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Sub-cycle ionization dynamics 
revealed by trajectory resolved, 
elliptically-driven high-order 
harmonic generation
E. W. Larsen1, S. Carlström1, E. Lorek1, C. M. Heyl1, D. Paleček2,3, K. J. Schafer4, A. L’Huillier1, 
D. Zigmantas2 & J. Mauritsson1

The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of 
attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic 
generation, where different trajectories leading to the same harmonic order are initiated at different 
times, thereby probing different field strengths. We find large differences between the trajectories with 
respect to both their sensitivity to driving field ellipticity and resonant enhancement. To accurately 
describe the ellipticity dependence of the long trajectory harmonics we must include a sub-cycle 
change of the initial velocity distribution of the electron and its excursion time. The resonant enhancement 
is observed only for the long trajectory contribution of a particular harmonic when a window resonance in 
argon, which is off-resonant in the field-free case, is shifted into resonance due to a large dynamic Stark shift.

The process of high-order harmonic generation (HHG)1,2 driven by a strong infrared (IR) laser field interacting 
with a rapidly ionizing medium is the main light source for the field of attosecond science3–6. The HHG process 
can be used to produce attosecond pulses because there is a natural, sub-cycle electron dynamics built into the 
physics of HHG7,8, which leads to a very broad plateau of emitted harmonics. This means that studying the HHG 
process itself in detail can, in principle, provide a deeper understanding of strong field electron dynamics at 
the attosecond time scale. Over the last decade experiments9,10 have indeed shown that the sub-cycle dynamics 
of HHG are encoded in the harmonic spectrum, though extracting them is complicated because of the highly 
non-linear nature of the process.

Much of the promise in using HHG to better understand strong field physics at the sub-cycle level can be 
attributed to the effectiveness of the simple, semi-classical three-step model commonly used to describe the gen-
eration process11,12. In this model, an electron is first tunnel ionized and then accelerated by a strong laser field. 
If the electron is driven back to the vicinity of the ion by the oscillating strong field, the accumulated energy may 
be emitted as a photon11–13 when the electron and ion recollide. The sequence of ionization and return times 
leading to a specific harmonic frequency is loosely referred to as a trajectory because much of the physics can be 
understood by considering classical electron trajectories in a strong laser field, ignoring atomic effects after the 
ionization step and before the return. Depending on when during the laser cycle the ionization occurs, the elec-
tron will have different excursion and return times to the ion leading to different photon emission frequencies, 
resulting in a comb of odd harmonics of the laser field if the process is repeated over many laser cycles. Even in 
this simple model, however, there is not a one-to-one correspondence between the harmonic emission strengths 
and specific trajectories, because there are different trajectories leading to the same final energy. Trajectories that 
lead to the same photon energy interfere at the single atom level. The effect of this can either be studied14–16 or 
circumvented, for example, through phase matching or spatial separation in the far field of the harmonics as is 
done in the present work.
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Studying trajectory resolved contributions to the HHG spectrum is an attractive proposition because different 
trajectories probe very different ionization conditions and have different excursion times. The most prominent 
contributions to the harmonic emission strengths come from the so-called short and long trajectories, which have 
excursion times of less than one laser cycle. Within a laser cycle the long trajectories are ionized close to the peak 
field strength and have an excursion time exceeding 0.65 laser cycles. The short trajectories are ionized at low field 
strengths and have shorter excursion times. Fortunately, the emission from these two trajectory classes can be 
separated experimentally in the far field enabling, for each harmonic frequency, comparison between ionization 
at two different sub-cycle field strengths, followed by two different excursion times. This requires, ideally, that 
high accuracy measurements of both long and short trajectory contributions to each harmonic are made in the 
same experimental setup17.

Until recently most experimental efforts that make use of high harmonics have been concentrated on opti-
mizing HHG from short trajectories, since their emission is well collimated and spectrally narrow. In addition, 
trains of attosecond pulses have been successfully created and measured by selecting the short trajectories’ con-
tributions3,18. The emission from the long trajectories is more challenging to use because it is spectrally broader 
and more divergent, hence it is usually removed by spatial filtering and/or the selection of specific phase matching 
conditions in experiments as they otherwise can affect the temporal structure of the attosecond pulses19. In this 
paper we report on measurements made with very well-controlled, high repetition-rate laser pulses, which allow 
us to make trajectory resolved HHG measurements in argon gas while varying the ellipticity and the peak field 
strength of the driving laser pulses. The results allow us to elucidate new features in the sub-cycle ionization step 
that lead to long trajectories, that is, ionization at high field strengths followed by long excursion times.

In this article, we present two methods of probing sub-cycle strong-field dynamics by comparing the trajec-
tory resolved emission of high harmonics and then studying the long trajectories in depth. In the first part of 
the article, a detailed experimental comparison of the ellipticity dependence as a function of harmonic order is 
presented, for both the short and the long trajectories. While harmonic generation using elliptically polarized 
driving fields has been extensively studied for the short trajectories both experimentally and theoretically20–26, the 
polarization dependence of the long trajectories have so far only been investigated theoretically24,25,27. It follows 
from the simple three-step model that harmonic generation will be very sensitive to the ellipticity of the driving 
laser since the field acting on the electron while it is far from the ion can cause it to miss the recollision. Since 
the long and the short trajectories have different excursion times, the impact of changing the ellipticity will be 
different for the two classes of trajectories.

To explain the ellipticity dependence of the short trajectories it is sufficient to include wave packet spreading 
due to quantum diffusion, which we can model by including a distribution of momenta transverse to the instante-
neous field vector at the moment of ionization. This distribution does not need to depend in detail on the moment 
of ionization, since the ionization field strength is low for short trajectories. In order to explain the ellipticity 
dependence of the long trajectories, however, this simple quantum diffusion model is not enough. Due to a larger 
variation in ionization field strength for the different long trajectories, a field-strength dependent momentum 
distribution has to be taken into account. We expect that at higher field strengths a broader transverse momentum 
distribution results from the lowering of the ionization barrier. We include this effect in our theoretical analysis 
of the long trajectory data via a simple extension of the three step model and find that it fits the our experimental 
data very well over the HHG plateau.

In the second part of our study, the sub-cycle sensitivity of trajectory resolved HHG measurements is used 
to study a region of the spectrum in which atomic resonances can alter the HHG signal. In particular, a window 
resonance in argon that is far from any harmonic of the laser frequency in the field-free case is shown to have a 
large effect on the long trajectory harmonic closest to it, but little or no effect on the short trajectory. We attribute 
this to the fact that the long trajectory component is dynamically Stark shifted into resonance by the laser field, 
which leads to a drastic enhancement of the emission from the long trajectory, but not the short where the field 
strength is much weaker and is not sufficient to shift the state into resonance. We measure this effect for a set of 
resonant harmonics over a range of driving field intensities.

Experimental setup
The experimental setup used for the experiment presented in this article is described in a recent publication28 
and is briefly outlined here. An Yb:KGW based laser system (“Pharos”, Light Conversion Ltd.) was used to deliver 
170 fs, pulses with a central wavelength of 1030 nm. The laser system has a variable repetition rate between 1 and 
600 kHz, but all the presented data were recorded at a repetition rate of 20 kHz. The pulses were focused tightly 
into a continuous argon gas jet, with a 90 m orifice, using a 100 mm focal length achromatic lens. Directly after 
the interaction region, a differential pumping hole with an inner diameter of 0.5 mm was placed to minimize the 
background gas in the detection chamber. The differential pump hole allowed for a pressure difference of the 
background gas between the generation and detection chambers of 4–5 orders of magnitude. The HHG spec-
trum was measured using a home-built imaging spectrometer based on a variable-line-spacing grating and a 
microchannel-plate with an attached phosphor screen and a camera with a resolution of 2456 ×​ 2058 pixels and a 
dynamic range of 14 bits. The grating diffracts and refocuses the XUV in the horizontal direction while the verti-
cal direction is left unaffected. Therefore the vertical direction provides the divergence of the XUV light while the 
horizontal direction shows the spectrum.

Ellipticity measurement
Figure 1 shows a typical harmonic spectrum when a linearly polarized driving laser is used and the gas jet is 
placed in the focal plane of the generating beam. The experimental parameters (pulse energy, gas density, spot 
size, etc.) were optimized to generate harmonics from both the short and the long trajectories.
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The Gaussian transverse and temporal intensity profile of the driving laser, in combination with the fact that 
the dipole phase of the long trajectories has a stronger intensity dependence than the short trajectories, result in a 
larger wavefront curvature and more divergent light generated by the long trajectories29–31, this also explains the 
spatial–spectral rings observed in the far field. We therefore attribute the inner part of the harmonic spectrum 
to be dominated by the short trajectories, while the spatial–spectral rings are attributed to interference between 
long trajectories of different emitters. As the trajectory dependent dipole phase is strongest for the low orders, the 
interference rings are mainly seen for the low end of the plateau region. This spatial separation was exploited to 
study the contributions from the long trajectories only.

A quarter-wave plate was used to introduce ellipticity, defined as the ratio between the minor and major axis 
components of the driving laser field. Figure 2(a) shows an enlarged view of the spatial–spectral profile of har-
monics 19–23 of Fig. 1. Figure 2(b) shows a measurement of the spatially and spectrally integrated strength of 
harmonic 23 (H23) as a function of ellipticity of the driving laser relative to the strength at linear polarization. 
The integrated signal clearly follows a Gaussian distribution with respect to ellipticity as previously observed20.

We define the threshold ellipticity, εth, as the amount of ellipticity required for the harmonic signal to drop 
by a factor of two compared with linear polarization. Our very high signal-to-noise ratio allows us to analyze the 
ellipticity dependence of each pixel rather than the spatially and spectrally integrated signal. Figure 2(c) presents 
the strength of three different pixels within H23 as a function of ellipticity. The strength of each pixel is fitted 
with a Gaussian profile to extract the corresponding threshold ellipticity of each pixel, which are used to create a 
two-dimensional map of the threshold ellipticity as a function of energy and divergence angle. The full threshold 
ellipticity maps for the conditions of Fig. 1 can be found in the Methods section. Focusing on H23 in Fig. 2(d), 
we observe three different regions of threshold ellipticity; an inner region with a threshold ellipticity around 0.16, 
and two outer regions with threshold ellipticities of around 0.09 and 0.1 respectively.

Figure 1.  Typical harmonic spectra optimized to generate harmonics from both the short and the long 
trajectories. 

Figure 2.  (a) Enlarged view of the harmonic spectrum at linear polarization for H19–H23 of Fig. 1. (b) Spatially 
and spectrally integrated signal of H23 as a function of ellipticity. (c) Measurement of the ellipticity dependence of 
three different spatial–spectral parts of H23 as indicated by the three arrows. The solid lines represent Gaussian fits 
to the experimental data. (d) Pixel-by-pixel threshold ellipticity of the spatial–spectral region of part (a).
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Figure 3 presents the average threshold ellipticity for both the long and the short trajectories as a function 
of harmonic order for the conditions of Fig. 1. For the short trajectories, we observe a behavior similar to previ-
ous measurements20,22,26, i.e., the threshold ellipticity decreases slowly with increasing harmonic order. A similar 
trend is also observed for the long trajectories, in contrast to what would be expected if only the excursion time 
of these trajectories is considered.

Ellipticity theory
In a semi-classical model where the propagation step is calculated classically and the electron only has a velocity 
parallel to the electric field, only linearly polarized light would produce high-order harmonics since any ellipticity 
will prevent the electron from returning to its original position. The fact that high-order harmonics are observed 
even for elliptically polarized light is usually attributed to quantum diffusion; the electron wave packet spreads 
out as it is accelerated in the laser field. The wave packet spread allows for an overlap between the electron and the 
parent ion, even when the electron is transversely displaced due to the elliptically polarized laser field.

Quantum diffusion can be seen as resulting from an initial distribution of velocities of the electron – the more 
confined the electron is in one direction, the more it will spread. In particular, a spatial confinement in the direc-
tion perpendicular to the laser field, will lead to a transverse velocity distribution which is necessary for HHG.  
A rough estimate of the confinement is given by the size of the groundstate. Using this estimate, a trajectory 
spending longer time in the continuum will diffuse more which results in a lower HHG yield.

For the short trajectories, the above estimate of the quantum diffusion, which is independent of the ionization 
time, is sufficient to explain the increase in sensitivity, as a function of harmonic order. For this set of trajectories 
the highest energy photons are produced by electrons with the longest excursion time. As the transverse displace-
ment of the electron at the point of recombination increases with the excursion time, the trajectories leading to 
the higher harmonics are displaced more than those leading to the low orders. Therefore the overlap between the 
ion and the electron at the recombination time decreases with harmonic order.

For the long trajectories, this effect leads to the opposite result, as the kinetic energy of the returning electrons 
decreases with increasing excursion time. To understand the experimentally observed ellipticity dependence 
of this set of trajectories, we apply a model that also takes the sub-cycle variation of the initial electron velocity 
distributions into account, as well as the change in excursion time for the different trajectories as the ellipticity is 
varied. This effect plays a major role in the initial velocity distribution as the long trajectory electrons are ionized 
closer to the peak of laser field, where the atomic potential is more distorted in the direction of the laser field, 
and thus the electron wave packet is more perpendicularly confined at the time of ionization32. The perpendic-
ular confinement of the electron at the ionization time leads to a large uncertainty in the perpendicular velocity 
distribution.

Our method is similar to references 24–26, but the definition of threshold ellipticity is not the same in the 
different studies. The procedure is as follows: First, we calculate the return energy of the electrons for the two first 
sets of trajectories as a function of both ionization time and ellipticity. The position of an electron released at time 
ti in an elliptical field ε ω ε ω= +F t F t t( ) / 1 [sin( ); cos( )]2  is found by integrating the Newtonian equations of 
motion twice:
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where vi and ri are the initial velocity and position, respectively; F is the field amplitude, ω the frequency of the 
fundamental field, ε ∈​ [−​1, +​1] is the ellipticity, with 0 meaning linear polarization along the x axis. Atomic units 
are used. We assume that ri =​ r(tr) =​ 0, where tr is the moment of return. Finding this time requires solving the 
transcendental equation numerically. For elliptical polarization, the drift acquired by the electron can be coun-
tered by an initial velocity vi that is transverse to the driving field at the time of ionization (this is analogous to 
quantum diffusion of the electron wavepacket as it is accelerated in the laser field). Thus, we solve (1) for tr and vi 
for each ti ∈​ [0.25T, 0.5T], T being the period, and each ε ∈​ [0, 1]. We assume that = + ⊥v v vi , where the two 

Figure 3.  The red (blue) line show the measured threshold ellipticity as a function of harmonic order for 
the long (short) trajectories when the laser is focused in the middle of the gas jet. The error bars indicate the 
standard deviations of the corresponding threshold ellipticity.
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components are parallel and perpendicular to the driving field at the time of ionization. Furthermore, we assume 
that v|| =​ 0, such that all uncertainty is in the initial transverse momentum, p⊥ =​ mev⊥, (me =​ 1 in atomic units).

The kinetic energy at the time of return is given by =W p t( )/2k
r

r
2 ; this gives the map of energies seen in Fig. 4.

As can be seen in Fig. 4, the cut-off position is shifted when the ellipticity is increased (i.e. the highest energy 
photons can only be produced from linearly polarized light) and the initial timing leading to a specific harmonic 
order is also changed. This trend is even more clear when lineouts at different ellipticities are presented as in 
Fig. 5.

The next step to estimate the harmonic yield is to calculate the combined probability of ionizing at time ti and 
having the required initial velocity for the electron to return. This is possible since the correspondence between a 
certain harmonic and its ionization time for different ellipticities is already calculated. Since the required trans-
verse momenta for the long trajectories to return are quite large for high ellipticities, we use the full expression for 
the transverse momentum distribution found in reference 33,
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Figure 4.  Map of return energies, as a function of ellipticity ε and ionization time ti. Ip is the ionization 
potential of the ground state. Plotted are also isoenergetic curves corresponding to the harmonics of the 
fundamental field, and the cut-off energy (shown by the solid black line), which decreases for increasing 
ellipticity. Trajectories, which are ionized earlier than the cut-off energy, correspond to the long trajectories. It is 
easy to see that a specific time of ionization does not correspond to a certain recombination energy.

Figure 5.  (a) Lineouts of Fig. 4 for 11 equidistant ellipticities from linear to circular polarization. From this plot 
it is obvious that the cut-off decreases with increasing ellipticity and that it occurs for earlier ionization times. It 
is also clear that the initial timing necessary to produce a specific harmonic changes with the ellipticity. (b) The 
same as (a), but plotted as a function of excursion time te =​ tr −​ ti instead.
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Ip is the ionization potential of the ground state. The tunneling rate is taken from ADK theory34. This com-
bined probability, which is the product of the separate probabilities described above, is displayed using a colour 
scale in Fig. 6, as a function of ellipticity and ionization time.

The isoenergetic curves from Fig. 4 are also included in the figure. To calculate the yield of a given harmonic 
order as a function of ellipticity, one extracts the probability along the corresponding isoenergetic curve.

Finally, in the last step of our model, the calculated yield as a function of ellipticity is fitted with Gaussian 
functions for each harmonic to obtain the threshold ellipticities in a similar manner to the experimental data. The 
result of the model for the long trajectories is presented in Fig. 7(a) together with the experimental data.

Our extended model compares very well with the experiment presented in this work; in particular the decrease 
in threshold ellipticity with increasing harmonic order is explained. This is opposite to what would be expected 
from sub-cycle field-independent quantum diffusion. It is also opposite to the analytical expression presented in 
reference 39 which is included for comparison in Fig. 7(a) as a dotted line.

From Fig. 7(a) it is clear that some of the long trajectory harmonics (17, 21 and 23) have a lower threshold 
ellipticity than what is predicted by the model. We attribute this to the presence of atomic resonances in the vicin-
ity of the corresponding energies, which clearly cannot be captured by the model we are using. In what follows, 
we demonstrate that these resonances can be dynamically Stark shifted by the sub-cycle field strength and will 
therefore influence the harmonic generation differently for the short and the long trajectories. The spatial sepa-
ration of the short and long trajectories leading to the same energy, enable us to directly compare the influence of 

Figure 6.  Map representing the combined probability of ionizing at time ti and having the initial transverse 
velocity required for return as a function of ellipticity and ionization time. The isocurves are the same as in 
Fig. 4, representing constant return energy. Following an isocurve gives the probability of generating a certain 
harmonic, as a function of ellipticity.

Figure 7.  (a) The dashed lines show the numerically calculated threshold ellipticities for the long trajectories 
in the plateau region according to our model. Correspondingly, the dotted lines show the threshold ellipticity 
given by ref. 25. For comparison, the experimental data for the long trajectories are shown. The simulations 
were done for a laser intensity of 8.5 ⋅​ 1013 W/cm2 and a wavelength of 1030 nm. (b) Integrated harmonic spectra 
for in-focus generation with various ellipticities. The color scale corresponds to different ellipticities from black 
(ε =​ 0) to light gray (ε =​ 0.25) in steps of 0.05. The fillings between the different harmonics allow us to better 
visualize the differences. The various spectra have been normalized to the level of H15. The error bars used in 
(a) show the standard deviations of the threshold ellipticities of the corresponding harmonic.
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the sub-cycle field strength. For a given harmonic order, the short trajectory is initiated at a field strength which is 
insufficient to shift the state into resonance, thereby precluding the enhancement observed for the long trajectory 
initiated at a higher sub-cycle field strength.

Resonant HHG
Resonant HHG in argon at a photon energy corresponding to H17 in our experiment has previously been 
observed35. In our study, we also see an effect for H21 and H23 [Fig. 7(b)]. We will focus the discussion on H21, 
where the effect is most pronounced. At linear polarization a strong enhancement of H21 is clearly observed, 
while this enhancement is gone for an ellipticity of 0.2 as can be seen in Fig. 7(b). The change in ellipticity leads 
to a variation in the intensity, since the pulse energy is kept constant. This means that the observed effect can be 
due to either the intensity or the ellipticity. In order to disentangle the two, an intensity scan was performed for 
linearly polarized light. Figure 8 shows the experimentally measured intensities of the long (a) and short (b) tra-
jectories for H15–H37 as a function of IR pulse energy. As clearly observed, the yield of H21 rises more rapidly for 
the long trajectories once the IR pulse energy exceeds 0.14 mJ [Fig. 8(a)], while the emission from the short tra-
jectories are left unaffected [Fig. 8(b)]. Enhancement of the long trajectories can also be clearly seen for H17 and 
H23, albeit, at slightly lower pulse energies. Harmonic 17 qualitatively follows the trend predicted for the single 
atom response given in reference 35, thus H17 is not further discussed in the present work. Harmonic 23 reaches 
a maximal strength at 0.15 mJ whereafter a slow decrease with respect to increased pulse energy is observed.

We interpret the behavior of H21 (but also H17 & H23) to be the result of HHG in the presence of an atomic 
resonance. Resonant HHG may increase the harmonic yield through a number of different mechanisms35–41. For 
H21 with photon energy of 25.2 eV, the closest resonance is the 3s23p6 →​ 3s13p64p1 transition (26.6 eV), which is 
a window resonance42,43. Our interpretation requires that the 3s13p64p1 state, which is lowest state in the 3s →​ np 
closed channels, is red-shifted by approximately 1.4 eV [see inset in Fig. 8(a)]. This is feasible as the dynamical 
Stark shift of the 3s13p64p1 state should be dominated by the interaction with the 3s →​ np closed channel, rather 
than through coupling with the 3p →​ Σ​(s, d) open channels44,45, and the Stark shifts on the order of the pondero-
motive energy are well known46,47. In addition to the Stark effect, the IR intensity also causes a blueshift of the IR 
energy, and thereby the XUV photon energies. However, it was confirmed from the intensity scan that this effect is 
too small to explain the results, as the central frequencies of the harmonics did not change. Since we only observe 

Figure 8.  Experimentally measured long (a) and short (b) trajectory intensities of H15–H37 as a function 
of pulse energy of the fundamental field. H17 is shown in gray, H21 in black, and H23 in brown, while the 
remaining harmonics are shown in a rainbow color scale from dark blue (H15) to dark red (H37) with 
increasing order. The dashed line indicates roughly the conditions of Fig. 1. The inset of (a) schematically shows 
how the Rydberg series for the 3s electrons in combination with the continuum for the 3p electrons creates a 
series of window resonances. Absorption of an XUV photon can create a coherent superposition of the two 
valence electrons which interfere and affects the absorption cross-section σabs

42. In argon this amounts to a 
reduction of the absorption cross-section43. The vertical arrows within the inset indicate the expected direction 
of the light induced energy-shift of the respective 3s13p6np1 states.
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the enhancement for the long trajectory, we interpret this as an effect of the comparably higher field strength for 
this trajectory, at the time of ionization.

Reshaping of the argon HHG spectrum by this particular window resonance has previously been observed48, 
however, the interpretation is fundamentally different in the work presented here. In reference 48, a few-cycle 
pulse was used to generate broadband harmonics by HHG in a gas jet. The backing pressure for the continuous 
gas jet was then increased significantly so that all other wavelengths than exactly the resonant wavelength were 
suppressed by re-absorption in the generating gas. This led to a narrowing of H17 (of 800 nm) from a width of 
roughly 1.5 eV to a width comparable to the field-free width of the window resonance43. This leads us to believe 
that the effect observed in reference 48 happens over a large volume, where the IR intensity is weak. The results 
presented in this article, however, is clearly an effect that take place at high laser intensity, where the dynamical 
Stark effect is strong.

The behavior of H23 with respect pulse energy of the driving laser can be understood as an effect of 
over-shifting of the atomic resonances causing the enhancement. As indicated in the inset of Fig. 8(a) the 
field-free detuning of H23 is less than the detuning of H21 with respect to both the transition energies into the 
3s13p64p1 and the 3s13p65p1 states, so the minimal required pulse energy for enhancement of this harmonic is 
lower. Nevertheless, the maximal enhancement factor is largest for H21, due to the strong dipole coupling with 
the red-shifted 3s13p64p1 state.

As the pulse energy is increased beyond the optimum energy for resonant generation of H23 the enhancement 
of this harmonic starts to vanish. The slow decrease likely originates from the long pulse duration of the driving 
laser, which means that a number of cycles will have the optimum energy shift. A similar effect is expected to 
occur for H21 at higher pulse energies, however, due to limitations of the laser system this was not seen in the 
present work.

Apart from the major effects on H17, H21 and H23 observed both in the ellipticity and the intensity meas-
urements a minor amount of enhancement of H19, H25 and H27 can be observed for the long trajectories once 
the IR pulse energy exceeds 0.15 mJ [Fig. 8(a)]. The field-free detuning from the 3s3p6np manifold of resonances 
are larger for these harmonics, so any enhancement effect on these harmonics is both expected to be less, and to 
occur at higher pulse energies in full agreement with the observation.

In conclusion, we have experimentally investigated the ellipticity and intensity dependencies of HHG from 
the long and the short trajectories. This type of measurements enables us to probe the influence of the sub-cycle 
field strength on HHG process. We have shown that the well-established semi-classical model has to be extended 
by taking the instantaneous field strength into account, to also describe the general behavior of the long trajec-
tories. We have demonstrated how off-resonant states embedded in the continuum can enhance long trajectory 
harmonics by being shifted into resonance by the strong driving laser, different amounts for different trajectories 
due to the sub-cycle nature of the generation process. When the driving laser field is strong enough to cause an 
enhancement at linear polarization, these harmonics show a stronger ellipticity dependence as the dynamical 
Stark shift depends on the polarization.

This study highlights the importance of systematical studies of the generation process under various condi-
tions. Furthermore, the extension of the knowledge of the harmonic generation process to the long trajectories 
will be beneficial for high-order harmonic spectroscopy studies.

Methods
Evaluation of experimental data.  In this section we present the details of the analysis method used for 
the experimental data.

It is well-known from the strong field approximation that for harmonics in the plateau region, there are several 
electronic trajectories, which may contribute to the generation process. Emission from these different trajectories 
interferes and shapes the far field spatial spectral profile. The phase of these trajectories can be approximated with 
a phase proportional to the intensity I(x, y, z, t) such that

φ α= I x y z t( , , , ), (3)q q
traj traj

where φq
traj is the trajectory dependent dipole phase and αq

traj is the proportionality constant. The first two sets of 
electron trajectories are usually referred to as the short and long trajectories. It well-established that in the plateau 
region the proportionality constants are much larger for the long trajectories than for the short trajectories31,49.

The short trajectories can be isolated in the generation process by placing the gas jet behind the focal plane 
and adjusting gas pressure and pulse energy accordingly50,51. A spectrum optimized for this is shown in Fig. 9(a). 
Figure 9(b) shows the corresponding threshold ellipticity map, which is extracted in a similar manner as in the 
main article. When the gas jet instead is placed at the focus of the laser both sets of trajectories can efficiently 
be phase-matched by adjusting the other experimental parameters accordingly. Figure 9(c) shows a spectrum 
optimized to generate with both sets of trajectories, while Fig. 9(d) is the corresponding threshold ellipticity map. 
As a consequence of the larger dipole phase of the long trajectories, the light produced by the these trajectories 
are more divergent. This effect was used to spatially separate the contributions from only the long trajectories in 
Fig. 9(c,d).

Figure 10 shows enlarged views of H19 for out-of-focus generation [(a)] and in-focus generation [(b)]. In the 
out-of-focus case the harmonic exhibits a homogeneous spatial-spectral dependence with respect to ellipticity, 
this is not observed for the in-focus case, where several regions of ellipticity dependence are clearly observed.

The homogeneity of the ellipticity dependence for out-of-focus generation [Fig. 10(a)] reveal that in order 
to study ellipticity dependence of the short trajectories out-of-focus an imaging spectrometer is not needed and 
a spatial-spectral integration with respect to harmonic order would be sufficient. This is clearly not the case of 
in-focus generation [Fig. 10(b)].
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Figure 11 shows the threshold ellipticity as function of harmonic order for the conditions of Fig. 9. Figure 11 
shows normalized threshold ellipticity histograms as function of harmonic order. In the in-focus generation case 
both the on-axis emission and off-axis emission are shown, in (b) and (c) respectively, while for out-of-focus 

Figure 9.  (a) Harmonic spectrum at linear polarization when the gas jet is placed behind the focal plane of the 
laser. (b) Threshold ellipticity map as a function of energy and divergence angle for out-of-focus generation.  
(c) Harmonic spectrum at linear polarization when the gas jet is placed in the focal plane of the laser.  
(d) Threshold ellipticity map as a function of energy and divergence angle for in-focus generation.

Figure 10.  (a) An enlarged view of the ellipticity map of H19 for out-of-focus generation [Fig. 9(b)]. The 
lower panel shows a histogram of the threshold ellipticities. Each pixel is weighted with the corresponding 
pixel strength at linear polarization. (b) An enlarged view of the ellipticity map of H19 for in-focus generation 
[Fig. 9(d)]. The lower panels show histograms of the threshold ellipticities within the white boxes (left panel) 
and the black box (right panel). The histograms are weighted with the corresponding pixel strength at linear 
polarization.
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case only the on-axis emission is shown in (a). We note that for harmonics close to the cut-off indications of the 
long trajectory appears also for the out-of-focus case. In order to extract expectation values and standard devia-
tions for the various threshold ellipticities as a function of harmonic order and trajectories the experimental data 
is smoothened using the Kernel density estimation method52,53. After smoothing, the data was fitted with two 
Gaussian distributions for the long trajectories, while the short trajectories where fitted with a single Gaussian 
distribution. The expectation value of the fitted Gaussian distributions are plotted as solid lines in Fig. 11, while 
the uncertainty bars show the corresponding standard deviations of the fits.

Detection efficiency.  We measured the ratio in detection efficiency between horizontal and vertical polari-
zation to be 1.38. 3 Three dimensional time-dependent Schrödinger equation calculations25 show that the plateau 
harmonics exhibit a smaller ellipticity than the driving infrared laser. We therefore estimate that the upper limit 
of the non-fixed major axis impact on the measurement to be given by the following expression:

∝ +I E D E D , (4)a a b bdet
2 2

where Ea and Eb are the major and minor axis component of the infrared electrical fields, and Da and Db are 
the respective detection efficiencies. Using this expression together with the standard Jones matrix calculus for 
polarization of the infrared light we estimated the upper limit on the determination of the threshold ellipticity to 
be less than the presented standard deviations. The presented data was performed around the linear polarization 
direction with the highest detection efficiency. Therefore the threshold ellipticity might be systematically under-
estimated slightly.
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