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Pentameric ligand-gated 
ion channels exhibit distinct 
transmembrane domain archetypes 
for folding/expression and function
J. P. Daniel Therien & John E. Baenziger

Although transmembrane helix-helix interactions must be strong enough to drive folding, they must 
still permit the inter-helix movements associated with conformational change. Interactions between 
the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have 
been implicated in folding and function. Here, we evaluate the role of different physical interactions at 
this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most 
interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while 
analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC 
and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, 
the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic 
contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The 
other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has 
relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved 
different mechanisms to balance the need for strong M4 “binding” to M1/M3 to promote folding/
expression, and the need for weaker interactions that allow for greater conformational flexibility.

The folding of transmembrane proteins occurs via two stages1. First, independently stable transmembrane 
α-helices are released into the membrane bilayer by the translocon machinery. Second, independently formed 
α-helices associate with each other to form higher order structures, which in turn create environments that can 
drive further insertions of the polypeptide chain and/or promote the binding of prosthetic groups within the nas-
cent protein core2. With the muscle-type nicotinic acetylcholine receptor (nAChR), appropriate transmembrane 
helix-helix associations are also required to mask an endoplasmic reticulum retention motif and thus to signal 
that the mature receptor is ready to traffic to the cell surface3. In the absence of effective helix-helix associations, 
the immature form remains in the endoplasmic reticulum and is targeted for degradation.

Transmembrane proteins, such as the nAChR and other pentameric ligand-gated ion channels (pLGICs), 
must strike a balance between strong helix-helix associations that drive folding of the transmembrane domain 
(TMD) and weaker associations that facilitate inter-helix movements associated with protein conformational 
change4, 5. This balance may also impact on the functional sensitivity of pLGICs to the many allosteric modu-
lators that act on their TMDs6–12. For example, the outermost M4 α-helix in the TMD of each nAChR subunit 
influences channel function13–19. M4 likely influences function through its associations with the adjacent trans-
membrane α-helices, M1 and M320, 21. While effective M4-M1/M3 interactions are required to drive protein 
folding ultimately leading to expression on the cell surface22, intrinsically strong interactions reduce, while weaker 
interactions enhance functional sensitivity to both the surrounding lipid environment and the potentiating effects 
of a disease-causing M4 lipid-facing tryptophan substitution23–25. In other words, a more malleable M4-M1/M3 
interface leads to greater functional sensitivity to altered lipid-protein interactions.

Aromatic interactions are thought to play a key energetic role driving M4 associations with M1 and M322, 23.  
Aromatic interactions between M4 and M1/M3 are abundant in GLIC, but less so in ELIC and the nAChR 
(Fig. 1)26–28. In fact, the level of aromatic interactions at this interface varies substantially from one pLGIC sub-
unit to another, leading to the hypothesis that different subunits exhibit different intrinsic strengths of M4-M1/
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M3 associations and thus different sensitivities to allosteric effectors that act by influencing M4-M1/M3 asso-
ciations23, 29. This hypothesis, however, ignores the possibility that polar and/or van der Waals interactions may 
compensate for the absence of aromatic residues in some pLGICs to enhance helix-helix associations. The roles 
of polar and van der Waals interactions at the M4-M1/M3 interface in pLGIC folding and function have not been 
systematically characterized.

In a previous study, we used Ala scanning mutagenesis to examine the role of M4 in the function of two 
prokaryotic pLGICs, GLIC and ELIC29. Here, we set out to examine more broadly how side chain chemistry at the 
M4-M1/M3 interface influences GLIC and ELIC function. An unexpected finding of this study, consistent with 
the findings from the previous M4 Ala scans, is that Ala mutations at the M4-M1/M3 interface in GLIC typically 
lead to detrimental effects on folding/expression and/or function, while even analogous Ala substitutions in ELIC 
typically lead to gains in function. M4-M1/M3 interactions appear to be optimized and essential for both expres-
sion and function in GLIC, but not in ELIC.

Structural and sequence comparisons suggest that our functional data may reflect the existence of distinct 
archetypes for the TMDs of pLGICs. One archetype, exemplified by GLIC, the glycine (GlyR), the GABA recep-
tor and the glutamate activated chloride channel (GluCl)30, 31, has an M4-M1/M3 interface densely packed with 
aromatic side chains that form extensive π-π/CH-π interactions to drive M4 associations with M1/M3 during 
folding22. These aromatic interactions, along with a cation-π interaction, an anionic residue located at the core 
of the M4-M1/M3 interface, and a Pro residue at the midpoint of M4 all facilitate tight, complimentary interface 
in the folded structure that is essential for function, even though it likely restricts inter-helix motions. In another 
archetype, exemplified by ELIC, many of the nicotinic receptor subunits, and the serotonin receptor (5HT3AR), 
there are relatively few aromatic side chains at the M4-M1/M3 interface and even fewer inter-helix π-π/CH-π 
interactions28, 32. In fact, the bulky aromatic side chains separate the helices creating gaps at the M4-M1/M3 
interface that likely weaken the driving force for M4 associations with M1/M3 during folding, while facilitating 
inter-helix movements in the folded state. Furthermore, most mammalian members of the latter archetype also 
lack the cation-π interaction, the anionic residue, and the M4 Pro residue that are essential for a complemen-
tary M4-M1/M3 interface in the folded structures of other pLGICs. It appears that these TMD archetypes have 
evolved different mechanism for balancing the need for strong M4 “binding” to M1/M3 to facilitate folding/
expression and the need for weaker interactions that allow for greater conformational flexibility.

Figure 1.  Side chain chemistry at the M4-M1/M3 interfaces of GLIC and ELIC. Structures of (A) GLIC (PDB: 
4HFI) and (B) ELIC (B, PDB: 2VL0) showing on the left the full structure. The boxes on the right show the 
highlighted regions of GLIC and ELIC. Residues are coloured depending on their properties, aromatic (yellow), 
hydrogen bonding (green), negatively charged (red) and positively charged (blue). A water molecule in GLIC’s 
M4-M1/M3 interface is also shown (cyan). Note that aliphatic residues are not shown for clarity. (C) The 
centroid distances between interacting pairs of aromatic residues at the M4-M1/M3 interfaces of GLIC and 
ELIC.
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Results
To examine how different physical interactions at the M4-M1/M3 interface in both GLIC and ELIC (Fig. 1) influ-
ence function, we mutated each residue to Ala, and characterized how each mutation influenced agonist-induced 
channel gating using two-electrode voltage clamp electrophysiology. Both GLIC and ELIC are cation-selective 
ion channels that transiently gate open in response to agonist binding, although GLIC responds to protons while 
ELIC responds to primary amines, such as cysteamine33, 34. The injection of either wild type (WT) or mutant 
GLIC/ELIC cRNAs into Xenopus laevis oocytes typically led to robust agonist-induced currents across the plasma 
membrane (Fig. 2), although numerous GLIC mutants and one ELIC mutant did not express and/or function.

The Ala-mutations in GLIC and ELIC led to quantitatively similar effects in that all measured pH50/EC50 values 
were within one full log unit (i.e. ≤10-fold) of WT values. The lack of dramatic changes in channel function is not 
surprising given the predominantly modest changes in chemistry (36 of 63 mutations are aliphatic to Ala substitu-
tions), and the fact that the mutated side chains are not directly involved in coupling the agonist site to the chan-
nel gate35–37. The qualitative effects of the mutations, however, were different. Of the twelve Ala mutations in GLIC 
that led to alterations in the pH50 of 0.5 log units or more, nine of these had loss-of-function phenotypes, and an 
additional five single mutations and most double mutations led to non-functional or non-expressed channels. In 
contrast, of the eight Ala mutations in ELIC that led to changes in the EC50 of 0.5 log units or more, only one had a 
loss-of-function phenotype, with one additional mutation leading to a non-functional or non-expressed channel 
and another leading to oocyte cell death. These data show that even subtle changes to the M4-M1/M3 interface in 
GLIC have detrimental effects on channel function, while similar in ELIC are easily tolerated. It appears that the 
M4-M1/M3 interface in GLIC is highly optimized for both folding/expression and function, while in ELIC it is 
not. The measured pH50/EC50 values for each mutant are grouped according to the chemistry of the affected side 
chain in Tables 1 and 2. The functional effects of the mutations are mapped onto M1, M3 and M4 in Figs 3 and 4  
and are discussed below.

Figure 2.  Functional characterization of the GLIC and ELIC mutants. Whole cell electrophysiological traces 
were recorded using two-electrode voltage clamp electrophysiology. Currents were recorded from Xenopus 
laevis oocytes expressing either GLIC (Left panel) or ELIC (Right panel) in response to protons or cysteamine, 
respectively. The lower panels presents dose response curves (normalized current (I/Imax) versus ligand 
concentration) for select Ala mutants, with the number (n) of averaged traces. Error bars represent S.E.
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GLIC aromatic residues.  The interface between M4 and M1/M3 in GLIC contains a network of ten densely 
packed and interacting aromatic residues, with one additional aromatic, W217 on M1, involved in a cation-π 
interaction with R296 on M4. These ten aromatic residues interact with each other via canonical π-π stacking or  

GLICa (WT EC50 = 9.33 ± 1.7 µM (pH50 = 5.03 ± 0.08) n = 38)

Single Alanine Mutations

Aromatic Aliphatic

TMD 
α-helix Mutant EC50 (pH50) (µM) n

TMD 
α-helix Mutant EC50 (pH50) (µM) n

M1

F210A 10.5 ± 1.6 
(4.98 ± 0.07)e 8

M1

I198A NCb 10

W213A NCb 17 I202A 25.7 ± 3.3 
(4.59 ± 0.06)e 8

F216A 35.5 ± 3.1 
(4.45 ± 0.04)e 8 L203A 1.6 ± 0.2 

(5.79 ± 0.05)e 8

W217A 66.1 ± 3.0 
(4.18 ± 0.02)e 8 M205A 6.3 ± 0.4 

(5.20 ± 0.03)e 8

M3
Y254A 26.9 ± 1.8 

(4.57 ± 0.03)e 8 L206A 6.2 ± 0.4 
(5.21 ± 0.03)e 8

F265A 47.9 ± 1.1 
(4.32 ± 0.01)e 8 L209A 4.9 ± 0.3 

(5.31 ± 0.03)e 8

M4

F299A 9.1 ± 1.7 
(5.04 ± 0.08)c 6

M3

I258A 6.5 ± 0.8 
(5.19 ± 0.05)e 8

F303A 33.1 ± 6.2 
(4.48 ± 0.08)c,e 8 M261A 5.4 ± 0.5 

(5.27 ± 0.04)e 8

F314A 33.1 ± 1.5 
(4.48 ± 0.02)d,e 10 I262A NCb 10

F315A 20.4 ± 0.5 (4.69 
0.01)d,e 8 V268A 2.6 ± 0.2 

(5.59 ± 0.03)e 8

Charged V275A 2.2 ± 0.1 
(5.65 ± 0.02)e 8

M3
E272A NCb 10 L279A 7.2 ± 0.9 

(5.14 ± 0.05)e 8

K280A 15.1 ± 2.5 
(4.82 ± 0.07)e 8

M4

I291A 16.6 ± 1.8 
(4.78 ± 0.05)c,e 7

M4 R296A 22.4 ± 1.5 
(4.65 ± 0.03)c,e 9 P300A NCc,b 8

Hydrogen Bonding V302A 15.5 ± 1.4 
(4.81 ± 0.04)c,e 7

M3 Q276A 36.3 ± 3.2 
(4.44 ± 0.04)e 8 L310A 33.9 ± 1.5 

(4.47 ± 0.02)c,e 6

M4

T292A 13.8 ± 1.5 
(4.86 ± 0.05)c,e 6

S295A 7.6 ± 1.6 
(5.12 ± 0.09)c,f 6

N307A 38.0 ± 0.9 
(4.42 ± 0.01)c,e 10

Double Alanine Mutations

Outer Leaflet Cluster Inner Leaflet Cluster

 Mutant EC50 (µM) (pH50) n Mutant EC50 (µM) (pH50) n

  Y254F 7.24 ± 0.8 
(5.14 ± 0.05) 8 F210A + F303A 55.0 ± 11.5 

(4.26 ± 0.09) 8

  Y254F + N307A 27.5 ± 6.4 
(4.56 ± 0.10) 8 F216A + F299A NCb 10

  Y254A + N307A 40.7 ± 9.4 
(4.39 ± 0.10) 8 W217A + R296A 40.7 ± 9.5 

(4.39 ± 0.10) 8

  Y254A + F314A NCb 12 F265A + F299A NCb 10

  Y254A + F315A NCb 11 F265A + F303A NCb 10

  F314A + F315A NCb 11 Q276A + T292A 9.55 ± 1.8 
(5.02 ± 0.08) 8

F299A + F303A NCb 10

Table 1.  The Functional Effects of Alanine Mutations of Residues located at the M4-M1/M3 Interface of GLIC. 
aData collected 1–4 day(s) after cRNA injection (VHold ranging from −20 to −40 mV). Error Values represent 
the standard deviation. bNo current (NC) observed in oocytes after 1–4 day(s) of cRNA injection. cData taken 
from Henault et al.9, 18, 29. dData taken from Carswell et al.23, 24. ep < 0.001 relative to the pH50 of WT GLIC via 
one-way ANOVA followed by Dunnet’s post hoc test. fp < 0.01 relative to the pH50 of WT GLIC via one-way 
ANOVA followed by Dunnet’s post hoc test.
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CH-π interactions that fall within the expected aromatic ring centre-to-centre distances of 4.5 to 7.0 Å (Fig. 1C)38, 39.  
Three interacting aromatics residues located at the M4 C-terminus (F314 and F315) and the M3 N-terminus 
(Y254) also interact with F121 on the β6-β7 loop29 to form the “outer leaflet cluster”. Another seven interacting 

ELICa (WT EC50 = 0.93 ± 0.13 mM (−Log[EC50(M)]) = 3.03 ± 0.06) n = 23)

Single Alanine Mutations

Aromatic Aliphatic

TMD 
α-helix Mutant

EC50 (mM) (−
logEC50) n

TMD 
α-helix Mutant

EC50 (mM) (−
logEC50) n

M1

W219A 0.91 ± 0.05 
(3.04 ± 0.02) 8

M1

L204A 3.55 ± 0.31 
(2.45 ± 0.04)d 8

F222A 0.09 ± 0.03 
(4.05 ± 0.15)d 8 I208A 0.25 ± 0.05 

(3.60 ± 0.09)d 8

W223A 1.23 ± 0.06 
(2.91 ± 0.02)d 8 L209A 0.29 ± 0.05 

(3.54 ± 0.08)d 8

M3 F281A 0.88 ± 0.05 
(3.06 ± 0.02) 8 G212A NCb 10

M4
F303A 0.19 ± 0.07 

(3.73 ± 0.17)c,d 10 L213A 0.32 ± 0.02 
(3.49 ± 0.03)d 8

F307A 0.57 ± 0.09 
(3.24 ± 0.07)c,d 8 I215A 0.32 ± 0.04 

(3.49 ± 0.05)d 8

M3 V260A 0.46 ± 0.05 
(3.34 ± 0.05)d 8

Charged M264A 1.29 ± 0.12 
(2.89 ± 0.04)d 8

M4 R300A 0.40 ± 0.05 
(3.40 ± 0.05)c,d 11 G268A 1.19 ± 0.14 

(2.92 ± 0.05)d 8

Hydrogen Bonding G270A 1.02 ± 0.10 
(2.99 ± 0.04) 8

L278A 1.07 ± 0.10 
(2.97 ± 0.04) 8

M3
Q263A 0.58 ± 0.04 

(3.24 ± 0.03)d 8

M4

L295A 0.50 ± 0.10 
(3.30 ± 0.09)c,d 8

S271A 0.82 ± 0.05 
(3.09 ± 0.03) 8 I296A 0.27 ± 0.03 

(3.57 ± 0.05)c,d 10

M4 C299A 0.56 ± 0.08 
(3.25 ± 0.06)c,d 9 P304A — f 10

I310A 0.88 ± 0.09 
(3.05 ± 0.04)c 10

G311A 0.51 ± 0.10 
(3.29 ± 0.09)c,d 11

L314A 0.42 ± 0.05 
(3.38 ± 0.05)c,d 8

V315A 0.60 ± 0.08 
(3.22 ± 0.06)c,d 9

G318A 0.76 ± 0.13 
(3.12 ± 0.08)c,e 10

I319A 0.86 ± 0.16 
(3.06 ± 0.08)c 11

Double Alanine Mutations

Inner Leaflet Cluster Inner Leaflet Cluster

 Mutant EC50 (mM) (−
logEC50)

n Mutant EC50 (mM) (−
logEC50)

n

  W219A + F303A 0.55 ± 0.12 
(3.26 ± 0.10) 8 W223A + R300A 0.80 ± 0.11 

(3.10 ± 0.05) 8

  W219A + F307A 0.45 ± 0.07 
(3.35 ± 0.07) 8 S271A + F303A 0.62 ± 0.13 

(3.21 ± 0.09) 8

  F222A + C299A 0.10 ± 0.02 
(4.00 ± 0.09) 8 S271A + F307A 0.77 ± 0.09 

(3.11 ± 0.05) 8

  F222A + F303A —g —

Table 2.  The Functional Effects of Alanine Mutations of Residues located at the M4-M1/M3 Interface of ELIC. 
aData collected 1–4 day(s) after cRNA injection (VHold ranging from −20 to −40 mV). Error Values represent 
the standard deviation. bNo current (NC) observed in oocytes after 1–4 day(s) of cRNA injection. cData taken 
from Henault et al.9, 18, 29. dp < 0.001 relative to the −Log[EC50] of WT ELIC via one-way ANOVA followed 
by Dunnet’s post hoc test. ep < 0.05 relative to the −Log[EC50] of WT ELIC via one-way ANOVA followed 
by Dunnet’s post hoc test. fFunctionally distinct, EC50 Values were not obtained. gInjected oocytes gave weak 
response to cysteamine and died past day 1.
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Figure 3.  Functional effects of Ala mutations at the M4-M1/M3 interface in GLIC. (A) Changes in the pH50 
resulting from Ala mutations of residues on M4 (top right panel), M1 (bottom left) and M3 (bottom right). 
Residues and bar graphs are colour-coded as in Fig. 1, with aliphatic residues tan. The bar graphs represent 
the magnitude of change ± the standard deviation. (B) Changes in the pH50 values are heat-mapped onto the 
GLIC structure (PDB: 4HFI). The magnitude of the shift in pH50 is depicted via colour intensity, with no change 
in pH50 in white, gain-of-function in red, and loss-of-function in blue. Mutants that failed to express and/or 
function are shown in black.
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Figure 4.  Functional effects of Ala mutations at the M4-M1/M3 interface in ELIC. (A) Changes in the 
−log(EC50) resulting from Ala mutations of residues on M4 (top right panel), M1 (bottom left) and M3 
(bottom right). Residues and bar graphs are colour-coded as in Fig. 3. The bar graphs represent the magnitude 
of change ± the standard deviation. (B) Changes in the −log(EC50) values are heat-mapped onto an ELIC 
homology model (based on GLIC structure). The magnitude of the shift in pH50 is depicted via colour intensity, 
as in Fig. 3. P304A mutant is coloured grey, due to altered desensitization kinetics.
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residues on M1, M3 and M4 are located primarily in the cytoplasmic leaflet of the bilayer (the “inner leaflet 
cluster”) and form the bulk of the contacts between M4 and M1/M3. A similar network of interacting aromatic 
residues at the M4-M1/M3 interface of the homologous GlyR plays an essential role in folding/expression and 
function22.

Individual Ala-mutations of eight of the ten aromatic residues led to loss-of-function phenotypes, with one of 
these leading to a non-expressed and/or non-functional channel (W213) and two mutations (F210A and F299A) 
having no effect. Of the latter, F210 on M1 interacts only weakly with F303 on M4 (centroid distance of 6.5 Å), 
while F299 on M4 interacts across the M4-M1/M3 interface with W213 and F216 on M1, and F265 on M3. In the 
latter case, the cation-π interaction between the adjacent R296 on M4 and W217 on M1 may stabilize function-
ally important M1-M4 interactions, despite the F299A mutation. Note that W217A led to the largest measurable 
loss-of-function of any of the aromatic-to-Ala substitutions.

While the detrimental effects of the individual aromatic-to-Ala mutations demonstrate that aromatic residues 
at the M4-M1/M3 interface are important, a critical role for these residues in folding/expression and function was 
revealed when two interacting aromatic residues were simultaneously mutated to Ala (Table 1). Ala substitutions 
of any two of the four side chains in the extracellular aromatic cluster led to a complete loss of folding/expres-
sion and/or function. The simultaneous Ala substitution of two interacting residues in the cytoplasmic aromatic 
cluster was also not tolerated in four of five cases. The one double mutant that still functioned involves F210 on 
M1 and F303 on M4. As noted, the F210A mutation had essentially no effect. The double F210A/F303A mutant 
was slightly more detrimental to function than the individual F303A mutant (pH50 = 4.26 vs 4.48, respectively).

GLIC Aliphatic residues.  Through van der Waals interactions, aliphatic residues play an important role 
in transmembrane helix-helix associations40, 41. In GLIC, Ala mutations of aliphatic residues at the M4-M1/M3 
interface led to the largest variability in their effects on function, with some leading to gains in function, others 
to losses in function, and most having no effect. Many of the Ala mutations that led to changes in function, how-
ever, involve residues that face the M4-M1/M3 interface, but that are not directly involved in M4-M1/M3 con-
tacts. For example, M4-facing residues on the N-terminal half of M1 (I198, I202, L203, M205 and L206) do not 
directly interact with M4 (Fig. 1A). Two residues on M3, V268 and V275 extend from M3 towards M4, but their 
contacts with residues on M4 are minimal - they likely interact more extensively with lipids. I262 extends from 
M3 towards M1 and M4, but is also close to a His residue on M2, H235, which has been implicated in channel 
function42, 43, possibly explaining why the I262A mutant led to a loss of expression and/or function. Many of the 
changes in function observed with the Ala mutations of aliphatic residues thus likely occur via mechanisms that 
do not directly involve altered M4-M1/M3 interactions.

A few of the aliphatic mutations that alter EC50 values are notable. L209A, which led to a modest 
gain-of-function, is located in a pocket formed by three interacting residues, F210 and W213 on M1 and F303 on 
M4 in the inner leaflet aromatic cluster. The smaller Ala side chain may allow greater conformational flexibility 
to promote more effect interactions between F210/W213 and F303. On the other hand, L310A, which led to a 
modest loss of function, is located just below the outer leaflet cluster of aromatic residues. In this case, the bulky 
Leu side chain may fill a void between M4 and M3 created by the adjacent bulky aromatic side chains. Finally, the 
Ala-mutation of a proline residue on M4 (P300A) led to a complete loss of folding/expression and/or function. 
P300 kinks M4 so that the C-terminus projects towards the N-terminus of M3. P300A should eliminate this kink 
and thus dramatically alter how M4 positions itself relative to M1 and M3. This mutation highlights the critical 
importance of M4-M1/M3 interactions in folding/expression and/or function. P300 may also interact favourably 
with the W213 on M144.

GLIC polar residues.  Polar residues are key drivers of helix-helix interactions in the hydrophobic membrane 
environment, but are less important within the interiors of polytopic membrane proteins4, 5, 45. GLIC exhibits a 
number of both charged and neutral polar residues at the M4-M1/M3 interface. Notably, E272 is surrounded by 
three polar hydrogen bonding residues (Q276, S295, and T292) and likely forms a weak hydrogen bond with T292 
(3.1 Å from proton donor to acceptor). E272A did not express and/or conduct cations in response to protons, 
possibly due to a critical role solvating these three polar groups. On the other hand, individual mutations of any of 
these three hydrogen bonding groups had minimal effects, with the largest being a modest loss-of-function with 
the Q276A mutant. Even simultaneous Ala substitutions of the two closest hydrogen bonding residues, Q276A/
T292A, had no effect on activity. Interactions with other residues thus likely satisfy the electrostatic requirements 
of E272. The E276A mutation highlights the importance of charged residues in the folding/expression and/or 
function of pLGICs, particularly if they are located at the core of interacting TMD α-helices. An anionic residue 
at this position is conserved in the GlyR, the GABA receptor and in GluCl.

Two positively charged residues are also located at this interface, although K280 near the C-terminus of M3 
has no potential interacting polar residues on M4 and likely projects into the bilayer to interact with the polar lipid 
head groups. The K280A mutant had no effect on channel function. Conversely, R296 on M4 forms a cation-π 
interaction with W217 on M1. The R296A mutation leads to a modest loss-of-function (pH50 = 4.65), while the 
W217A mutation leads to the largest quantifiable loss-of-function (~10-fold) observed in this study. The double 
R296A/W217A mutation has a similar effect (pH50 = 4.39), suggesting that these two residues are energetically 
coupled and that this coupling promotes GLIC function.

Finally, Y254 at the N-terminus of M3 not only interacts with adjacent aromatic residues, but its hydroxyl 
group also forms a hydrogen bond with N307 on M4 through an intervening water molecule27. Y254 was mutated 
to both Phe and Ala, and N307 to Ala. All three mutations had modest detrimental effects on channel function. 
Both the Y254F/N307A and Y254A/N307A double mutants had EC50 values similar to the EC50 values of the 
single mutants. Y254 and N307 are thus energetically coupled, with the interaction having a positive effect on 
channel function.
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ELIC aromatic residues.  ELIC contains only four of the ten interacting aromatic residues found at the 
M4-M1/M3 interface in GLIC, as well as a Trp residue (W223) on M1 involved in an analogous cation-π inter-
action with R300 on M4. Notably absent are the three aromatic residues that in GLIC form the extracellular 
aromatic cluster. Surprisingly, while the aromatic residues in ELIC share homologous positions with those found 
in GLIC, Ala substitutions had either little effect or actually led to gain of function phenotypes. In fact, the F222A 
mutation led to a 10-fold gain-of-function while the same mutation in GLIC (F216A) led to a loss-of-function. 
Even more surprising, double Ala mutations of interacting aromatic residues had no detrimental effect on fold-
ing/expression and/or function (Table 2). Even the W223A mutation, which eliminates the cation-π interaction 
with R300, had close to WT activity. In contrast to GLIC, aromatic residues at the M4-M1/M3 interface in ELIC 
negatively impact on channel function.

ELIC Aliphatic residues.  Ala mutations of aliphatic residues at the M4-M1/M3 interface in ELIC 
led to 0.5 log unit changes in EC50 in only six of eighteen cases, with only one of these leading to a modest 
loss-of-function (Table 2). The smaller Ala side chains may allow for closer inter-helix packing to enhance chan-
nel function. The smaller side chains could also create space that allows greater conformational flexibility to 
promote conformational change. Notably, the one aliphatic-to-Ala mutation, L204A, that led to a loss of function 
is located on M1, but does not interact directly with M4. The corresponding I198A mutation in GLIC led to a 
complete loss of folding/expression and/or function. In addition, G212A, which is also located in the N-terminal 
half of M1, did not yield agonist-induced currents. Flexibility at this site appears to be essential for folding/expres-
sion and/or function. Finally, P304A on M4 led to channels with substantially altered desensitization kinetics, 
which made it impossible to accurately predict the effective EC50. The analogous P300A mutation in GLIC is not 
functional.

ELIC polar residues.  ELIC has only one charged residue, R300 on M4, which forms a cation-π interaction 
with W223 on M1. As noted, the W223A mutant had little effect on channel function. R300A and the W223A/
R300A double mutant both led to slight gain-of-function phenotypes suggesting that, unlike in GLIC, this 
cation-π interaction does not promote channel gating. ELIC also has three hydrogen bonding side chains at the 
M4-M1/M3 interface, with Q263 and S271 located on M1, and C299 located on M4. None of these residues are 
close enough to form hydrogen bonds with other polar residues, although S271 and C299 are both close to adja-
cent aromatic side chains. Mutation of any of these residues alone or in combination with potential interacting 
partners either led to no change or a decrease in EC50, indicating no or gain-of-function phenotypes, respectively.

Discussion
We set out to understand the roles of different physical interactions at the M4-M1/M3 interfaces of GLIC and 
ELIC in channel function. Our work was performed in the context of previous findings, which showed that 
enhanced M4-M1/M3 interactions in GLIC/ELIC promote, while weakened interactions inhibit function23. The 
intrinsic strengths of M4-M1/M3 interactions also influence the functional sensitivities of GLIC/ELIC to both 
lipids and a lipid-facing M4 Trp mutation23–25, which in the muscle nAChR leads to a congenital myasthenic 
syndrome13. Given the variable side chain chemistry at the M4-M1/M3 interfaces of different pLGIC subunits, 
these preliminary findings suggested that different pLGIC channel subunits exhibit different intrinsic strengths 
of M4-M1/M3 interactions, possibly leading to different sensitivities to allosteric modulators that act via the 
M4-M1/M3 interface.

In single transmembrane peptides, van der Waals contacts and polar interactions play a major role driving 
helix-helix associations. Inter-helix contacts are often mediated by a leucine-zipper like motif (“small-xxx-small”, 
where small refers to Ala, Gly or Ser)46, 47. Leucine zipper motifs facilitate tight interactions between adjacent 
helices leading to extensive van der Waals contacts. In some cases, these tight interactions even promote the for-
mation of inter-helix hydrogen bonds involving the Cα hydrogen of glycine45. Polar interactions are also common 
driving forces for helix-helix associations, particularly with interacting transmembrane peptides immersed in 
the hydrophobic bilayer environment5. Polar side chain mutations and non-polar to polar mutations can lead to 
altered or inappropriate interactions that lead to human disease5, 48–50. In complex polytopic membrane proteins, 
however, the tight packing of α-helices is not as prevalent given the increased number of α-helices in the TMD 
and the necessity to allow for the conformational flexibility required for protein function. Hydrogen bonding 
interactions in polytopic membrane proteins are typically weaker than expected for a hydrophobic transmem-
brane environment4, 51, 52.

Our mutagenesis data are consistent with findings from other polytopic membrane proteins and suggest that 
both van der Waals and polar interactions do not play as important a role in TMD helix-helix associations as in 
single transmembrane peptides. Leucine zipper-like motifs do not govern interactions between M4 and M1/M3 
in either GLIC or ELIC and thus do not mediate helix-helix interactions during folding/expression or function. 
Ala substitutions of aliphatic side chains typically had little effect, suggesting that close van der Waals contacts at 
the M4-M1/M3 interactions are not essential to GLIC or ELIC function. Similarly, most Ala mutations of polar 
residues at the M4-M1/M3 interfaces of GLIC and ELIC had modest or no effects, with two notable exceptions. 
A cation-π interaction between M4 and M1 enhances function in GLIC, but is detrimental to function in ELIC. 
In addition, a glutamate residue surrounded by polar residues at the core of M4-M1/M3 interactions in GLIC is 
critical to folding/expression and/or function. A homologous anionic side chain is lacking in ELIC, but found in 
other pLGICs (see below).

Instead, interactions between M4 and M1/M3 are dominated in both GLIC and ELIC by bulky aromatic res-
idues, although a key finding of this study is that aromatic side chains have diametrically opposing roles in the 
two pLGICs. In GLIC, individual aromatic to Ala substitutions at the M4-M1/M3 interface typically lead to loss 
of function phenotypes, with double mutations of interacting aromatic side chains almost invariably leading to 
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a complete loss of folding/expression and/or function. In contrast, both individual and double aromatic-to-Ala 
mutations at the M4-M1/M3 interface in ELIC typically have little effect or lead to gains in function. Aromatic 
residues at the M4-M1/M3 interface are thus essential for both folding/expression and function in GLIC. 
Surprisingly, aromatic residues at the M4-M1/M3 interface are detrimental to function in ELIC. Note that aro-
matic interactions typically contribute between −0.6 and −1.3 kcalmol−1 to the stability of a protein structure38. 
Although direct measurements are required to define the energetic contributions of aromatic residues to M4-M1/
M3 interactions, the aromatic residues at the M4-M1/M3 interface of GLIC should contribute substantial free 
energy to promote M4-M1/M3 associations during both folding/expression and function. Indeed, the thermal 
denaturation temperature of GLIC is higher than in ELIC24.

A comparison between the GLIC and ELIC structures provides a rationale for the distinct phenotypes 
observed with the Ala mutations of aromatic and other residues. In GLIC, ten aromatic residues at the M4-M1/
M3 interface form a network of bulky interacting side chains, with an additional aromatic side chain involved in 
a cation-π interaction between M1 and M4 (Fig. 1). There is also a glutamate residue at the core of the M4-M1/
M3 interface that is solvated by adjacent polar residues. These and other side chains lead to a densely packed and 
complementary interface along the entire length of M4 that appears to be highly optimized for function, with 
even subtle modifications to this interface having detrimental effects. In contrast, there are only four aromatic 
residues at the M4-M1/M3 interface in ELIC, and these make fewer contacts with other aromatic side chains 
than analogous aromatic side chains in GLIC (Fig. 1). While these bulky aromatic side chains located in the inner 
leaflet of the bilayer should promote helix-helix associations, the absence of bulky aromatic side chains in the 
outer leaflet of the bilayer leads to gaps between the transmembrane helices. In fact, the final five residues in M4 
are unresolved in ELIC crystal structures suggesting relatively weak interactions between the C-terminal half of 
M4 and M1/M3. The simplest interpretation of our ELIC mutagenesis data is that in the absence of an extensive 
network of interacting aromatic residues along the entire length of M4, the bulky aromatic side chains that are 
present actually prevent the optimal helix-helix associations that are required for channel function23. In ELIC, Ala 
mutations of aromatic side chains may reduce steric barriers and/or lead to greater conformational flexibility to 
promote optimal M4-M1/M3 interactions.

In this context, it is interesting to note that many neuronal pLGICs have side chain chemistries at the M4-M1/
M3 interface similar to GLIC. The GlyR, the GABA receptor and the GluCl each has an extensive network of 
interacting aromatic residues that leads to a densely packed M4-M1/M3 interface along the entire length of M4 
(Fig. 5). Also similar to GLIC, Ala mutations of residues at the M4-M1/M3 interface in the GlyR lead predom-
inantly to loss-of-function phenotypes, with several leading to a complete loss of folding/expression and/or 
function22. As in GLIC, strong interactions at this interface in these pLGICs likely promote folding leading to 
cell surface expression22, although tight “binding” of M4 in the folded structure may hinder inter-helix motions 
and thus conformational rearrangements of the TMD α-helices during channel gating and desensitization. An 
intriguing question to address is how this TMD archetype has evolved to gate open despite the conformational 
restrictions that may be imposed by the strongly interacting residues at the complementary interface between M4 
and M1/M3.

In contrast, the M4-M1/M3 interface side chain chemistry in ELIC resembles that of the various subunits of 
the nAChR and the 5HT3A receptor in they all have relatively few interacting aromatic side chains at the M4-M1/
M3 interface. Based on our data, we would predict that the bulky aromatic side chains at this interface actually 
prevent close helix-helix associations leading to weaker M4 “binding” to M1/M3 in the folded state. This predic-
tion is consistent with the observation that functional receptors are still observed when the hydrophobic trans-
membrane portion of M4 in the α-subunit of the Torpedo nAChR is replaced by the hydrophobic transmembrane 
segments of either the vesicular stomatitis virus glycoprotein or the human interleukin-2 receptor53. Preliminary 
studies in our lab show that aromatic to Ala substitutions at this interface in the human muscle-type α-subunit 
lead to gains of function (data not shown). The lack of an extensive aromatic network at the M4-M1/M3 interface 
in ELIC, the nAChR and the 5HT3A receptor may weaken M4-M1/M3 associations thus facilitating inter-helix 
movements during conformational change. On the other hand, the absence of an extensive network may weaken 
the driving force behind M4 “binding” to M1/M3 during folding/expression, thus possibly hindering pLGIC 
assembly. It is intriguing to ask how these pLGICs have evolved to fold/express in the absence of an extensive 
aromatic network at the M4-M1/M3 interface - particularly given that even subtle perturbations to the extensive 
aromatic networks in GLIC and the GlyR often lead to a complete loss of folding/expression and/or function22.

In addition to distinct levels of aromatic residues at the M4-M1/M3 interface, the two TMD archetypes share 
other conserved features (Fig. 6). GLIC, the GlyR and the GABA receptor and GluCl all contain a Pro residue 
in M4 that kinks the helix to maximize contacts between the C-terminal half of M4 and the N-terminal half of 
M3. They all have a conserved cation-π interaction linking M1 to M4. Each also has a Glu residue on M3 that is 
located at the core of M4-M1/M3 interactions. These residues in GLIC and the GlyR all play an important role, in 
some cases being essential for folding/expression and/or function. In contrast, the various nAChR subunits and 
the 5-HT3A receptor typically lack the M4 Pro residue, the cation-π interaction linking M1 to M4, and the central 
Glu residue located on M3. Note that although ELIC fits into the latter archetype based on the level of aromatic 
residues at the M4-M1/M3 interface, it is unique in that it does contain both the M4 Pro and the cation-π inter-
action between M1 and M4. ELIC thus exhibits features characteristic of both archetypes.

Our data adds to an increasing literature describing studies where structure-function relationships have been 
compared and contrasted in GLIC and ELIC29, 54–57. Some of these reports, including this study, highlight dif-
ferences in sequence and function between GLIC and ELIC. The reported findings have raised the possibility 
that ELIC represents a distinct branch in the pLGIC family29, 54. Other reports highlight conserved mechanistic 
features57. Further studies with these two model pLGICs should continue to provide a wealth of information 
regarding the mechanisms underlying pLGIC function.
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Materials and Methods
RNA constructs for oocyte expression.  The GLIC and ELIC coding sequences, preceded by an α7 nAChR  
signal sequence, were cloned into plasmids pSP64 and pTLN, respectively. The two plasmids were linearized by 
EcoRI and MluI, respectively. The linearized plasmids were then used to produce capped cRNA by in vitro tran-
scription using the mMESSAGE mMACHINE® SP6 kit (Ambion). All mutants were created using QuikChange™ 
Site Directed Mutagenesis kits (Agilent) and were verified by sequencing.

Electrophysiology.  Stage V–VI oocytes were collected as previously described58, injected with cRNA, and 
allowed to incubate one to four days at 16 °C in ND96 + buffer (5 mM HEPES, 96 mM NaCl, 2 mM KCl, 1 mM 
MgCl2, 1 mM CaCl2, and 2 mM Pyruvate). Whole cell currents were recorded using a two-electrode voltage clamp 
apparatus (OC-725C oocyte clamp; Holliston, MA). For GLIC, whole cell currents were recorded from injected 
oocytes (3–20 ng cRNA) immersed in MES buffer (140 mM NaCl, 2.8 mM KCl, 2 mM MgCl2, and 10 mM MES). 
Currents through the plasma membrane in response to pH jumps (pH 7.3 down to the indicated pH values) 
were measured with the transmembrane voltage clamped at voltages between −20 mV and −40 mV depending 
on the level of expression, typically −20 mV. For ELIC, whole cell currents were recorded from injected oocytes 
(0.1–10 ng cRNA) immersed in HEPES buffer (150 mM NaCl, 0.5 mM BaCl2, and 10 mM HEPES, pH 7.0). In 
most cases, currents through the plasma membrane in response to cysteamine concentration jumps (from 0 mM 
up to the indicated values) were measured with the transmembrane voltage clamped at −30 mV.

Figure 5.  The M4-M1/M3 interface of different pLGICs. Structures of GluCl (top left, PDB: 4TNW), GlyR (top 
right, PDB: 5CFB), nAChR (bottom left, PDB: 2BG9), and α4β2 (bottom right, PDB: 5KXI). Each structure 
shows a zoomed in region of the M4-M1/M3 interface of a single subunit. Residues are coloured depending on 
their properties: aromatic (yellow), hydrogen bonding (green), negatively charged (red) and positively charged 
(blue).
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Dose responses for each mutant were acquired from at least two different batches of oocytes. Each individual 
dose-response experiment was fit with a variable slope sigmoidal dose-response and the individual EC50 values 
from each experiment averaged to give the reported EC50 values ± standard deviation.
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