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ABSTRACT

Cutaneous melanoma remains a severe public
health threat, with annual incidence increasing
slowly but steadily over 4 decades. While early-
stage melanomas can typically be treated with
complete surgical excision with favorable results,
the development of metastatic cancer, which is
related to a lower survival rate, is linked to the
primary tumor’s rising stage and other high-risk
features. Even though the first discoveries of an
immunological anti-tumor response were pub-
lished about a century ago, immunotherapy has
only been a feasible therapeutic option for cuta-
neous melanoma in the last 30 years. Nonethe-
less, for the treatment of various cancers,
including metastatic melanoma, the area of can-
cer immunotherapy has made significant progress
in the last decade. As a result, melanoma contin-
ues to be the subject of several preclinical and
clinical investigations to further understand can-
cer immunobiology and test different tumor
immunotherapies. Immunotherapy’s resistance
to radiation and cytotoxic chemotherapy is one of
its most distinguishing features. Furthermore, the
discovery of biomarkers will aid in patient strati-
fication and management during immunother-
apy treatment. In this article, we discuss current

knowledge and recent developments in immune-
mediated therapy of melanoma.
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Key Summary Points

Cutaneous melanoma remains a severe
public health threat, with annual
incidence increasing slowly but steadily
over 4 decades. Immunotherapy has only
been a feasible therapeutic option for
cutaneous melanoma in the last 30 years

The pembrolizumab, nivolumab and
ipilimumab have been approved by the
FDA for melanoma treatment. The first
FDA-approved immune checkpoint
inhibitor in metastatic melanoma is
ipilimumab, a human monoclonal IgG1
antibody against CTLA-4

High dosages of IL-2 and interferons are
the most commonly utilized drugs in
biological immunotherapy

The first class of immunomodulatory
drugs to be used in the treatment of
melanoma is cytokines. Indeed, the FDA
has approved both IL-2 and IFN-a as
adjuvant treatments for melanoma
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INTRODUCTION

Cancer is the world’s second greatest cause of
death, and it is a major public health concern.
In 2021, 608,570 cancer deaths and 1,898,160
new cancer cases are predicted in the US [1, 2].
Cutaneous melanoma is a more severe form of
the disease that develops when melanocytes
change and become malignant. Melanoma is
the most serious skin cancer. It is less prevalent
than basal cell and squamous cell carcinomas
[3]. In recent decades, the cutaneous melanoma
incidence has risen dramatically. Melanoma is
the ninth most common type of cancer and the
second leading cause of death. Every year, [
100,000 new instances of melanoma are detec-
ted in the US, with around 9000 deaths occur-
ring from the disease [4]. When melanoma is
detected early, surgical excision of the tumor is
linked to a better prognosis. On the other hand,
surgery is no longer sufficient for people who
have advanced or metastatic disease locally.
Localized melanoma has a 99% 5-year survival
rate, but distant metastases have a 20% 5-year
survival rate [5].

• Melanoma is one of the most susceptible
cancers to immune suppression. High tumor
mutational burden due to production of
cancer-testis antigens, ultraviolet (UV) light
exposure and pathogen-associated antigens
mimicking melanocyte lineage proteins are
all possible explanations for the sensitivity of
melanoma cells to immune system activa-
tion [6, 7]. In this case, the T cell response
appears to be crucial in preventing mela-
noma. The tumor infiltrated lymphocytes
(TILs) play a crucial role in the anti-tumor
immune response formation, and a fraction
of TILs in melanoma patients shows cytoly-
tic activity against autologous tumors. They
are also linked to a better chance of survival
and a decreased risk of metastasis [8].
Immunotherapy, molecularly targeted ther-
apy and cytotoxic chemotherapy are current
systemic treatment options for individuals
with metastatic melanoma. The therapeutic
landscape for melanoma patients has
evolved dramatically since 2011, with the
approval of 11 new medicines and

combination regimens. Immunotherapy
drugs, in particular, have been linked to
long-term survival in responding individuals
and have become the standard of care in
most melanoma patients [9]. Melanoma has
high immunogenicity due to its high
immunogenicity; therefore, immunotherapy
is one of the most effective therapeutic
options. The mechanisms of action of
immunotherapy are targeted at specific tar-
gets in the immune response’s counter-reg-
ulatory processes [10]. Several therapeutic
trials aimed at generating a T-cell response
with local or systemic immunomodulatory
medications have been conducted in recent
decades, such as interleukin (IL)-2 [11],
interferon (IFN)-a [12], cancer vaccines [13]
and adoptive cell transfer [14]. In this review,
we discussed recent developments in the
field of immune-mediated therapy of mela-
noma. This article is based on previously
conducted studies and does not contain any
new studies with human participants or
animals performed by any of the authors.

EPIDEMIOLOGY

Melanoma occurs in a moderately significant
number of patients, with a global incidence rate
of about 3 per 100,000 [15]. Globally, 352,000
new cases of melanoma were estimated to be
diagnosed in 2015, with a 5 case per 100,000
age-standardized incidence rate. Melanoma led
to the deaths of[60,000 people worldwide [16].
Males have a higher incidence rate than
females, and it is linked to a lower median age at
diagnosis (57 years) than other solid tumors
(65 years) [15, 17]. Australasia (54%), North
America (21%) and Western Europe (16%) were
found to have the highest incidence of mela-
noma [16]. Furthermore, the fact that global
melanoma incidence rates are continuing to rise
is highly alarming. There were about 225,000
new cases of melanoma in 2005, but by 2015,
that number had risen to nearly 352,000, a 56%
increase [18]. While incidence rates of mela-
noma in Australia and North America are
beginning to settle down, in Eastern and
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Southern Europe, they are still increasing [19].
As a result, melanoma is a significant cause of
death and disease worldwide, necessitating new
therapies and prevention strategies.

PATHOPHYSIOLOGY
AND CLINICAL SUBTYPES

Melanoma’s exact etiology is unknown [20].
However, the molecular and histological char-
acteristics of the many melanoma subtypes
have been extensively studied [21, 22]. Mela-
nomas that develop from chronically sun-
damaged skin (CSD) have been found to occur
in anatomical sites such as the neck and head.
Non-CSD melanomas, on the other hand, are
located in anatomical regions with little sun
exposure, including the extremities and trunk
[20]. In general, non-CSD melanomas have less
mutation than CSD melanomas [20, 22]. Mela-
nomas are closely attributed to benign mela-
nocyte neoplasms. Naevi (commonly known as
moles) are these lesions, and elevated levels of
naevi are thought to be a melanoma risk factor
[20, 23]. Non-invasive melanoma, benign naevi
and abnormal cellular characteristics in dys-
plastic naevi in situ are among these lesions
[20, 24]. Melanoma in situ is a type of mela-
noma limited to the epidermis and has a 100%
survival rate if wholly removed [24]. The
American Joint Committee on Cancer’s (AJCC)
current melanoma staging system is based on an
examination of the tumor (T), the presence of
distant metastases (M) and the number of
metastatic nodes (N) [25, 26]. The clinical stages
of cancer are subsequently grouped, ranging
from 0 to stage IV [25]. Because distant metas-
tases are present, stage IV melanoma is charac-
terized as metastatic melanoma, whereas
metastases exclusively distinguish stage III
melanoma in regional lymph nodes (LN) [27].

Malignant melanoma has traditionally been
divided into four histopathological subtypes,
but certain melanomas cannot be categorized
totally into either group [28]. Furthermore, this
classification is based on morphological and
clinical factors; it has minimal predictive sig-
nificance, although it helps identify the dis-
ease’s many histological presentations [28]. The

four main melanoma subtypes are as follows:
nodular melanoma (NM), lentigo maligna mel-
anoma (LMM), superficial spreading melanoma
(SSM) and acral lentiginous melanoma (ALM)
[29]. However, several new clinical subgroups
have been identified in recent years. Melanoma
from a blue naevus, desmoplastic melanoma
(DM) and persistent melanoma are examples of
these [28].

RISK FACTORS AND DRIVER
MUTATIONS

Melanoma develops as a result of a complicated
interaction between environmental and genetic
risk factors. UV rays from tanning beds and UV
solar radiations are the critical environmental
risk factors to be concerned about [30, 31].
Individual risk factors include a family history
of melanoma, elevated levels of melanocytic
naevi and skin complexion [31, 32]. Melanomas
have one of the highest mutation rates of all
solid malignancies [33]. As a result, current
research is focusing on the molecular profiles
linked with specific subtypes of melanoma. It is
crucial to distinguish between ‘‘driving’’ muta-
tions, which offer a survival advantage, and
mutations that have little or no influence on
tumor growth are known as ‘‘passenger’’ muta-
tions [34]. The ability to create targeted thera-
pies based on cancer’s mutational landscapes
allows for significant improvements in clinical
outcomes. In 2015, researchers from The Cancer
Genome Atlas Network published an extensive
study revealing that the first complete genetic
classification system for cutaneous melanomas
was developed [35]. The significantly mutated
genes’ patterns, namely triple wild-type (WT),
neurofibromin 1 (NF1), RAS and BRAF, which is
related to greater copy numbers and structural
rearrangement abnormalities but lacks muta-
tions in the three genes mentioned above, were
used to create these four distinct subtypes.
These subtypes do not predict the outcome, but
they may aid in identifying the genetic abnor-
malities linked to melanoma, hence identifying
possible molecular targets [35]. It was also sur-
prising to learn that immune cellular infiltrates
and immune gene expression were associated
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with patient survival [35]. Although studies of
the significant genetic anomalies in melanoma
have been well covered elsewhere, this section
will focus on a few of the most common driver
mutations seen in cutaneous melanoma
[20, 33, 36].

IMMUNOTHERAPY
FOR CUTANEOUS MELANOMA

Tumor immunotherapy is the use of pharma-
cological medicines to induce or replace host
anti-tumor immunity in cancer patients.
Immunotherapy’s cytotoxic chemotherapy and
resistance to radiation are one of its most dis-
tinguishing features. Dacarbazine was previ-
ously the most effective treatment for
melanoma, with an overall response rate (ORR)
of 10–20%; however, there were no differences
between dacarbazine monotherapy and combi-
nation treatment. For radiotherapy, no
improved results have been documented.
Despite the dismal clinical results, these
approaches have been the main drivers in mel-
anoma treatment for decades [37, 38]. Most
immunotherapeutic drugs’ mechanisms of
action are unknown, but these treatments are
significant for their capacity to provide a long-
term benefit in a subset of patients [39]. In the
metastatic situation, ipilimumab has been
linked to a considerable increase in overall sur-
vival [40]. Several caveats must be considered
while using immunotherapy. Even though
therapy advantages might last for years, only a
tiny percentage of patients respond.

Furthermore, immunotherapy’s distinctive
side effects, which are related to the induction
of autoimmunity and pro-inflammatory-like
states, may limit eligibility or provide clinical
management issues [41]. In this case, the T-cell
response appears to be crucial in preventing
melanoma. Establishing an anti-tumor immune
response requires TILs, and a fraction of TILs in
melanoma patients show cytolytic activity
against autologous tumors [8]. The various steps
involved in the immunity cycle of cancer were
represented in Fig. 1. Recently, the treatment of
both metastatic and unresectable melanoma
have dramatically changed by the programmed

death-1 (PD-1) and immune checkpoint inhi-
bitors (ICIs) against cytotoxic T lymphocyte
antigen-4 (CTLA-4) as well as those at high risk
for recurrence following resection (Table 1)
[42, 43]. Unfortunately, ICI therapy is beset by
issues such as the lack of predictive response
indicators and primary and secondary resistance
[44]. Combining immunotherapy approaches
helps to enhance response and decrease resis-
tance, while biomarker identification is crucial
for better patient selection.

IMMUNE CHECKPOINT BLOCKADE
(ICB)

Drugs that target the inhibitory receptors CTLA-
4 and PD-1 to mediate ICB have been demon-
strated to produce long-term responses in sub-
sets of patients with cancers such as melanoma
and renal cell cancer (RCC) [52, 53]. Antibodies
targeting the PD-1 ligand, PD-L1, are also tested
in clinical studies and have objective responses
in various cancer types [54, 55]. To date, the
Food and Drug Administration (FDA) has
approved four mAbs for ICB therapy: (1) ate-
zolizumab (aPD-L1), (2) pembrolizumab (aPD-
1); (3) nivolumab (aPD-1); (4) ipilimumab
(aCTLA-4) [56]. They have been approved
treating a wide range of advanced and meta-
static malignancies, including melanoma,
which can range from resectable to metastatic
and urothelial carcinoma (atezolizumab)
[56, 57]. Pembrolizumab, nivolumab and ipili-
mumab have been approved by the FDA for
melanoma treatment [58]. Because checkpoint
receptors are critical in regulating autoimmu-
nity, the most serious side effects linked with
ICB medications including immune-related
adverse events (IRAEs) are a group of autoim-
mune symptoms [59]. IRAEs are prevalent, with
rates ranging from 90% in those receiving
CTLA-4 antibodies to 70% in patients receiving
PD-1/PD-L1 antibodies, and immunosuppres-
sive medications must be used with caution in
the clinic [59]. Biomarkers that can predict the
efficacy of a specific ICB treatment are needed
because ICB elicits objective responses in only a
fraction of patients, or it is crucial to identify a
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Fig. 1 Steps involved in the immunity cycle of cancer
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subset of patients who could benefit from ICB
therapy [60].

CTLA-4 BLOCKADE

After CD28 binding and activation, CTLA-4, a
member of the CD28 superfamily, is activated.
CTLA-4’s specific ligands are B7-1 and B7-2.

When CTLA-4 interacts with activated T cells, a
downregulator signal is produced, which inhi-
bits transcription of IL-2 and hence cell cycle
progression [61, 62]. Ipilimumab is the most
critical drug that inhibits CTLA-4 [47]; studies
have indicated that this molecule has promising
results and that the response is long-lasting,
even after the treatment is stopped [63]. The
first FDA-approved immune checkpoint

Table 1 Immunotherapy clinical trials in locally advanced and metastatic melanoma

Trial name Primary outcome Treatment arms Median
OS
(months)

Median
PFS
(months)

ORR (%) 1 year-
RFS
(%)

KEYNOTE-006

[45, 46]

PFS, OS Pembrolizumab q3w 4.1 32.9 –

Pembrolizumab q2w 32.7a 5.6 33.7 –

Ipilimumab 16 3.4 11.9 –

CheckMate 238

[47]

RFS Ipilimumab – – – 60.8

Nivolumab – – – 70.5

CA184-024 OS Dacarbazine ? ipilimumab 11.2 3 15.2 –

Dacarbazine 9.1 3 10.3 –

EORTC1325/

KEYNOTE-054

[48]

RFS Placebo – – – 61

Pembrolizumab – – – 75.4

CheckMate 067

[49]

PFS, OS Nivolumab ? ipilimumab NR 11.5 58 –

Nivolumab 36.9 6.9 45 –

Ipilimumab 19.9 2.9 19 –

CheckMate 066

[50]

OS Dacarbazine 11.2 2.2 14.4 –

Nivolumab 37.5 5.1 42.9 –

OPTiM [51] Durable response

lasting C 6

months

T-VEC 23.3 Not

reported

Not

reported

–

GM-CSF 18.9 Not

reported

Not

reported

–

CA184-002 [52] OS Ipilimumab 10.1 2.9 11 –

gp100 vaccine 6.4 2.8 1.5 –

gp100

Vaccine ? ipilimumab

10 2.8 5.7 –

q2w every 2 weeks, q3w every 3 weeks, NR not reached, RFS relapse-free survival, PFS progression-free survival, OS overall
survival, ORR overall response rate
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inhibitor in metastatic melanoma is ipili-
mumab, a human monoclonal IgG1 antibody
against CTLA-4. It was given four times at a
3 mg/kg dose every 3 weeks [47].

PD-1 BLOCKADE

PD-1 is an inhibitory cell surface molecule that
reduces effector function and is expressed by
activated T and B cells and natural killer lym-
phocytes [64, 65]. Studies have shown that PD-1
levels are higher in melanoma, implying a sig-
nificant downregulation of activated T lym-
phocytes, which aids tumor cell survival
[66, 67]. The presence of interferon-gamma-se-
creting cells from the microenvironment raises
PDL-1 expression in melanoma. Pembrolizumab
and Nivolumab target the interaction between
PD-1 and its ligands PDL-1 and PDL-2. In mel-
anoma, many trials comparing pembrolizumab
and nivolumab to ipilimumab have found sig-
nificant clinical effectiveness [68, 69]. The
importance of measuring circulating PD-
1 ? regulatory T cells to predict treatment
response to PD-1 blockers such as pem-
brolizumab and nivolumab was recently recog-
nized by Gambichler and his co-workers. After
starting treatment with PD-1 blocking antibod-
ies, the researchers discovered that circulating
PD-1 ? Tregs rapidly fall, resulting in a lower
probability of disease progression and meta-
static illness [70].

COMBINATORIAL CHECKPOINT
BLOCKADE

Despite the enormous effectiveness of ICB, only
a tiny percentage of patients have long-term
therapeutic responses [58, 71]. Immune check-
point therapies’ potency, on the other hand,
has ushered in a new era of cancer treatment by
allowing them to be combined with traditional
cancer treatments like targeted molecular ther-
apy, radiation and chemotherapy (e.g., BRAF/
MEK inhibitors) [72, 73]. This section will pri-
marily focus on the efficacy of combined
checkpoint blockade therapy for melanoma.
Despite this, no clinical data exist to distinguish

between ICB and BRAFi/MEKi targeted therapy
as first-line melanoma treatment, and a clinical
trial (NCT02224781) is being done to compare
clinical outcomes in patients who get check-
point blockade drugs after targeted therapies vs.
individuals who get targeted therapies after
checkpoint blockade drugs [72].

TALIMOGENE LAHERPAREPVEC (T-
VEC)

T-VEC is a genetically modified herpes simplex
type 1 virus that selectively replicates in tumor
cells, expresses granulocyte–macrophage col-
ony-stimulating factor (GM-CSF) and increases
MHC class I antigen loading to promote tumor
antigen presentation by dendritic cells (DCs)
[74]. In 2015, the FDA approved T-VEC for
advanced melanoma. T-VEC was found to
improve the response rate in unresected stage
IIIB-IV melanoma patients in a phase 3 trial
compared to GM-CSF (26 vs. 6%). Most of the
reactions occurred only at the injection site and
nearby non-injected lesions (primarily lung and
visceral sites), while few reactions were recorded
in distant non-injected lesions [75]. T-VEC and
ICIs in combination have yielded promising
outcomes. The ORR was improved in the phase
II study of T-VEC ? ipilimumab vs. ipilimumab
alone in individuals with advanced melanoma
(39 vs. 18%, respectively) [76]. In a phase Ib trial
combining T-VEC with pembrolizumab, the
verified objective response rate was 62%, with a
complete response rate of 33% immune-related
response criteria [77]. MASTER KEY-265/KEY-
NOTE-034, a phase III trial (NCT02263508)
comparing T-VEC with pembrolizumab to
pembrolizumab alone, is expected to publish its
findings soon.

OTHER IMMUNOTHERAPY
STRATEGIES

Biological Immunotherapy

The biological immunotherapy was the first
used in the treatment of metastatic melanoma
to replace or complete the action of
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chemotherapy. High dosages of IL-2 and inter-
ferons are the most commonly utilized drugs in
biological immunotherapy [78, 79]. Biological
immunotherapy and stereotactic radiation are
frequently combined [80, 81], although such
combination techniques have yet to be vali-
dated, and except in clinical studies, only sin-
gle-agent use is permitted; such combined
techniques have yet to be proven.

Cytokines

The first class of immunomodulatory drugs to
be used in the treatment of melanoma is cyto-
kines. Indeed, the FDA has approved both IL-2
and IFN-a as adjuvant treatments for melanoma
[82, 83]. In preclinical and clinical settings,
cytokines such as GM-CSF and IL-12, 15, 18 and
21 have shown promising outcomes. Because of
their pleiotropic action and high toxicity,
especially at high doses, a single-agent cytokine
method does not appear to be practicable [82].
In light of this, NTRK-214 is a human recom-
binant IL-2 conjugated prodrug with the same
amino acid sequence. The core of IL-2 is
attached to six releasable polyethylene glycol
(PEG) chains in vivo, which progressively
release in the presence of oxygen, resulting in
active IL-2 conjugates [84]. The tolerance and
efficacy of ipilimumab with nivolumab and
NTRK-214 with nivolumab are analyzed in a
phase I/II clinical trial (NCT02983045).

Adoptive Cell Therapy

To promote anticancer immunity, ex vivo
modified cells are supplied directly to patients is
known as adoptive cell therapy (ACT) [85, 86].
To date, most ACT clinical trials have used
autologous TIL collected and grown from
excised melanoma tissue [87, 88]. Other cell
types, such as natural killer cells, have been
explored for use in adoptive transfer therapy
since the 1980s, but not as extensively as T cells
[89]. As a result, the primary focus of this sec-
tion will be on T cell ACT research. This
approach has the advantage of allowing tumor-
specific cells to develop ex vivo without being
impacted by the immunosuppressive tumor

microenvironment (TME), and they may be
given in large enough doses to cause tumor
regression [86]. As previously indicated, Rosen-
berg and colleagues pioneered this field by uti-
lizing autologous TIL from metastatic
melanoma patients, which generated long-term
anticancer responses [90]. Since then, advances
in molecular biology have enabled the identifi-
cation of a variety of tumor antigens as well as
the production of genetically altered T cell
products with chimeric antigen receptors
(CARs) or tumor-specific T cell receptor (TCR)
[86, 91].

IDO Inhibitors

Indoleamine 2,3-dioxygenase 1 (IDO1) is an
enzyme involved in tryptophan degradation
that has a significant immunosuppressive effect
within the TME. Several IDO inhibitors (BMS-
986205, indiximod and epacadostat) are now
being studied in combination with pem-
brolizumab, nivolumab or ipilimumab clinical
trials [5]. Unfortunately, in phase III clinical
trial ECHO-301/KEYNOTE-252, which com-
pared epcadostat to pembrolizumab alone with
pembrolizumab in advanced melanoma, the
pembrolizumab with epcadostat group failed to
show a PFS benefit [92].

Cancer Vaccines

Infectious disease vaccination is a pivotal point
in human medicine. Cancer vaccines aim to
activate the immune system, particularly the T
cells, to attack the tumor by combining the
tumor antigen with an adjuvant [93]. The vac-
cines might be a single-target antigen or poly-
valent, with autologous tumor lysates or whole
allogeneic cells [94]. To date, no vaccination
combination has exhibited the same effective-
ness in established malignancies as checkpoint
blockade or ACT [93, 95]. Metastatic melanoma
patients who received IL-2 and a gp100 peptide
vaccine fared better than those who received
only IL-2, according to research by
Schwartzentruber et al. published in 2011
[94, 96]. However, cancer vaccination for solid
tumors is particularly problematic because of
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the immunosuppressive TME and a constantly
expanding tumor-targeted immune escape
[95]. Several key immunotherapeutics and their
primary mechanisms of action are presented in
Table 2.

Immunotherapy Biomarkers

The success of targeted therapy is based on the
presence of a specific tumor feature, such as the

BRAF V600 mutation, that drives tumor growth
and serves as a specific biomarker of response to
treatment that targets the aberrant pathway.
Primary and secondary resistance to targeted
therapy in melanoma is challenging to solve,
and various researchers have attempted to
improve BRAF V600 detection of prognostic and
predictive indicators [107, 108]. Despite exten-
sive attempts, biomarker response to melanoma
immunotherapy, notably ICIs, approved for

Table 2 Key immunotherapeutics and their primary mechanisms of action

Treatment Mechanism(s) of action Clinically tested agents References

Cytokines

Interferon

alpha

Activate multiple facets of immunity and has direct

effects on tumor cells

Interferon alfa 2b (Intron A,

SylatronTM)

[97, 98]

Interleukin-2 Activates and expands T cell Aldeslesukin (proleukin) [99, 100]

Vaccines

Oncolytic viral

vaccines

Viral induction of tumor cell lysis and adjuvant medical

host immune activation

Talimogene laherparepvec (T-

VEC/ImlygicTM)

[51, 101]

Peptide

vaccines

Induction of tumor-specific adaptive immunity Various tumor antigen peptides/

lysates ? adjuvant)

[93, 95]

Cell-based

vaccines

Induction of tumor-specific adaptive immunity Tumor cells or activated DC/

APC

[102, 103]

Adoptive T cell therapy

Engineered T

cells

Infusion of engineered T cells specific for tumor

antigens

Transgenic TCR or CAR bearing

T lymphocytes

[86, 87]

TIL Infusion of pool anti-tumor T cells Ex vivo expanded TIL [85, 86]

Immune activating mAbs

aLAG-3 Blockade of T cell surface inhibitory molecule BMS986016 [58]

aKIR Blockade of NK cell inhibitory receptor Lirilumab [104, 105]

aCD137 (4-

1BB)

Against of T cell costimulatory receptor Urelumab [106]

aPD-L1 Blockade of inhibitory checkpoint ligand expressed on

immune cells and tumor cells

Atezolizumab, durvalumab,

avelumab

[58, 66],

aPD-1 Blockade of inhibitory checkpoint receptor Nivolumab (Opdivo),

pembrolozumab (Keytruda),

[57, 58]

aCTLA-4 Blockade of T cell checkpoint receptor Ipilimumab (Yervoy) [58, 71]

Depletion of intratumoral Treg

Dermatol Ther (Heidelb) (2021) 11:1481–1496 1489



clinical use, is lacking. This is especially crucial
because of the relatively low response rate of
immunotherapy. In clinical trials, including
inhibitors of the PD-1/PD-L1 axis, immunohis-
tochemistry (IHC) labeling of PD-L1 expression
has been employed as a biomarker. The role of
PD-L1 in patient stratification has yielded con-
flicting results across trials using PD-L1 IHC
antibodies with non-homogeneous cut-off val-
ues [68, 109]. Although PD-L1 is not currently
considered a good stratification marker, it needs
additional investigation because it could reveal
biological insights [72]. To better characterize
the TME and establish predictive immunother-
apy biomarkers, more comprehensive models
are being investigated.

In this respect, Tumeh et al. [72] observed
that near the invasive tumor margin, CD8 ? T
lymphocytes are present that trigger elevation
of expression of PD-L1 on melanoma cells,
which may better explain responsiveness to
anti-PD-1 mAbs or primary resistance. As a
response marker, a gene-expression profile has
been proposed [110]. The primary mediator of
anti-tumor inflammation is IFNc, which is
secreted by CD8? T cells. A gene expression
profile known as ’T-cell-inflamed tumor’ has
been linked to responsiveness to various
immunotherapies, including cancer vaccines,
ICIs and IL-2 [111, 112]. Moreover, primary and
secondary resistance to PD-1/PD-L1 pathway
inhibitors is associated with a low IFNc gene
expression signature that can be mediated by
activation of PTEN and WNT/b-catenin path-
way, impairment of JAK2 signaling or alteration
of antigen presentation through structural or
functional impairment of MHC class I mediated
antigen presentation [113, 114]. The most con-
siderable complete exome and transcriptome
sequencing research of tumor samples from
metastatic melanoma patients using ICI has
been published [115]. The findings back up the
correlations between treatment response and
baseline immune infiltrate. However, they also
show that tumor mutational burden has
inconsistent associations and that transcrip-
tomic features and multiple novels genomic,
including features associated with MHC-I and
MHC-II antigen presentation, can predict
selective response. In addition, the researchers

developed predictive models that included
transcriptomic, genomic and clinical data to
identify melanoma patients who were intrinsi-
cally resistant to anti-PD1 mAb [115]. A growing
number of researchers seek to connect ICI effi-
cacy to circulating tumor DNA PD-L1 expres-
sion levels [116, 117]. Several studies have
suggested that measuring matrix metallopro-
teinases (MMPs), which are known to play a
vital role in melanoma progression, could be a
reliable predictor of immunotherapy response
[118, 119]. Adjuvant immunotherapy was used
to treat primary melanoma tumors; Moogk et al.
[120] discovered that the MMP-23 expression
and anti-tumor T-cell response have an inverse
association. According to the authors, MMP-23
expression is correlated with shorter PFS, so it
could be a viable therapeutic target in mela-
noma and a biomarker for monitoring mela-
noma patients’ immunotherapy response.

CONCLUSION

Over the last decade, significant advancements
in melanoma treatment have been made.
Immunotherapy is a well-established treatment
option for melanoma patients, with some indi-
viduals experiencing long-term benefits.
Researchers’ tireless efforts have given infor-
mation on key pathways in melanoma biology,
paving the way for targeted treatment and
immunotherapy. These drugs have distinct
modes of action and toxicity profiles, necessi-
tating careful patient selection and manage-
ment. Tumor immunotherapy, when used
correctly, can provide significant benefits to
melanoma patients.
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