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Today, vaccinologists have come to understand that the hallmark of any protective

immune response is the antigen. However, it is not the whole antigen that dictates the

immune response, but rather the various parts comprising the whole that are capable

of influencing immunogenicity. Protein-based antigens hold particular importance within

this structural approach to understanding immunity because, though different molecules

can serve as antigens, only proteins are capable of inducing both cellular and

humoral immunity. This fact, coupled with the versatility and customizability of proteins

when considering vaccine design applications, makes protein-based vaccines (PBVs)

one of today’s most promising technologies for artificially inducing immunity. In this

review, we follow the development of PBV technologies through time and discuss

the antigen-specific receptors that are most critical to any immune response: pattern

recognition receptors, B cell receptors, and T cell receptors. Knowledge of these

receptors and their ligands has become exceptionally valuable in the field of vaccinology,

where today it is possible to make drastic modifications to PBV structure, from

primary to quaternary, in order to promote recognition of target epitopes, potentiate

vaccine immunogenicity, and prevent antigen-associated complications. Additionally,

these modifications have made it possible to control immune responses by modulating

stability and targeting PBV to key immune cells. Consequently, careful consideration

should be given to protein structure when designing PBVs in the future in order to

potentiate PBV efficacy.
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INTRODUCTION

Physicians have been aware of the effects of vaccination for over a millennium, though they
had little understanding of the mechanisms through which immunity was achieved until the
early nineteenth century. From the simple and dangerous live-pathogen variolation employed in
ancient and medieval times to the recombinant protein and DNA vaccines we use today, vaccine
development has followed a path of improving efficacy and safety due to an ever-increasing
understanding of these mechanisms. The hallmarks of this understanding have been that an
adaptive immune response cannot take place without an antigen and that the most effective
antigens tend to be proteins. Ultimately, these two facts have led the field of vaccinology to focus
on the research and development of protein-based vaccine (PBVs). As such, we now have a dense
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literature pool that can be used to recapitulate past and present
PBV design concepts and illuminate fundamental structural
vaccinology principles in PBV design.

Bacterial toxin vaccines were the first PBVs to be developed.
They originally consisted of antitoxin isolated from animals
inoculated with small quantities of unmodified toxin, but later it
was discovered that active immunization could be safely achieved
if toxin was either (1) co-administered with a sufficient amount
of antitoxin (partial neutralization) or (2) treated chemically
or thermally prior to vaccine administration (denaturation).
Chemically inactivated toxin, dubbed toxoid, would go on to
garner widespread celebrity due to its success in World War
II and eventually become the primary means for immunization
against Diphtheria and Tetanus (1). The development of these
toxoid vaccines, along with the gradual acceptance of the side
chain theory, the establishment of immunological proteomics,
and the application of genetic engineering technologies, paved
the way for the emergence of the PBVs we know today (2).

Recombinant vaccines, as their name suggests, are PBVs that
are produced using recombinant DNA technology. The first
recombinant PBV was produced in yeast in 1986 and targeted
the surface antigen of the Hepatitis B virus (HBV) (3). Though
it was one of the first recombinant proteins to be approved
for use in humans, its discovery was largely overlooked due to
perceived limitation in likely impact coupled with the fact that
a serum-derived vaccine for HBV already existed (3). However,
the success of this virus-like particle-based (VLP) PBV spurred
an increased interest in whether the same recombinant strategy
could be implemented with other viruses. This idea flourished
over time, and today recombinant vaccine approaches have been
attempted for nearly every viral structural protein identified.
Results from this research have been considerable, with five
VLP-based PBVs having been commercialized and dozens
having reached clinical trials (4). It is important to note, however,
that recombinant PBVs are not limited to VLP formulations,
as many bacterial pathogen-derived and tumor-associated
antigen-derived recombinant PBVs have also been
developed (5, 6).

Conjugate vaccines, which consist of carrier protein—
subunit complex, were conceived in the late 1980’s in order
to address a growing need for more effective vaccines
against encapsulated bacterial pathogens from the Neisseria,
Streptococcus, Staphylococcus, Haemophilus, and Pseudomonas
generas. Before their discovery, vaccine formulations targeting
these pathogens singularly consisted of polysaccharide (typically
the exposed glycan from encapsulated bacterial surfaces).
Although these polysaccharide vaccines were shown to elicit
the production of protective antibodies, they proved to be
tremendously ineffective at conferring protection in young and
immunocompromised individuals and largely failed to elicit
immunological memory (7). The limited success of the first
subunit polysaccharide vaccines was eventually concomitant
to the discovery that polysaccharide vaccines are unable to
recruit the assistance of T helper cells and thus rely on T
cell-independent activation alone (8). Protein-based, subunit
vaccines, in contrast, were found to have all the components
necessary to initiate T cell-dependent activation of B cells, a

process characterized by amore robust immune response, affinity
maturation, and immunological memory (9).

Toxoids have traditionally been used as carrier proteins
in conjugate PBV formulations because of their excellent
immunogenicity, availability, and simplicity (10). Many of
the conjugate PBVs being developed today, however, use
recombinantly produced carrier proteins that have been
specifically designed to maximize efficacy while simultaneously
maintaining a good safety profile (11). The first carrier protein of
this type, cross-reactive material 197 (CRM197), was discovered
upon the random, mutagenic conversion of glutamic acid to
glycine at position 52 of diphtheria toxin (DT, Figure 1A).
Though distal to the ADP-ribosyltransferase active site found on
the A subunit of DT, this single point mutation on the B subunit
was able to completely eliminate DT’s toxicity without negatively
impacting its ability to stimulate the immune system (19–21).
The discovery of CRM197 ultimately led to the realization
that the inherent toxicity of the antigens typically employed in
conjugate PBV formulations could be modulated using precise
structural modifications as opposed to broad-based chemical
and thermal denaturation. Thus, the idea of structure-based
vaccinology was born and a growing trend in research involving
“designer vaccines” began. Since its conception, this concept
has been applied to a plethora of pathogenic determinants,
specifically toxins. It was observed that the use of cholera toxin
B subunit (CTB) in PBV formulations, as opposed to complete
toxin, could lead to improved safety profiles with little-to-no
decline in overall immunogenicity (Figure 1B). The improved
safety was attributed to the missing A1 domain, the portion of
cholera toxin responsible for intracellular activity that leads to
disease symptoms (22). A similar discovery was made for tetanus
toxin when it was revealed that the heavy chain C fragment (TTc),
when used as an immunogen, could confer protection upon toxin
challenge in a mouse model without eliciting the neurotoxic
effects of its parent protein (Figure 1C) (23). Unfortunately,
the use of TTc in modern vaccines may be discouraged by its
capacity to bind neurons, though researchers have undertaken
structural and conformational approaches to the modulation of
this interaction (23, 24). Similar methods to those outlined here
have also be employed with other toxins, such as heat-liable
enterotoxin (a close relative of cholera toxin) and botulinum
toxin (a close relative of tetanus toxin) (12, 25).

Today, interest in “designer vaccines” has been increasingly
fueled by advancements in our understanding of the mechanisms
behind innate and adaptive immunity, specifically the role of
antigen composition in PBV immunogenicity (Figures 2A–C).
X-ray crystallography, genetic sequencing, epitope prediction
algorithms, and in vivo studies of adjuvant properties have all lead
to a better understanding of why some proteins are simply more
immunogenic than others. Ultimately, differences in protein
structure can result in different capacities for antigen to interact
with cells and receptors that are key to triggering an immune
response (30). Knowledge of this phenomenon has led to a
situation where vaccines are no longer conceptualized based on
whole antigen, but rather on immune receptor epitopes/ligands
and propensity of an antigen (based on structural motifs) for
uptake by antigen presenting cells (APCs). As such, many
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FIGURE 1 | Recombinant toxins. (A) Diphtheria toxin (DT), when replacing glycine with glutamic acid at position 52, loses its toxicity without affecting its antigenicity.

The highlighted residues (red) indicate the exact residue (sphere) and area (licorice) where this substitution would occur on monomeric DT. (B) Cholera toxin (CT) is

composed of six subunits; one A subunit and five B subunits. B subunit (monomer in red, remaining subunits in pink), which lacks the toxicity of its partner A subunit,

has proven to be extremely immunogenic and is used as a carrier protein and adjuvant. B subunit of heat-labile enterotoxin, which shares much of the same homology

as B subunit of cholera toxin, has been similarly investigated (12). (C) Tetanus toxin (TT) is comprised of two chains, a light chain and a heavy chain, of which the light

chain is responsible for the protein’s toxicity. In the past, proteolytic digestion of TT with papain yielded two fragments, a light chain-containing, toxic B fragment and a

non-toxic C fragment (red). Vaccination with the non-toxic C fragment was found to be protective against lethal toxin dose in a mouse model, and today PBVs

comprised of recombinant C fragment are being investigated as a potential replacement for TT vaccines. Botulinum toxin, which shares much of the same homology

as tetanus toxin, has been similarly investigated (13). The 3D protein structures for DT, CT, and TT used in this image were rendered in PyMOL 2.3.0 and accessed via

the Protein Data Bank (14–18).

of today’s PBVs are engineered using structural vaccinology
principles and rationally target APCs and the three receptor
groups key to any adaptive immune response; the pattern
recognition receptors (PRRs), the B cell receptors (BCRs), and
the T cell receptors (Figures 3A–C).

TARGETING PATTERN RECOGNITION
RECEPTORS

PBVs, PRRs, and the Innate Immune
System
PRRs are specific for highly conserved molecular signals
indicating the presence of cell damage and/or pathogens. They
activate the innate arm of the immune system, resulting in the
production of pro-inflammatory cytokines and chemokines. This
activation assists in the maturation of the adaptive immune
response and can be critical to the success or failure of a
PBV. There are a myriad of PRRs that have been discovered
that recognize either pathogen associated molecular patterns
(PAMPs) or damage associated molecular patterns (DAMPs)
(33). Generally, it is the responsibility of the adjuvant in vaccine
formulations to activate the innate immune system. To this effect,
researchers usually co-administer free PRR ligand, such as Toll-
like receptors (TLRs, intracellular and extracellular membrane-
bound PRRs), NOD-like receptors (NLRs, intracellular cytosolic
PRRs), C-type lectin receptors (CLRs, extracellular membrane-
bound PRRs), and/or RIG-I-like receptor (RLRs, intracellular
cytosolic PRRs) agonists with the target antigen when they want
to potentiate PBV immunogenicity (34). This potentiation is
crucial to PBV success, as choice of adjuvant has a profound
influence on both the magnitude and type of immune response

the vaccine ultimately elicits (for more on this, please refer to the
excellent reviews of Del Giudice et al. and Bonam et al.) (35, 36).
It is also possible to rationally incorporate PRR ligands with PBVs
using various techniques, an approach that imparts a distinct
advantage over simple co-formulation in that the immunogen
maintains proximity to the antigen.

Rational Incorporation of PTMs as PAMPs
One strategy for the incorporation of PRR agonist is the
manipulation of post translational modifications (PTMs)
through the selection of the expression host (37). Since
PTM types and sites vary widely between species, they are
believed to direct the innate immune response against antigen
(38). The PTM we know most about when concerning vaccine
immunogenicity is glycosylation. With the exception of E. coli, all
expression hosts that are commonly used for recombinant PBV
production incorporate glycans on protein surfaces (39). These
glycans can serve as ligands for many PRRs, specifically those
of the CLR family (40). In fact, glycans have long been known
to elicit immune responses to recombinant therapeutic proteins
(41–43), and many of the potent adjuvants co-formulated with
today’s PBVs are polysaccharides (44–48). In one instance,
glycosylation patterns were even shown to potentiate immune
response to subunit vaccine (49). A thorough literature search,
however, indicated that the modulation of PBV immunogenicity
via the rational selection of the expression host has never been
directly assessed. Considering that PTMs are incorporated in vivo
on specific, surface-exposed amino acids found onmost proteins,
it should be possible to exploit expression host glycosylation
patterns when designing PBVs. Likewise, the potentiation of
post-translational modification through recombinant addition
of these residues within protein primary structure where
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FIGURE 2 | Immunological mechanisms of recombinant, protein-based vaccination. (A) PBV structure, as illustrated here for the model protein hepatitis B core

antigen (HBcAg, 183 aa long, non-truncated form, Accession number P03146), is ultimately determined by primary sequence. Vaccine can comprise monomeric

antigen (i.e., toxoid protein) or multimeric antigen (i.e., virus-like particles), though multimeric antigen is used for demonstration purposes here. T cell and B cell

antigenic determinants can be identified in primary sequence using various in vitro and in silico methods. The linear MHC epitopes illustrated here were predicted using

Epitope Analysis Resources on the Immune Epitope Database (IEDB) website. More specifically, MHC epitopes were predicted for HLA-A*02:01 (class I molecules)

and all heterodimer combinations of DQB1*02:01 (class II molecules) using IEDB recommended methods. Linear B cell epitopes, on the other hand, were assigned

using frequency analysis results from the IEDB website (26). PBV structures are color coded to represent epitope content. (B) Cell processing and activation in

response to PBV is generally orchestrated by antigen presenting cells, of which the most important are dendritic cells. APCs sample their environment via endocytosis,

specifically via receptor-mediated endocytosis when antigen presents glycan and/or protein pathogen-associated molecular patterns such as high mannose glycans

or bacterial flagellin. Depending on the structural and compositional characteristics of the antigen, APCs will either process antigen via MHC class II pathway or MHC

class I pathway using a mechanism known as cross-presentation, respectively, resulting in activation of either CD4+ (helper) or CD8+ (cytotoxic) T cell response.

CD4+ T cell activation requires co-activating signals and results in the proliferation of effector and memory CD4+ T cell pools. Effector CD4+ T cells go on to assist

with the activation of B cells (T cell dependent activation) and provide survival signals to activated CD8+ T cells, whereas CD8+ T cells have immediate effector

functionality. B cells can also undergo T cell independent activation when antigen cross-links multiple BCRs on B cells surface (TI-2 activation) or co-signals via PRR

(TI-1 activation) (27, 28). (C) Activation results in the proliferation of memory and effector cytotoxic T cell and B cell pools. Memory CD8+ cells remain dormant until

they encounter cells presenting MHC class I molecules loaded with cognate epitope, upon which they begin mounting an effector response. Effector CD8+ T cells go

on to instruct apoptosis in cells presenting MHC class I molecules loaded with cognate epitope. B cells activated via T cell independent pathway generally proliferate

into short-lived plasmablasts that express low affinity IgM antibodies (not shown). B cells activated via T cell dependent pathway, on the other hand, result in the

proliferation of memory B cells and long-lived plasma cells expressing high-affinity IgA, IgE, or IgG antibodies. Antibodies secreted by plasms cells (and plasmablasts)

go on to bind vaccine and pathogen and initiate antibody effector functions. Memory B cells remain dormant until they encounter antigen presenting cognate epitope,

upon which they rapidly proliferate and clones either class switch to become antibody secreting plasma cells or re-enter germinal centers and restart affinity maturation

processes (27, 28). The 3D protein structure for HBcAg used in this image was rendered in PyMOL 2.3.0 and accessed via the Protein Data Bank (14, 18, 29).
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FIGURE 3 | PBV modification principles. (A) Potential fusion modifications sites for the model protein hepatitis B core antigen (HBcAg, 149 aa long, truncated form of

AN P03146 used for vaccine purposes) as represented by primary structure. Residues are color-coded in gray scale, with darker residues indicating more exposed

insertion locations. Polypeptide termini and random coil loop regions are primary targets for PBV fusion modification, as they generally have the least effect on protein

(Continued)
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FIGURE 3 | structure. Within these considerations, surface regions that do not participate in intra- and intermolecular interactions are preferred. Specifically, most

HBcAg fusion PBVs presenting foreign B cell epitopes have been modified within the α3α4 loop (AIR between amino acids 75 and 85), though modifications are also

routinely made at the C and N termini. A different approach to insertion site selection should be taken when creating fusion PBVs targeting T cell immune responses,

as antibody response to epitope becomes detrimental. Toward this goal, inserting epitopes within loop regions that are less exposed and less likely to negatively

influence protein stability is optimal (31, 32). (B) Potential fusion modification and conjugation sites for truncated HBcAg model protein as represented by higher order

folded and assembled structure. Residues are color-coded in gray scale, with darker residues indicating more exposed insertion locations. Natural conjugation sites

(lysine and cysteine) have also been highlighted in red. (C) PBV modifications are generally orchestrated via fusion, conjugation, or encapsulation. Each type of

modification occurs at a different level of protein structure, with fusion inserts occurring within primary structure, conjugated inserts occurring within secondary/tertiary

structure, and encapsulated inserts occurring within the quaternary structure of proteins that form enclosed, organized matrixes. As such, both monomeric and

multimeric protein can accommodate fusion and conjugation modifications, whereas only multimeric protein can accommodate encapsulation. The 3D protein

structure for HBcAg used in this image was rendered in PyMOL 2.3.0 and accessed via the Protein Data Bank (14, 18, 29).

modification is likely to occur might prove to be an effective
means of improving PBV immunogenicity. Detrimentally,
however, PRR ligands also have the capacity to act as BCR
and TCR epitopes (also known as antigenic determinants) and
stereometrically crowd antigen surface. This can result in masked
immunogenicity of and/or immune responses being redirected
away from important epitopes contained within PBVs. A perfect
example of this phenomenon was reported by Ansari et al. when
they observed improved in vitro viral neutralization and in vivo
epitope-specific antibody response to glycoprotein 5 (GP5) of the
porcine reproductive and respiratory syndrome virus (PRRSV)
when key N-linked glycosylation sites were eliminated from the
immunodominant, N-terminal ectodomain (50).

Facilitating PAMP Proximity to PBV via
Fusion
Another way to engineer PBVs that can directly engage a
wide variety of PRRs is to covalently fuse PRR agonists to the
PBV. This can be accomplished during protein synthesis via
the inclusion of the gene for a protein adjuvant within the
open reading frame of the target antigen (chimeric approach)
or post synthesis by using a number of biochemical techniques
(conjugate approach). Mechanistically, fusion of protein-based
PRR ligands to PBVs ensures proximity of adjuvant to antigen,
thus increasing the likelihood of antigen-adjuvant co-delivery to
key immune cells. Ultimately, this approach to adjuvanting is
intended to improve immune response profile and intensity while
simultaneously minimizing off-target effects (51). It is important
to note, however, that chimeric and conjugate modification
of antigen with PRR ligand can have detrimental impacts
similar to those mentioned previously for natural PRR ligand
incorporation. For example, one study was able to show that the
chemical conjugation of imidazoquinoline compound 3M-012, a
TLR7/8 agonist, to HIV envelope glycoprotein gp120 results in
improved in vitro expression of IFNα by peripheral dendritic cells
(DCs) while simultaneously abrogating the binding of critical,
broadly neutralizing antibodies (52).

Chemical Conjugation of PAMP to PBV
Chemical conjugation of PRR to PBV surface has been explored
by many research groups. Chang et al. attached flagellin to the
surface of ovalbumin (OVA) nanoparticles (NPs) and observed
improved TLR5 activation in HeLa cells when compared with
OVA NPs without adjuvant. However, there was no statistical
difference when comparing OVA NPs that were conjugated to
flagellin with those that were co-administered. These results

indicated that conjugating adjuvant to antigen is a viable means
of activating the innate immune system, but failed to implicate
an effect of adjuvant proximity to antigen on PRR signaling
(53). Alternatively, Kastenmüller et al. found that conjugation
of TLR7/8 agonist to OVA improved DC uptake of antigen
and subsequent innate immune activation when compared to
co-administered antigen and adjuvant (54). A similar study
targeted TLR7 by chemically conjugating the adenine-based
adjuvant SA-26E to recombinantly expressed group 2 allergen
from the house dust mite. Results indicated that conjugation
not only improved innate immune response when compared to
co-administered antigen and adjuvant, but also that conjugation
was capable of redirecting immune response away from the
Th2 cell subtype associated with hypersensitivity (55). Tighe
et al. observed comparable results when conjugation, but not
coadministration, of CpG oligonucleotide (CpG ODN, a TLR9
agonist) with the major short ragweed allergen Amb a 1 led to
polarization of Th1 response in mice and higher IgG antibody
titers in rabbits and monkeys (56). Schulke et al. observed
enhanced secretion of all evaluated pro-inflammatory cytokines
without bias toward the activation of any one T cell subtype when
monophosphoryl lipid A (MPLA) was chemically conjugated to
OVA and used to stimulate DC/T cell co-cultures (57). In one
example of a PBV targeting a tumor associated antigen (TAA),
McKee et al. observed increased activation of gp33-specific
cells and prophylactic protection against tumor challenge in
a mouse model when they conjugated α-galactosylceramide (a
CD1d agonist) to a chimeric VLP consisting of gp33 MHC
class I epitope and rabbit hemorrhagic disease virus protein
(58). Finally, results from two additional studies indicate that
adjuvant-mediated activation of the innate immune system is
variable between species and that LPS and MPLA, two PRR
ligands that signal through the same TLR4 receptor, has differing
capacities to activate the innate immune system in vitro (59, 60).
Together, these results indicate that PRR conjugation is a viable
means of potentiating innate immune system activation, though
it appears that there is still more to understand when considering
the exact nature of the resulting immune response.

Genetic Fusion of PAMP to PBV
One example of recombinant fusion of PRR with PBVs are
flagellin-fused antigens. These vaccines have intrinsic self-
adjuvanting properties through their activation of TLR5 and, if
the PBV is able to survive endocytosis, the NLRs NLRC4 and
NAIP5 (61, 62). In one study assessing this approach, an 11.9-fold
increase in hemagglutination inhibition assay titers was observed
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when a flagellin-fused hemagglutinin vaccine was compared
with commercial influenza PBVs (63). Another promising study
reported improved antibody titers (∼60% increase), improved
viral neutralization titers (∼3-fold increase), and improved Th1
cytokine profile (∼2-fold increase in IFNγ and TNFα expression)
when comparing the effectiveness of flagellin-modified and wild-
type porcine circovirus type 2 Cap protein (64). Additionally,
many other studies evaluating the effectiveness of recombinantly
fusing flagellin to PBV have shown promising results, with the
majority reporting improved overall immunogenicity and/or
survival when compared to antigen administered alone (65–
71). Unsurprisingly, results like these have propelled multiple
flagellin-fused PBVs targeting influenza to clinical trials (72–
75). None of these candidates achieved commercialization,
however, possibly due to the cytokine storm (a phenomenon
that occurs when the immune system uncontrollably releases
proinflammatory signals) observed upon vaccine administration
in clinical trials (74). Nonetheless, structurally modified flagellin
is still being investigated as a potential PRR fusion partner for
antigen within recombinant PBV formulations (76, 77).

Another example of the PBV-PRR fusion approach to
vaccination are recombinant and synthetic lipoprotein-based
vaccines (LPBVs). These have become a popular research
topic due to their ability to self-adjuvant via TLR2/1–6
heterodimers (78). LPBVs consist of a polypeptide sequence
with a PRR-activating, N-terminal diacyl or triacyl lipid
attachment (79). Incorporation of target epitopes using chimeric
and conjugate approaches have been demonstrated in LPBVs
targeting tuberculosis (TB), human papilloma virus, hepatitis C
virus, influenza A virus, human immunodeficiency virus (HIV),
and cancer (80–85). Generally, augmentation of immunogenicity
has been reported in these studies, though it is important to
note that prophylactic efficacy of the TB vaccine and therapeutic
efficacy of the HIV vaccine was not observed (81, 84). Expression
host may be an important factor in LPBV production as fatty
acid incorporation in vivo not only varies among species but
also results in a mixture of different lipoprotein structures
that may have varying immunomodulating properties (86). This
principle, however, has only been demonstrated when comparing
the immunogenicity of naturally and synthetically produced
LPBVs (87).

Facilitating PAMP Proximity to PBV via
Encapsulation
PRR agonists can also be encapsulated by antigen when working
with proteins that self-assemble into organized matrixes, as
has been demonstrated by the “packaging” of nucleic acids
and proteins within various VLPs (88–93). Post-expression
encapsulation can be achieved via simple diffusion through
vaccine matrix pores when working with nucleic acids,
though assembly and disassembly cycling may be necessary
to encapsulate larger particles, such as proteins. The efficiency
of this process, at least when considering nucleic acids, is
attributed to electrostatic interactions between PBV interior and
PRR agonists (94). The natural encapsulation of ssRNA upon
expression of recombinant, RNA-containing bacteriophage VLPs

in E. coli has been observed, illuminating another mode in which
choice of expression host can influence antigen composition
(95). Encapsulation has been shown to improve the half-life of
nucleic acids (over 9-fold in some instances), most likely due
to the reduced access of endonucleases mediated by vaccine
matrix (96, 97). Additionally, as vaccine matrix payload won’t
be accessible to PRRs until after cellular uptake of vaccine,
this approach ensures that encapsulated PRR agonists are more
effectively delivered to endosomal and/or cytosolic PRRs (4).
This is especially important for nucleic acid PRR agonists, as
all PRRs recognizing nucleic acids are intracellular (98). Finally,
encapsulation of PRR agonist may also prove advantageous in the
design of PBVs targeting TAAs, as the efficacy of these vaccines is
generally reliant on the activation of cytotoxic lymphocytes (99).
This may be the reason why the CpG-ODN loaded MelQbG10
VLP based cancer vaccine (Qbeta VLP covalently linked to TAA
MART-116−35) developed by Speiser et al. was able to successfully
reach Phase IIa in clinical trials (100).

TARGETING B CELL RECEPTORS

PBVs and the B Cell
BCRs (membrane bound immunoglobulin-CD79 protein
complexes) and the B cell maturation process are used by the
adaptive immune system to identify and neutralize linear and
conformational epitopes exposed on the surface of antigens.
Their activation eventually results in the proliferation of plasma
cells and the subsequent secretion of antibodies that are highly
specific for their target epitope. This, in turn, confers protection
through various mechanisms that eventually result in antigen
clearance and further stimulation of both the adaptive and innate
immune system (27). Targeting the BCR in a vaccination strategy
can therefore greatly impact the efficacy of a vaccine, especially if
antibody-mediated neutralization or sequestration is required.

Mechanisms Behind BCR Recognition of
PBV
Many structures can serve as BCR epitopes in PBV designs,
though there are some limitations associated with BCR
complimentary determining region (CDR, the portion of an
immunoglobulin or TCR that interacts with antigen) binding
(101). To start, initial BCR CDR binding is largely beyond the
control of PBV design. This is because BCR CDR structure,
and therefore binding, is randomly determined in pro-B cells
via variable, diversity, and joining (VDJ) gene recombination
(102). PBV design can influence BCR CDR structure during
subsequent, somatic hypermutation rearrangements through
many different mechanisms, though efficient control over these
rearrangements is difficult to achieve (103). These mechanisms
are mostly epitope-specific and include epitope localization
within antigen, competition between epitopes, epitope shape,
and epitope size. BCR epitope localization is an important
consideration in PBV design because exposed regions on antigen
surface will always have the highest probability of becoming
antibody immunodominant regions (AIRs) due to increased
BCR access (104). Epitope competition refers to situations in
which a PBV has multiple AIRs that compete with each other
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for BCR recognition. This results in the generation of multiple,
polyclonal memory B cell pools that compete with each other
for PBV upon boosting, an effect that can be detrimental
when attempting to target or avoid specific AIRs (105–107).
Epitope shape refers to the inherent ability of a conformational
epitope to fit within the CDR of a BCR. The sequence of a
linear epitope similarly influences BCR recognition and can be
included in this category. Prediction software has been developed
for the purpose of recognizing both conformational and
linear BCR epitopes, indicating that receptors do preferentially
interact with epitopes displaying certain quantifiable properties
(i.e., patterns in sequence) (108). However, the utility of these
predictions when considering PBV design is limited due to
small and inconsistent datasets, difficulties predicting antigen
3D structure, and the structural heterogeneity exhibited by
some PBVs (108–111). The last consideration, epitope size,
consists of constraints that are somewhat vague. Conceivably,
any molecule or portion of a larger antigen that is soluble
and large enough to initiate a BCR signaling cascade can be
considered a BCR epitope. As such, there is no upper limit
on antigen size outside of reasonable physiological constraints
and any lower size limitation most likely coincides with major
histocompatibility complex (MHC) binding limitations (where
10–20 mer polypeptides are necessary). BCR epitope size, on
the other hand, is only limited by the diameter of recognition
on a BCR paratope (∼40 Å). A lower threshold for epitope
size must also exist, but where this falls is subjectively based
on the extent of non-covalent interaction between paratope
and epitope.

Chemical Conjugation of BCR Epitope to
PBV
Inherently non-immunogenic molecules that fall below the
antigen size threshold but have the capacity to sufficiently
interact with antibody paratope can be made immunogenic via
covalent attachment to a larger immunogen. These molecules,
dubbed haptens, are the premise behind conjugate PBVs. It
is conceivable that any molecule could be forced into the
role of a BCR epitope using this approach. This rationale is
exemplified by conjugate PBVs that have successfully elicited
humoral immune responses against glycans, self-antigens, and
drugs of abuse (112–114). When designing a conjugate PBV, the
most important considerations are choice of protein carrier and
choice of hapten. Choice of protein carrier is crucial because
it determines the number of potential conjugation sites and
where they are located. These properties affect (1) conjugation
efficiency, (2) conjugation number, and (3) masking of carrier
protein AIRs. This, in turn, has a profound influence on the
ability of conjugate PBVs to redirect the humoral immune
response away from carrier protein and toward hapten (115).
Additionally, the number of MHC class II epitopes found
within carrier protein primary sequence and their affinity for
receptors can potentiate humoral immune response through
(1) the targeting of specific human leukocyte antigen (HLA)
haplotypes within a population and (2) the activation of helper
T (TH) cells (30, 116). This applies more to the targeting of

TCR, however, and as such will be discussed in future sections.
Choice of hapten has been shown to have a sizeable impact on
the number and binding characteristics of antibodies elicited
by conjugate PBVs (117, 118). This effect is exemplified in
nicotine vaccines by the difference in efficacy observed when
only the attachment position to nicotine is changed (119).
Consequently, hapten design has been extensively investigated
for PBV formulations targeting drugs of abuse, as these vaccines
require large quantities of high affinity antibodies in order
to effectively sequester drug in the blood and extracellular
fluid (120, 121).

Genetic Fusion of BCR Epitope to PBV
A similar embodiment to the conjugate PBV is the chimeric,
fusion PBV. By definition, the flagellin and lipoprotein fusion
proteins described previously can be considered chimeric
PBVs. However, within this context, the term most often
refers to immunogens that have been rationally modified with
recombinant epitopes. With this approach, instead of chemically
attaching epitopes to immunogen surface, genes are recombined
such that conformational or linear polypeptide epitopes are
inserted within PBV immunodominant regions. These regions
should be surface exposed if the intent is to activate a humoral
immune response (i.e., AIRs). If epitope insertions can be made
within AIRs without negatively influencing protein folding, it
ultimately results in B cell responses being redirected away
from the previous AIR and toward the introduced epitope. This
concept was demonstrated by Gillam et al. when they reported
increased antibody titers to recombinantly inserted YSNIGVCK
epitope and decreased titers to hepatitis B core antigen (HBcAg)
VLP when evaluating a porcine epidemic diarrhea PBV in mice
(122). A maximal insert size exists for all AIRs in which proper
protein folding can still be accommodated. Successful inserts
within HBcAg have been reported at >200 residues, whereas
inserts within HPV 16 L1 protein, even when at the C-terminus,
rarely exceed 60 residues without negatively influencing PBV
structure (123, 124). Additionally, Varsani et al. observed that
epitopes of identical length had variable effects on the ability of
chimeric HPV 16 L1 PBVs to form VLPs when they were inserted
within different AIRs (125). Together, these results indicate that
maximum insert size is variable and largely influenced by the
properties of the protein, the insert, and the insert location. It
also appears that larger epitopes may influence protein structure
less than smaller ones in some cases, but this is not the
norm (126).

The fusion approach to targeting epitopes is most commonly
employed using VLPs as scaffolding, a technology which
comprises the assemblage of multiple protein copies all
containing the same immunodominant regions. In this way,
high epitope densities per antigen can be achieved without
sacrificing the intrinsic, immunogenic advantages provided by
VLP shape, size, and structure (4). Chimeric VLP PBVs have
been successfully developed to target a variety of infections
that plague humans and livestock species. Examples include a
HPV 16 L1-based vaccine targeting influenza A virus (126),
a MS2-based vaccine targeting HIV (127), and a HBcAg-
based vaccine targeting porcine reproductive and respiratory

Frontiers in Immunology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 283

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Saylor et al. Antigen and Protein-Based Vaccines

syndrome virus (128), though many other studies implementing
this technology exist (129). Chimeric, fusion PBVs have also
been specially designed to convey cross-protective immunity
via the insertion of broadly neutralizing and/or multiple BCR
epitopes (130). It is important to note, however, that VLP-
forming proteins are not the only proteins that can support this
approach. Alternatively, toxoid proteins have also been used in
chimeric vaccines targeting insert-specific antibody production,
though much less frequently than their VLP counterparts as
they do not offer many of the same advantages mentioned
earlier (131–134).

Carrier Induced Epitopic Suppression
Recent strides in vaccine development have been accompanied
by increased interest in conjugate and chimeric BCR epitope
PBVs. When combined, they present an outstanding opportunity
for vaccinologists to generate vaccines that can target nearly all
conceivable chemicals, biologicals, and polypeptides. In addition,
they provide a means through which epitope densities can be
increased on antigen surface such that BCR cross-linking and
subsequent T cell-independent activation of B cells becomes
more likely. However, the promise of a “vaccine for anything”
provided by conjugate and chimeric PBVs has elicited various
complications. Of these complications, carrier-induced epitopic
suppression (CIES) is the most noteworthy issue. Both conjugate
and chimeric PBVs require the use of existing immunogens
as carrier proteins in order to elicit an immune response.
This, along with the fact that there are a limited number of
suitable immunogens available for use in vaccine formulations
due to factors such as immunogenicity, toxicity, stability, and
accessibility, leads to a situation where a select group of
“preferred” immunogens are most often used. CIES refers to a
phenomenon that occurs when the same immunogen is used
in sequential, independent vaccine administrations targeting
different epitopes, resulting in the sequestration, elimination,
and/or inhibition of vaccine response to target epitope by
pre-existing, immunogen specific antibodies and lymphocytes
(135). As expected, this can lead to inhibition of hapten-specific
lymphocyte recognition of vaccine and an ultimate reduction in
vaccine efficacy (136).

Though CIES is likely to always occur to some extent
when simply boosting a conjugate or chimeric PBV, prevention
of antibody specificity for new vaccines is paramount to the
creation of more successful immunizations (137). It has been
shown that CIES can be overcome by increasing vaccine
dosage and/or including more booster injections within a
vaccine regimen. More interesting, however, is the positive
effect that increasing hapten density has had on the occurrence
of CIES, presumably through the crowding of carrier-specific
BCR epitopes (138). Interruption, removal, or blocking of
AIRs in chimeric VLP formulations via recombinant and/or
chemical means has been shown to improve immunogenicity
toward target epitopes and minimize immunogenicity toward
carrier protein, further corroborating this presumption (122, 139,
140). However, chemical modification, such as PEGylation, is
largely non-specific, thus resulting in unpredictable outcomes
for vaccines. For this reason, it is mainly employed to reduce

therapeutic protein antigenicity (141–144). Ideally, immunogen
surface should be considered for each individual vaccine in order
to simultaneously direct antibody-mediated immune response
toward important epitopes and prevent pre-existing antibody
recognition of carrier-specific immunodominant regions.

TARGETING T CELL RECEPTORS

PBVs and the T Cell
The most critical component in any adaptive immune response
is arguably the T cell, as it serves as a key facilitator of both
cell-mediated and humoral immunity. T cells assist with B
cell maturation (TH cells), destroy infected and malfunctioning
cells (cytotoxic T (TC) cells), prevent T cell autoreactivity and
terminate T cell activity at the end of an immune response
(regulatory T (TReg) cells), provide tissue, effector, central, and
virtual antigen memory (memory T (TM) cells), in addition
to assuming many other roles (natural killer T (NKT) cells,
mucosal associated invariant T (MAIT) cells, and gamma delta
T (Tγσ) cells) (145). At the heart of this broad functionality lies
the TCR, the associated MHCs (class I and class II), and TCR
epitopes. When a PBV is administered, cellular processing of
antigen leads to MHC display of small, linear, antigen-derived
peptides, also known as TCR epitopes, on cell surface. TCR CDR
recognition of these MHC-peptide complexes, in turn, leads to
T cell activation and proliferation. More specifically, activation
of CD8+ TC cells is facilitated by MHC class I molecules
whereas activation of CD4+ TH and TReg cells is facilitated
by MHC class II molecules. CD4+ and CD8+ TM cells can
be activated via either MHC class I or MHC class II pathway
(28, 146). Many antigen-associated factors influence the type
and magnitude of T cell response. The most important of these
factors include antigen uptake, localization, processing, and T cell
epitope content.

The Impact of APC Uptake of PBV on T Cell
Activation
The first step in the T cell activation process is uptake of
antigen by cells that express MHC molecules. For the purposes
of PBVs, this process is generally orchestrated by specialized
APCs, though many other cell types can participate in the
event of cellular damage or infection. In fact, the MHC class
I pathway can be initiated by any nucleated cell. Alternately,
activation of the MHC class II pathway can only be achieved
after phagocytosis of antigen by APCs (147). For this reason,
fusion of PBVs to antibodies and antibody fragments specific for
APC surface markers has been extensively investigated as means
of potentiating both helper and cytotoxic T cell activation. This
approach has routinely demonstrated success, with antibody-
mediated, APC targeting generally resulting in a subsequent
increase in cellular and humoral mediated immune response
(148–156). PBVs have also aimed to rationally target T cell
activation through the selective incorporation of ligands specific
for specialized receptors found on APCs. These receptors include
PRRs such as integrins and CLRs, MHC class II molecules,
and Fcγ receptors, among others. However, most research has
focused on CLRs such as DC-SIGN, langerin, and the DECTIN-1
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subfamily (157, 158). This approach presents a major advantage
over the old method of tethered antibody mediated targeting
in that incorporation of glycans specific for CLRs do not
require any additional steps when appropriate expression hosts
are used.

The Impact of Cellular Localization of PBV
Within APCs on T Cell Activation
Antigen localization is one of the major controlling factors
behind the type of T cell response initiated by exogenously
administered PBVs. MHC class I pathway requires
internalization and processing of antigen into short peptide
sequences (8–10 amino acids) within the cytoplasm. In contrast,
MHC class II pathway requires phagocytosis of antigen by
APCs and subsequent lysosomal processing into somewhat
longer peptide sequences (15–24 amino acids) (147). As such,
attempts have been made in the past to direct PBV to cytoplasm
(to target MHC class I pathway) or lysosome (to target MHC
class II pathway) using co-administration and fusion protein
approaches. Results have been mixed, with some studies
observing increases in pathway-specific immune response
and others showing no improvement. Targeting lysosomal
degradation by tethering antigen to lysosome-associated
membrane protein (LAMP) generally has shown no significant
increase in antigen-specific antibody population and only
marginal increases in CD4+ T cell population (159, 160).
Invariant chain (Ii) has also been fused to antigen in an attempt
to target lysosome and subsequent MHC class II pathway.
While fusion of full-length Ii to endogenous antigen results
in inconsistent activation of CD4+ T cells, most likely due to
the presence of class II associated Ii peptide (CLIP) on the C-
terminus, fusion of Ii derivatives accounting for various lengths
of N-terminal sequence have been shown to effectively direct
antigen to lysosome (161, 162). Exogenously administered fusion
proteins that have been tagged with an Ii portion thought to
assist with MHC class II loading (LRMK, Ii-Key) have also been
explored, resulting in potentiation of both CD4+ and CD8+
T cell immune response (163–168). Finally, since APCs are the
only cell type capable of processing antigen via the MHC class II
pathway, the targeting of APC uptake is also a viable means of
targeting CD4+ T cell activation. This approach to controlling
antigen localization has generally proven to be non-specific to
humoral or cytotoxic pathway, however, as it dually potentiates
activation of both CD4+ and CD8+ T cells (148–156).

The Impact of PBV Stability on APC
Processing and T Cell Activation
APCs, specifically dendritic cells (DCs), are unique in their ability
to activate TC cells after exposure to extracellular antigen. This
cross-presentation (CP) of antigen is key to the initiation of
cellular immunity to many cancers, viruses, and exogenously
administered PBVs (169). The majority of CP in APCs is due
to antigen stability and slowed lysosomal digestion, though
other factors, such as the vacuolar pathway, cell maturation
stage, and immunostimulatory environment, do play a role
(170–177). PBVs can be engineered to improve stability, as has

been demonstrated by the introduction of inter-capsomeric di-
sulfide bonds within HBcAg VLPs and MS2 bacteriophage VLPs
(122, 178–180). The effect that this engineered stability has on
MHC pathway, however, has not been thoroughly investigated,
though it appears that stabilization of antigen promotes CP and
the activation of TC cells as destabilization has been shown to
reduce cross-presentation efficiency (181). One study conducted
by Schliehe et al. was able to observe that recombinant fusion
of ubiquitin (Ub) or Ub-like modifier Fat 10 to vaccinia virus
nucleoprotein (NP) resulted in abrogated protein stability and
TC and TM cell response to select immunodominant NP epitopes
(174). Another study conducted by Delamarre et al. showed that
the slight structural difference between RNase-A and RNase-
S (where RNase-S has a peptide bond cleaved between A 20
and S 21) caused RNase-S to be more susceptible to lysosomal
proteolysis in vitro and that this susceptibility ultimately resulted
in reduced ability for mice to mount a humoral immune response
upon vaccination. The T cell activation upon incubation of
RNase-A or RNase-S with splenocytes harvested from RNase-
S vaccinated mice was near zero, however, which seems to
indicate that RNase-S failed to reach APCs upon in vivo
administration (182). When considering MHC class II pathway,
increased antigen complexity has been shown to slow in vitro
DC processing and decrease in vivo antibody response (183).
For example, So et al. observed that the stability of two
recombinantly modified hen-egg lysozyme proteins (one with a
deleted di-sulfide bond and the other with a selectively added
intramolecular ester bond) was inversely correlated with CD4+
T cell activation and both cytokine and antibody production in a
mouse model (184). When paired with evidence suggesting that
these observations are not due to differences in T cell epitope
content, these results indicate that PBV stability plays a crucial
role inmanaging the adaptive immune system during an immune
response (173, 185).Whether or not the extent of PBV processing
is orchestrated by the cell with the intent of modulating humoral
and cellular immune responses, however, remains to be seen.

The Importance of the T Cell Epitopes in
PBV Efficacy and Design
After cellular processing of antigen, presentation of MHC-
peptide complex to TCR can’t take place if there are no antigen-
derived, T cell epitopes specific for theMHCmolecules expressed
by the cell, as only MHC-peptide complexes can bind TCRs
and activate T cells (28). For this reason, toxoid proteins and
toxoid protein derivatives have been used for many decades in
the form of adjuvants and fusion proteins to supplement antigens
that are lacking in T cell response. Eventually, the improved
immunogenicity of these combinations was associated with the
density and promiscuity of T cell epitopes contained within
the toxoid proteins (186). Since this realization, scientists have
searched for “universal” T cell epitopes (UTEs), or rather epitopes
that can bind with a large portion of the MHC phenotypes
found within the human population (187). This search has been
rewarding, with UTEs having been discovered in a plethora of
pathogen-associated proteins.

Frontiers in Immunology | www.frontiersin.org 10 February 2020 | Volume 11 | Article 283

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Saylor et al. Antigen and Protein-Based Vaccines

UTEs come in two forms; those that activate TH cells via
MHC class II pathway (UhTEs) and those that active TC cells
via MHC class I pathway (UcTEs). Synthetic UhTEs, such as the
Pan DR Epitope (PADRE) peptides, have also been engineered.
Their development has typically been based on the fact that
properties of residues at certain positions within an epitope
are more important for MHC binding than others (188, 189).
This principle has also led to the construction of data-trained
algorithms that can help predict MHC binding preferences
(190, 191). As such, it is now possible to dissect an antigen in
silico, identifying key sequences that are most likely to serve
as epitopes for MHC molecules. Taking this approach to PBV
design nowmakes it possible to direct the immune system toward
either a cell-mediated or humoral response and increase in vivo
T cell response to PBV by targeting more MHC phenotypes.
Ultimately, the use of these algorithms is paving the way toward
vaccine designs that target predominant HLA haplotypes, further
broadening the range of subjects that respond to PBVs (192–195).

Though TCRs aren’t subjected to the same post-activation,
somatic hypermutation that BCRs are, they do undergo VDJ
recombination and as such their affinity for MHC-peptide
complex should theoretically be random (28). BCR specificity
is not completely random, however, and considering the
similarity between BCR and TCR CDRs, it is reasonable to
assume that TCRs, like BCRs, may also preferentially bind
polypeptide motifs displaying certain quantifiable properties.
This hypothesis was recently supported by Chowell et al. when
they observed that TCR contact residues exhibit a strong bias
for hydrophobic amino acids contained within MHC class
I epitopes (196). They postulated that this bias was due to
the favorable thermodynamics associated with TCR covering
hydrophobic residues on MHC-epitope complexes. Parrish et al.
also presented evidence that TCRs are germline encoded to
have intrinsic specificity for unloaded MHC molecules (largely
independent of allele, class, and polypeptide sequence) (197).
Furthermore, the existence of superantigens (SAgs), atypical
immunogens that allosterically interact with MHC class II
molecules, crosslink the variable region on TCR β-chain, and
have the capacity to activate up to 20,000-fold more T cells than
are activated by typical antigens, provides additional evidence
for this principle. The binding of SAgs by TCR is largely
non-specific when compared with interactions between TCR
and peptide-loaded MHC molecules, indicating that, at least
under certain circumstances, structurally distinct TCRs have a
propensity to bind specific antigenic motifs (198). Together,
these results strongly suggest that interactions between TCR
and MHC-epitope complexes are not random and that there
may be opportunities in the future to develop algorithms, like
those modeling MHC-epitope interactions, that can predict TCR
binding of MHC-epitope complexes.

Targeting TCR via Recombinant and
Conjugate Approaches
Many groups have targeted T cell activation via chimeric
or covalent attachment of naturally, synthetically, or
computationally derived UTEs to protein and peptide-based

vaccines. A recombinantly modified rabbit haemorrhagic disease
virus-like particle-based vaccine developed by Jemon et al. that
incorporated the universal T cell epitope PADRE and an MHC
I-restricted epitope derived from the HPV 16 E6 protein (aa
48–57) showed promise as an anaphylactic HPV 16 vaccine
when it reduced the tumor burden and improved the survival
time of HPV tumor-bearing mice (199). In another study,
Percival-Alwyn et al. observed that CD1 mice were able to
mount an autoimmune response to self-protein ST2 only once
it had been tethered to the A fragment of DT (DTA) or dual
TH epitopes derived from TT. Interestingly, the dual epitope
performed better than DTA at eliciting autoimmunity when
comparing antibody titer differentials between ST2 and control
fusion proteins. When considering the size of the two inserts,
this result supports the earlier consideration that inserts have
the capacity to redirect immune response away from target
epitopes (in this case, antibody responses seem to have been
redirected away from ST2 and toward DTA) (200). The epitome
of the epitopic approach to vaccination was explored by Wu
et al. when their group fused a single BCR epitope derived
from epidermal growth factor receptor (EGFR, aa 237–267)
to a UTE derived from measles virus fusion protein (MVF,
aa 288–302) and saw a sizeable antibody response in a mouse
model (201). A computational approach to vaccine design was
evaluated by Hurtgen et al. when their group used software
to predict the UTEs found within three Coccidioides posadasii
antigens, Pep1, Amn1, and PIb. Using in vitro assays to screen
for immunogenicity and MHC II affinity, five epitopes were
selected for incorporation within a recombinant epitope-based
vaccine (along with murine Ii-Key and spacer sequences)
and subsequently evaluated in an HLA-DR4 transgenic
mouse model. Recall epitope assay indicated that 4 of the
5 epitopes successfully activated T cells and challenge assay
results showed early activation of TH cells, elevated interferon
and interleukin expression, and prolonged survival rates in
vaccinated mice (202). Other studies have observed similar,
positive results when employing this approach to targeting T cell
activation (203–206).

Limitations of Experimentally and
Computationally Determined UTEs
UTEs provide a rational means of potentiating humoral and/or
cytotoxic immunogenicity of both peptide and protein-based
vaccines. Their incorporation into PBV designs could also
provide a means of overcoming the effects T cell competition
when common antigens are used as vaccine (207). Experimental
discovery of UTEs, however, is made difficult by the fact that
the HLA system is one of the most variable gene complexes
found in humans. For example, at least 3.82e8 combinations
exist for MHC class I-associated alleles, and that number
is far greater for MHC class II-associated alleles (208, 209).
Additionally, the HLA complex shows considerable difference
between humans and common animal models such as mice
(210). As such, computational approaches to predicting UTEs for
specific MHC phenotypes are oftentimes plagued by insufficient
amounts of raw data on MHC-epitope interactions, data
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that are needed in order to establish and validate prediction
algorithms. As a result, most methods’ predictions can establish
what peptide stretches qualify as binders and non-binders,
but for the most part these predictions fall short of the
quality needed to become the basis for sizeable PBV decisions
(185). Ultimately, however, predictions will improve as more
data become available for algorithm training and calibration,
making it likely that epitope prediction software will become
a common tool in the vaccinology toolbox at some point in
the future.

PBVs, T Cells, and Their Implications in
Cancer Therapy
PBVs targeting cancer are particularly important when
considering antigen processing and MHC epitope presentation.
This is because, due to the intracellular nature of most
TAAs, the activation of both CD4+ and CD8+ T cells are
critical to their success. This makes targeting optimal antigen
processing a difficult endeavor, as a balance between MHC
class I and MHC class II epitope content must be considered.
Additionally, since TAAs are generally endogenous, it is typical
for the immune system to have already established a degree
of central and peripheral tolerance toward them, making
epitope-specific immunostimulation more difficult (211).
Multi-epitope vaccines containing both MHC class I and MHC
class II epitopes that have been defined using observation
and/or predictions have been a promising development in
the field of cancer immunotherapeutic. Xiang et al. explored
the idea when their group strung together groups of UcTEs
and UhTEs and chemically conjugated them to the surface
of a polystyrene nanovaccine platform in their search for
polypeptide-based, therapeutic HPV, survivin, and Wilms
Tumor antigen 1 (WT1) vaccines (212). Results from this study
indicated that incorporation of UhTEs with cancer-associated
UcTEs can assist with the UcTEs’ immunogenicity, though
it is interesting that this result was not observed upon the
incorporation of CpG adjuvant and that simpler epitope-based
vaccines were more effective under certain conditions. In
another example of this approach, Lin et al. evaluated the
efficacy of a multi-epitope, cancer PBV consisting of predicted
TH, TC, and B cell epitopes of the LMP2 protein (a TAA
found in EBV-associated cancers) (213). Though therapeutic
efficacy of this vaccine was not evaluated, inoculation of
BALB/c mice resulted in sizeable PBV-specific IgG, IgA,
and CTL response. Additional examples also exist, and it
is likely that many more examples will arise in the years to
come (214).

ADDITIONAL CONSIDERATIONS

PBV Safety Considerations
One of the primary reasons PBVs were explored as an
alternative to live attenuated and inactivated vaccines in the
past was their improved safety profile. This, however, was before
genetic modification of antigen had become feasible. Today,
modifications made to antigen structure can influence PBV safety
profile both positively and negatively. For example, attempts

to improve PBV immunogenicity via the many fusion protein
approaches previously described could backfire in the form of
adverse events, such as cytokine storm and molecular mimicry
(autoimmunity instigated by epitopic similarities between
foreign and self-immunogens) (74, 215). On the opposite end
of the spectrum, the need for safer carrier proteins in subunit
vaccine formulations has led to modifications being made to
many bacterial toxins with hopes of finding safer alternatives (19,
22). Ultimately, the extreme variations observed in PBV efficacy
and safety when even the smallest changes are made in antigen
structure leads to a situation where safety evaluation becomes all-
the-more critical throughout the vaccine development process.
This is compounded by the fact that vaccines are generally
administered to healthy subjects, making adverse events even less
acceptable when comparedwith othermedicines being developed
to maintain non-maleficence. As such, additional steps should be
made beginning with the very first animal studies when assessing
the safety and efficacy profiles of modified PBVs outside of the
standard establishment of correlates of protection and the full
characterization of vaccine formulation.

Animal Model Considerations
PBVs must first prove themselves in numerous animal studies
before they can be used in humans. Unfortunately, however,
immunological and physiological interspecies differences make
it unwise to extrapolate pre-clinical results to human studies
even when using the most optimal animal model for the PBV
being developed (216–219). Outside of obvious issues with dose
scaling, a perfect example of this is illustrated when one considers
that the animal models typically used in vaccine research are
inbred to the point of isogenecity. This can be considered
determinantal when performing vaccine research because some
of the most diverse genes in humans, such as those located on
the HLA gene complex, code for important immune molecules
that have a major impact on the nature and magnitude of
immune responses to antigen and vaccine (220). Even when
using humanized HLA transgenic (Tg) mice as an animal
model in vaccine studies, cytotoxic T cell epitope recognition
concordance rates with humans have only been reported at
47% for vaccinia virus (following immunization with full virus)
and 68% for HIV (following immunization with peptide) (221,
222). Though the sample sizes for these studies were small,
these results demonstrate that both epitope recognition and
antigen processing are quite different between animal models
and humans. The effectiveness of some adjuvants can also vary
widely between species, making it difficult to ascertain the true
value of vaccine efficacy studies done in animals. For example, the
antibody response to HBcAg adjuvanted with oil-in-water MF59
adjuvant system is nearly 10 times more potent in humans than
in mice and approximately 4 times more potent in humans than
in baboons (223). Summarily, the correlative utility of potential
animal models when assessing PBV efficacy, especially when
investigating the effects of TCR epitopes and adjuvants, should
be carefully considered before in vivo testing in order to insure
the best translation from animal to human success. Only in this
way can we hope to consistently elucidate the impact of PBV
modification and formulation on vaccine safety and performance
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FIGURE 4 | The impact of PBV stability on immune response. PBV stability has a profound impact on conformation, immunogenicity, and vaccination outcome.

Outside of inherent fold stability that’s dictated by protein primary structure, many factors contribute to final PBV conformation and stability. Upstream and

downstream processes, such as expression and purification, have a sizeable impact on the capacity of PBV to form higher-order structures and can ultimately lead to

unintended PBV surface modification, aggregation, and/or decomposition. These issues can also present during formulation as a result of protein-protein,

protein-adjuvant, and protein-container interactions. Incompatibilities between physiological conditions and PBV formulation can result in poor extracellular stability, a

phenomenon that often presents as excessive local inflammation and poor transport of antigen to secondary lymphoid organs. Finally, cellular stability, which is a

function of all the factors mentioned previously, largely dictates MHC processing and the nature of the immune response orchestrated by APCs (cellular vs. humoral,

Th1 vs. Th2 vs. Th17, etc.). The 3D protein structure for HBcAg used in this image was rendered in PyMOL 2.3.0 and accessed via the Protein Data Bank (14, 18, 29).

in humans. It is safe to assume, however, that there will always
been some level of uncertainty prior to starting in vivo studies.

Additional Stability Considerations
As has already been mentioned, conformation and stability
play an important role in the immunogenicity of PBVs. This
importance, however, goes beyond the ability of APCs to cross-
present antigen (Figure 4). Recombinant proteins, especially
when expressed in lower-order systems and/or as inclusion
bodies, are notorious for their inclination to misfold (224).
This often results in unstable, heterogenous mixtures of protein-
derived particles that may (1) inefficiently present BCR epitopes,
(2) denature prior to encountering immune cells, or (3)
fail to degrade within endosomal compartments (173). Many
components commonly found in PBV formulations can also
negatively affect conformation and stability. Specifically, alum,
oil-in-water, and TLR agonist adjuvants have the potential to

cause PBV structural changes due to electrostatic, hydrophobic,
and/or coordination interactions with amino acid side chains
(225). Since these immunostimulatory molecules are regularly
necessary to improve PBV efficacy and help prevent peripheral
tolerance, an event that occurs when the adaptive immune
system encounters antigen in low doses or outside of an
inflammatory setting, simple removal is not an option. Protein-
protein interactions can also become a problem when PBVs are
rich in reactive side chains. Stabilizing agents such as polysorbate
80 and sucrose can be employed to help prevent protein-protein
and protein-adjuvant interactions in PBV formulations, but these
molecules also have the capacity to detrimentally interact with
certain amino acid side chains via glycation and oxidation
(226). Protein aggregation, however, does not always have a
negative impact on immunogenicity. Aggregation of therapeutic
proteins has been shown to augment the formation of
anti-drug antibodies in a phenomenon that is likely caused
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when immune epitopes/ligands become easier to access/process
(227). Additionally, it seems that conjugate PBVs may benefit
from some level of aggregation. This is because, while the
conjugation approach to PBV design insures proper BCR epitope
presentation, aggregation has also been shown to improve DC
uptake by more than 3 × and facilitate DC drainage to lymph
nodes (54). Of course, improving PBV immunogenicity via
engineered aggregation would not be beneficial when employing
a chimeric approach to PBV design as the aggregated vaccine
structure would most likely present immunological determinants
that are much different from those that were intended. Evidently,
many important structural and formulative considerations must
be made when designing modified PBVs.

PBV Targeting Strategies for Antigenically
Variable Pathogens and Cancers
The development of PBVs targeting antigenically variable
pathogens (AVPs) and immune-resistant cancers (ARCs)
is complicated by the effects of epitope masking, antigenic
drift (the natural accumulation of mutations within existing
immunological determinants), antigenic shift (the natural
recombination of immunological determinants between
independent influenza A strains), and immunoediting
(when the natural anti-tumor activity of the immune
system puts pressure on oncogenic cells to resist/prevent
immunorecognition). These events are characterized by
mutations within antigenic determinants that make it difficult
for an adaptive immune response to hone in on antigen (228).
Multiple strategies to overcoming these complications have
been investigated.

For PBVs targeting influenza, the most common approach
is biannual reformulation of multivalent, recombinant
hemagglutinin PBV such that the flu strains predicted to
have the most impact on public health are targeted (229).
Unfortunately, this approach to combating AVPs cannot be
applied to HIV due to the severity of complications associated
with and the chronic nature of HIV infection. One exceptionally
promising vaccination approach to protecting against HIV,
however, appears to be the reverse engineering of PBVs based
on broadly neutralizing antibody (bNAb) populations either
found in seropositive individuals or discovered by using
massively parallel mapping techniques (230, 231). The premise
behind this approach is simple. During the initial stages of
HIV infection, the war between mutating antigen and adaptive
immune response results in the generation of bNAbs that
have been shown to confer powerful protection upon passive
immunization in various animal models (232). Intuitively, it
should be possible to use structural vaccinology principles and
reverse engineer PBVs that can elicit protective antibodies with
similar specificities to previously identified bNAbs using an
active immunization approach. Scientists hoping to use this
approach to develop an effective, prophylactic HIV PBV have
identified five key sites associated with bNAbs and work is
underway to construct PBVs that can target these vulnerable
sites (233–235).

It is worth noting that any active vaccination attempt against
HIV will most likely have to consider more than just BCR
epitope presentation in order to be effective. This is because,
in addition to masking and mutating BCR epitopes, HIV is
notorious for its ability to escape immune recognition via
alterations in TCR epitopes, specifically those that are recognized
by MHC class I molecules (236). A post-hoc analysis of the
most successful HIV vaccine study conducted to date, which
used an RV144 pox virus prime, recombinant HIV-1 gp120
(rgp120) boosts, and had an estimated 31% overall protection
rate, supports this conclusion. Within the vaccinated population,
the HLA A∗02 genotype was a marker for success, with A∗02+

individuals showing significantly greater protection than A∗02−

individuals (54 vs. 3% effective). Other studies have made
similar observations (237, 238). These results not only illuminate
the importance of making HLA-targeting considerations in the
PBV design process, but also indicate how impactful MHC
escape mutations can be when using PBVs to protect against
AVPs (even when only one set of HLA-specific epitopes is
affected). In this same study there was also a significant increase
in vaccine efficacy within the A∗02+ population when the
presence of a lysine at position 169 in the V2 region of
rgp120 was factored in (74 vs. 15% effective) (239). Since
this region of the HIV-1 proteome is known as one of the
five key bNAb eliciting sites, this result further highlights
the challenge associated with targeting AVPs via antibody-
mediated approaches (240). Ultimately, it is very possible that
the success of future HIV vaccines will be dictated by how well-
antigenic determinants can be targeted and controlled using
PBV formulations.

Much like viruses, cancers are subjected to selective pressures
by the immune system. The majority of malignant cells
are recognized and eliminated during immunosurveillance
via a variety of effector mechanisms. However, these cells
are continuously incentivized to alter and/or hide their
antigenic determinants in order to survive and proliferate.
As a result, malignant cells that survive immunosurveillance
and establish tumors frequently express specific, targetable
TAAs that have evolved to maximize survival and minimize
immunorecognition (241). This makes the targeting of TAAs
via PBVs a tangible option when conceptualizing cancer
immunotherapeutics, especially when used in concert with
therapies that abrogate the immunosuppressive nature of
the tumor microenvironment (e.g., the immune checkpoint
inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 and the co-
stimulatory molecules (CSMs) anti-CD137 and anti-OX40) (242,
243). Unfortunately, the combination of epitope and multi-
epitope vaccines with ICIs has thus far produced largely
unimpressive results (244). Additionally, little information
could be found on the marriage of full-length PBVs and
these immunomodulators (most cancer vaccines utilizing this
approach are cellular, DNA, or viral vector-based). The lack of
interest in applying this approach to PBVs could be due to the
nature of the immune system (cellular, DNA, and viral vector-
based vaccines are generally better than PBVs at eliciting CD8+
responses) and/or the failure of past PBV cancer vaccines to
advance through clinical trials (245).
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The Chimeric-Conjugate Approach
Residues commonly used for chemical crosslinking can be
recombinantly incorporated onto protein surface in order
to increase conjugation capacity of PBV and ultimately
improve vaccine performance (chimeric-conjugate approach).
In one study evaluating this approach, researchers were able
to recombinantly substitute threonine-15 of the MS2 coat
protein with a cysteine residue without influencing folding
efficiency (246). Another study observed that replacement of
proline-79 and alanine-80 with the peptide GGKGG within
the immunodominant region of modified HBcAg resulted in
increased titers against conjugated M2 and improved survival
rates upon viral challenge when compared to WT HBcAg that
had been recombinantly fused to the same protein (247). Similar
research using lysine-modified tobacco mosaic virus (TMV)
coat protein virus-like particles (VLPs) reported an increase
in immunogenicity when compared to co-administered antigen
and VLP (248) and another study that used lysine-modified
and cysteine-modified TMV VLPs observed that coat protein
assembly around RNA scaffold could be modulated by altering
the ratio of the two mutant proteins during in vitro assembly
(249). Together, these results indicate that a chimeric-conjugate
approach could easily be employed to incorporate epitope and/or
PAMP ligands with PBV, though more research will need to be
done if we wish to fully understand the effect of this method on
loading capacity and immunogenicity.

Additional PBV Modification Techniques
Additional PBV modification techniques exist that could be
employed to modulate immune responses and target the
key immune receptors discussed here. The incorporation of
unnatural amino acids (UAAs), such as p-nitrophenylalanine,
within PBV structure has been used to overcome autoimmune
tolerance in vaccines against RANKL and TNFα (250, 251).
Incorporation of the UAA azidohomoalanine have also been
used to enable click chemistry on PBV surface (252). As
opposed to traditional carbodiimide and maleimide conjugation
techniques, click chemistry allows for rapid reaction kinetics,
selective ligand attachment, and high yields of successfully
utilized attachment sites (253). Sortase-mediated conjugation
allows for the highly specific attachment of LPETG(G) tagged
molecules to PBV bearing recombinantly inserted multi-glycine
stretches, though coupling efficiencies (∼30%) tend to be low
when using this technique (254, 255). Polyhistidine (pHis)
tags are well-known for ability to interact with immobilized
metal ions in affinity chromatography applications. At least
one research group has attempted to utilize this interaction
when conjugating nickel-loaded, tris-nitrilotriacetic acid (tNTA)
ligand to norovirus (NoV) VLPs that had been C-terminally
modified with pHis tags of various lengths. Results confirmed
the utility of the approach as a means of attaching ligand to
PBV surface and suggested that the degree of tNTA loading
correlated with the number of NoV VLP subunits that contained
a pHis tag (256). It may be unwise to employ this conjugation
technique when designing future vaccines, however, as nickel
has been established as both an allergen and a carcinogen
(257). Protein affinity-tag interactions have also been explored

as an alternative means of tethering ligand to PBV (258). In
one example of this approach, Thrane et al. screened multiple
chimeric HPV 16 L1 vaccines that recombinantly displayed
a biotin acceptor sequence on one of the protein’s surface
loops. Insertion did not prevent formation of VLPs in all but
one construct, and biotinylation and subsequent attachment of
cVLP (HI loop insert) with monovalent streptavidin (mSA)-
fused VAR2CSA ligand (a portion of Plasmodium falciparum
erythrocyte membrane protein 1 that can be implicated in
malaria pathogenicity) showed significant improvement in
antigenicity over free ligand early on in vaccination timeline and
similar efficacy in final blood draws when the two PBVs were
evaluated in a mouse model (259). Clearly, the vaccinologist
toolbox is deep when it comes to ways of tethering ligand to PBV.

CONCLUSIONS

Modified PBVs present an effective means of overcoming many
of the limitations encountered by today’s vaccines. First, the
addition of PAMP ligands to PBV structure insures that sufficient
immune activation signals are co-delivered with vaccine upon
administration. PBV modifications of this type have been
shown to increase overall vaccine immunogenicity and should
reduce the likelihood of initiating immune tolerance. Second,
recombinant and/or chemical modification of PBVs with BCR
epitopes can modulate humoral immune response to vaccine.
Specifically, this type of modification makes it possible to (1)
direct antibody specificity toward select epitopes, (2) design
cross-reactive vaccines that can neutralize multiple epitopes, and
(3) prevent CIES when the subject has previously been exposed to
antigen. Third, the recombinant incorporation of TCR epitopes
within PBV structure is useful in that it can (1) allow targeting of
specific HLA genotypes/MHC phenotypes, (2) influence the type
of cellular immune response that’s initiated, and (3) overcome
the effects of T cell antigenic competition. Finally, modifications
can be made to PBV primary structure that influence stability
and cellular uptake, both important factors when it comes to the
magnitude and type of immune response initiated.

Limitations associated with PBVs also exist. These are
generally structural in nature and can result in the negative
modulation of both safety and efficacy. First, it is possible
for modification and/or misfolding of PBV to result in
the incorporation of unintended PAMPs and antigenemic
determinants, an effect that could lead to issues with
immunotoxicity and/or autoimmunity. Second, the extensive
structural variability cognate with PBV production processes and
the general weakness of animal models as success correlates also
makes it difficult and expensive to quantify just how well PBVs
will work prior to direct evaluation in their target species. Along
these same lines, issues with protein stability and interactions
between vaccine species when making modifications to PBV
formulations can add an additional confounding element to the
design process, as the margins between protective immunity and
immune tolerance are often very fine. Lastly, AVPs present an
additional challenge when concerning the utility of PBVs due to
the difficulty of targeting ever-changing, antigenic determinants.
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From prophylactic use aimed at preventing hard-to-
treat diseases such as HIV to anaphylactic use aimed at
alleviating chronic conditions such as addiction, allergies, and
autoimmunity, the utility of PBVs has advanced well-beyond
what was previously imagined possible. Here, we have described
the mechanisms behind PBV immunogenicity and listed many
structural modifications that have been explored in the past
as a means of modulating and/or potentiating PBV in vivo
effects. The results from these studies have shown promise on a
case-by-case basis, but thus far we have yet to realize the dream
of a silver bullet, modified, PBV vaccination approach that would
allow the rational targeting of any epitope in any species with
a high response rate and without complications. It is possible
that we never will, due to the complexity of the immune system
and the sheer number of interacting variables that influence
the outcome of each immune response. Ultimately, however,
the state of PBV research and the sizeable impact that even
case-by-case breakthroughs have on the veterinary and medical
worlds more than justify continued research into structural
vaccinology and the design of modified PBVs.
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