predicted to be present by any two of the three consensus approaches.
Poor (read) indicates species predicted to be present by any one of the three consensus approaches.

doi:10.1371/journal.pone.0120056.g003
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data outside the range of environments on which the original model is based (herein termed
model transferability) [1]. However, these cases are rarely tested in predicting climate-induced
range shifts. The split-sample method is commonly used to evaluate model performance when
completely independent data are not available. In this work, model-training data served as one
source of uncertainty in SDM. For each species and SDMmodel, predictive accuracy varied
over different model-training and testing data sets. To build reliable SDMmodels, further re-
search is needed on how to sample pseudo absences and select data-splitting schemes. A few re-
searchers have proposed guidelines on how to generate pseudo absences suitable for use with
different modeling techniques [13,33].

For each species, predictive accuracy varied from one model to another when using the
same mode-training and testing data sets. Some models (e.g. MDA with AUC< 0.5) even
failed to be calibrated, and others, such as RF, GBM, GAM, and GLM frequently produced

Fig 4. Pairwise correlation among predictions produced by three different consensual approaches (average, frequency, andmedian (PCA)). Data
are presented as mean ± SE. Means in the same time slice followed by the same letter are not significantly different at P� 0.05 according to LSD.

doi:10.1371/journal.pone.0120056.g004

Table 4. Species traits, model accuracy, and map correlation.

Time Map correlation Variable Coefficient P-value

Baseline Pearson’s correlation (Constant) 0.542 < 0.001

Kappa 0.418 < 0.001

Marginality −0.004 0.002

R2 = 0.648

Kappa (Constant) 0.170 < 0.001

Kappa 0.115 0.033

R2 = 0.143

Future time Pearson’s correlation (Constant) 0.661 < 0.001

Kappa 0.251 0.002

Specialization −6.273E-05 0.010

Marginality −0.003 0.033

R2 = 0.427

Coefficient and P-values of F-statstic for variables retained in the multiple stepwise regression models of map correlation for baseline and future

time periods.

doi:10.1371/journal.pone.0120056.t004
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models with better predictive accuracy (Fig. 2). This is because niche models have different
model-building algorithms. There is considerable variation in extrapolating assumptions about
the relationships between species and their environments [1,2,16]. Multiple-model comparison
analysis with respect to predictive success indicated that more complex models tended to be
more accurate [16]. As reported in previous studies, our results showed similar variations in
predictive accuracy among individual species and modeling techniques. A few studies conclud-
ed that MC contributed the more variation to uncertainty in SDM than other sources of uncer-
tainty did, and this could hide the effects of different climate change scenarios [6,11,12,21,22].
For this reason, more attention should be paid to niche models in SDM. The current primary
objective was not to address the differences between single niche models but rather to focus on
whether species traits influence spatial correspondence among consensual prediction maps.

Niche properties and model performance
Species traits might affect the model performance due to a large range of variations in climatic
and ecological requirements for these species, which makes it difficult to find a consistent rela-
tionship between species distribution and environmental conditions [20,21]. There are many
available studies of the relationship between species traits and niche model predictive accuracy.
Some studies have concluded that species with restricted distribution ranges tend to have more
accurate model predictions than species with wide ranges (e.g. [16,18]). Grenouillet et al.
(2011)[15] reported that species prevalence and latitudinal range had no significant effect on
model performance, and more accurate predictions were obtained for species with low thermal
and elevation ranges. Segurado and Araújo (2004)[26] noted that model performance was
more pronounced for species with high environmental specialization and marginality than for
generalist species. Species with small latitudinal and elevation ranges yielded models with
higher predictive accuracy. This confirmed the hypothesis that generalist species yield models
with lower accuracy than specialist ones. The predictive accuracy of consensus approaches was
not evaluated here because numerous studies have already demonstrated that consensus ap-
proaches can substantially improve the predictive performance of single niche models (e.g.
[7,11,12,24]). Grenouillet et al. (2011)[15] found that the predictive performance of ensemble
forecasting was positively related to species prevalence and negatively related to thermal and
elevation ranges.

Niche properties and consensus forecasting
Although studies using ensemble forecasting to predict habitat suitability have identified areas
of spatial uncertainty by comparing maps of projections [11,12,15,21], no maps of uncertainty
emanating from different consensus approaches have been provided. The current study
showed that the agreement between consensus approaches was spatially structured for all 32
species, with the congruent area mainly located in the core area within a species range and in-
congruent areas occurring primarily at the edge of species range or at discrete locations. Studies
dealing with the predictive accuracy of consensus approaches have not directly evaluated the
spatial similarity of consensual prediction maps [7,24], so comparisons to other taxonomic
groups remain difficult. Nevertheless, a few studies have compared the spatial correlation
among distribution maps derived from different single-niche models. For example, Grenouillet
et al. (2011)[15] demonstrated that the most notable disagreement between predictions oc-
curred at the edge of the recorded distributions of species, and species prevalence was positively
related to the consensus among niche model predictions. Syphard and Franklin (2009)[40]
showed that map correspondence was most pronounced when single-model prediction accura-
cy was high and prevalence was intermediate. In the current case, correlation among
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consensual prediction maps was positively related to the predictive performance of niche mod-
els and negatively related to species specialization and marginality. These findings emphasize
that significant improvement in the reliability of consensus approaches can be achieved using
niche models with high predictive accuracy. These improvements were more pronounced for
species with low marginality and specialization than specialist ones.

Species traits can substantially influence the vulnerability of range changes to environmental
changes [5,41,42]. The most vulnerable plant species are those with a restricted distribution
[20,41]. Both niche models and climate scenarios (i.e.GCMs, SRESs) have dramatic discrepan-
cies in forecasting species range shifts and extinction rates under altered climate conditions
[2,21,22,24,43]. Then the differences in the prediction maps may become more apparent in en-
semble forecasting for specialist species than for generalist species under climate change condi-
tions. Considering the differences in the way of developing consensus approaches to derive the
final consensual prediction maps (see below), it is here speculated that map correlation among
consensus approaches should be high for generalist species. This speculation is consistent with
current observations that map correlations were high for species with low specialization and
marginality. To generalize strong results, additional investigations are needed to better evaluate
both intra- and inter-taxonomic group variabilities in spatial correspondence among consensu-
al predictions. Given the limitations of niche model and the general conclusion that specialist
species more often yield models with high predictive accuracy, it is here argued that developing
new single, better niche model with better model transferability is needed for better prediction
of species distribution using consensus approaches.

Consensus forecasting and model selection
Projections vary among models. One response to this is to build a set of models across more
than one set of IC, MC, MP, and BC combinations for analysis of the range of predictions and
achievement of consensus among different predictions. The reason to use consensus approach
is based on the central limit theorem in statistics [24]. Consensus forecasting will not necessari-
ly provide the most accurate future projection but may at least provide the most conservative
future projection [6,12]. It therefore appears to have the greatest potential for predicting species
range shifts in the context of climate change by identifying the most plausible direction and
magnitude of range shifts of species. RF and GBM have been shown to be more robust than
other commonly used approaches [2,15]. This was also found to be the case here, probably be-
cause they both inherently incorporated the concept of ensemble forecasting [10, 15,18].

In the current study, none of the three consensus approaches performed equally well in pro-
jecting species distribution range onto a future scenario. A non-significant difference in species’
relative range changes among the three consensus approaches did not reflect the spatial corre-
spondence among the distribution maps derived from the three consensus approaches. Both in
terms of probabilistic and binary maps, there was a substantial difference between three con-
sensus approaches. Although a few studies have compared the predictive performances of dif-
ferent consensus approaches (e.g. [7,24]), none has, to our knowledge, discussed the reasons
for the observed differences among consensual projections. It is here suspected that spatial di-
vergence among prediction maps may be related to the method by which ensembles of fore-
casting were combined. The way consensus approaches behave under combined forecasting
can differ. The median method is less sensitive to outliers than the average method. Frequency
is inseparably linked to the threshold used to transform probability of species occurrence into
binary map. The choice of threshold can also influence species range change predictions
[14,24,44]. The three consensus approaches implemented in this study were based on the out-
puts of all single-predictions, while other combinative algorithms have been proposed to

Ensemble Forecasting of Species Distribution

PLOS ONE | DOI:10.1371/journal.pone.0120056 March 18, 2015 14 / 18



preselect the single-models based on certain predefined criteria [7,22]. There is still debate on
the best methodology for combining model projections. To advance the improvement of en-
semble forecasting framework in SDM, consensus approaches must be comprehensively evalu-
ated and it must be determined whether simple consensus approaches perform as well as more
complicated approaches. Maps produced by SDM are a fundamental component of conserva-
tion planning and resource management. From a conservation perspective, ensemble modeling
and consensus approaches are expected to see increasingly common use for decision-making
in resource management and designation of land in conservation planning. Incongruent areas
should receive the most focus.

Ensemble forecasting assists the recent efforts to capitalize on the growing availability of
species occurrence records, modeling techniques, and future climate scenarios. Although a
wide spectrum of modeling approaches and GCM predictions based on alternative emissions
scenarios exist, it does not necessarily mean that they should be incorporated in ensemble fore-
casting. Araújo et al. (2005)[24] argued that improved predictive accuracy still depends on tra-
ditional practices of building better models with improved data. Grenouillet et al. (2011)[15]
and Crimmins et al. (2013) [45] further indicated that consensus forecasting method will not
always outperform single models. Current results demonstrated that spatial correspondence
among consensual prediction maps could be improved by using niche models with high pre-
dictive accuracy. The individual models must be as accurate and diverse as possible if the con-
sensus forecast is to be accurate or effective [46]. The term “individual model” generally refers
to the sub-models with the same mathematical and statistical properties (e.g. the sub-model of
RF and GBM is classification tree, and they use internal validation to derive their model set).
Predicting the effects of climate change on species distribution using ensemble forecasting
frameworks is complicated, it usually requires both kinds of models, including niche models
with more than one model-building algorithms, and climate models with different physical
process and SRES emission scenarios. A few researchers have demonstrated that future climate
scenarios show considerable variation in SDM, almost as much as niche models [12,21,22]. Cli-
mate models are complex tools: variability occurs among alternate simulations. No single
model has been recognized as best. Identifying and selecting the most appropriate GCMs and
SRESs is one way to reduce uncertainty in climate scenarios [47]. As such, it is likely that mini-
mizing known uncertainties in SDM based on existing knowledge may improve reliability in
the future projections by means of consensus forecasting. However, consensual forecasting in
SDM is still in its infancy and more efforts are required to assess their strengths and weaknesses
and those of ensemble schemes.

Conclusions
The present study provides conceptual insights regarding the uncertainty of modeling the re-
sponse of species to climate change. Results support previous findings that specialist species
have more accurate results under modeling than generalist species and that model robustness
is related to model complexity. These findings, along with those showing that different model-
ing techniques show various degrees of susceptibility to model-training data, could have im-
portant implications for preselecting models in SDM. Spatial uncertainty in ensemble
forecasting of species distributions was here found to be related to the accuracy of single mod-
els and the positions of species in ecological space. The finding that generalist species yield dis-
tribution maps with lower spatial uncertainty than specialist species in projecting their
distributions under current and future climate conditions could have important implications
for consensus forecasting of species distributions. The positive relationship between spatial cor-
respondence among consensual predictions and model performance suggests that additional
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efforts should be made to select or develop a new niche model with high spatial-temporal
transferability. We conclude that species niche properties and model performance should be
taken into account more critically in ensemble forecasting of species distributions, and particu-
larly in the assessments of climate change impacts.
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