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A general thermodynamic formulation of the effect of hard and soft non-specific

intermolecular interactions upon reaction equilibria is summarized. A highly simplified

quantitative model for non-specific intermolecular interaction is introduced. This model

is used to illustrate how the magnitudes of attractive and repulsive components

of the overall intermolecular interaction, and the balance between them, influence

the concentration-dependent properties of a highly concentrated solution of a single

macromolecular solute. The properties calculated using the results of computer

simulation and an approximate analytical model are found to agree qualitatively with

the results of experimental measurements on protein solutions over a broad range

of concentration.

Keywords: concentrated protein solutions, square well fluid, thermodynamic activity coefficient, light scattering,

osmotic pressure, liquid-liquid phase separation

INTRODUCTION

In a complex and highly volume-occupied intracellular or cytomimetic environment, a
macromolecule or macromolecular complex within the fluid phase (let us call it the probe)
will find itself in the immediate vicinity of other macromolecules of the same or other species.
Under such circumstances, interaction between the probe and its macromolecular neighbors is
unavoidable. Depending upon the chemical compositions of the probe and the neighbors with
which it interacts, the free energy of interaction between the probe and its immediate environment
may be net repulsive or net attractive. Variation of the free energy of interaction will have a variety
of consequences for the reactivity of the probe and the chemical reactions in which it participates,
which we shall review below.

We define interaction between two solute molecules in solution as the existence of a
correlation between their positions, orientations, and motions. The molecules may be said to be
non-interacting only if the position or motion of the first molecule is entirely unaffected by the
presence of the second molecule and vice-versa. At the most basic level this could only be true if
the two molecules are separated by a distance that is large relative to molecular dimensions, since
clearly the two molecules cannot occupy the same space or pass through each other. Thus, the most
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basic and universal type of intermolecular interaction is steric,
which becomes infinitely repulsive when the surfaces of the two
molecules come into contact. In addition, the two molecules may
be mutually influenced by each other at longer distances due
to the presence of electrostatic or solvent-mediated interactions
(Minton, 1983, 2013). Longer-ranged interactions may be strong
and highly dependent upon the mutual orientations of the two
molecules, in which case they are referred to as specific, and
typically result in the formation of experimentally characterizable
static or dynamic complexes with a defined structure and
a lifetime that depends upon the free energy of association
and the kinetics of dissociation. However, under physiological
conditions, longer-ranged interactions between two functionally
unrelated molecules are likely to be weak and independent, or
only weakly dependent, upon mutual orientation of the two
molecules, and do not lead to the formation of specific complexes.
In the present work, we shall concern ourselves only with non-
specific interactions, namely the steric, or “hard” interaction,
and longer-ranged weak or “soft” interactions. Modulation
of equilibria governing specific biochemical reactions by side
reactions resulting from of specific interactions between reactant
and environmental solutes is treated elsewhere (Rivas and
Minton, 2017).

In the following section we shall summarize a general
thermodynamic formulation of the effect of hard and soft non-
specific intermolecular interactions upon reaction equilibria.
We then introduce the square well-potential and extended
Kihara model for non-specific intermolecular interactions. Then
computer simulations of a square well-fluid and the analytical
extended Kiharamodel will be used to calculate the concentration
dependence of several experimentally measurable properties of
a macromolecular solution, and the results of the two sets
of calculations compared. Finally, the calculated properties are
compared with the results of measurements in the literature.

THE THERMODYNAMIC ACTIVITY
COEFFICIENT AND
CHEMICAL EQUILIBRIA

Chemical equilibrium constants are commonly written as a
function of the concentrations of reactants and products.
Contrary to common perception, these quantities are not true
constants at constant temperature and pressure. Let us consider
two simple examples; a general treatment is provided elsewhere
(Zimmerman and Minton, 1993).

Example 1. The simple reversible transition between the native
(N) and fully unfolded (U) conformations of a globular protein

N ⇆ U (1)

This reaction is characterized by the equilibrium unfolding
constant KNU . It may be shown (Zimmerman and Minton, 1993)
that at constant temperature and pressure

KNU ≡
cU

cN
= Ko

NUŴNU (2a)

where,

ŴNU = γN/γU (2b)

Here Ko
NU denotes the true thermodynamic equilibrium

constant, dependent only upon temperature and pressure, ŴNU

a non-ideality or “crowding” factor, ci and γi the molar
concentration and thermodynamic activity coefficient of species
i, respectively. Activity coefficients will be shown below to
be functions of solute-solute interaction and hence dependent
in principle upon the concentrations of all solute species in
the solution.

Example 2. A simple reversible bimolecular association or
binding reaction

A+ B ⇆ AB (3)

This reaction is characterized by the equilibrium association
constant KAB. As in the case of Example 1, it may be
readily shown (Zimmerman and Minton, 1993) that at constant
temperature and pressure

KAB ≡
cAB

cAcB
= Ko

ABŴAB (4a)

where,

ŴAB = γAγB/γAB (4b)

Here Ko
AB denotes the true thermodynamic equilibrium

constant, dependent only upon temperature and pressure,
ŴAB the non-ideality or “crowding” factor and γA, γB,
and γAB the thermodynamic activity coefficients of the
respective species.

The thermodynamic activity coefficient of solute species i
is a measure of the free energy of interaction of a molecule
of that species and all of the other solute molecules in
solution at equilibrium. According to the solution theory
of McMillan and Mayer (McMillan and Mayer, 1945),
the thermodynamic activity coefficient of an individual
macromolecular solute species may be expressed as a power
series in the concentrations of all macromolecular solute species
as follows:

ln γi =
∑

j

Bijcj +
∑

j

∑

k

Bijkcjck + ... (5)

where Bij and Bijk, respectively, denote two-body and three-
body interaction coefficients that are independent of macrosolute
solute composition at fixed temperature and pressure. These
interaction coefficients are defined functions of the potential of
mean force1 acting between molecules of species i and j. For

1Consider a solution containing a variety of solute molecules and solvent. If we

fix the relative positions of just two macromolecular solute molecules of species i

and j in this solution at a center-to-center distance rij and allow all of the other

solute and solvent molecules to equilibrate at constant temperature and pressure,
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a solution containing a single macromolecular solute species,
Equation (5) reduces to

ln γ = B2c+ B3c
2
+ ... (6)

It follows from Equations (5) and (6) that as the solution becomes
progressively more dilute and all ci → 0, all γi → 1, so
that KNU → K0

NU and KAB → K0
AB. As solute concentrations

increase, and solute molecules are on average closer together, the
activity coefficients of one or more solute species may diverge
substantially from unity, and the crowding factors ŴNU and
ŴAB may deviate from unity by as much as several orders of
magnitude. Experimental confirmation of this expectation is
widespread and has been tabulated in several reviews (Minton,
1983; Zimmerman and Minton, 1993; Hall and Minton, 2003;
Zhou et al., 2008).

It follows from Equations (2) and (4) that
conformational and association equilibria may depend
significantly upon the concentrations of environmental
macromolecules as well as the concentrations of reactant(s)
and product(s).

EXPERIMENTALLY OBSERVABLE
MANIFESTATIONS OF NON-SPECIFIC
INTERMOLECULAR INTERACTIONS

The concentration dependence of several experimentally
measurable solution properties are directly related to the
concentration dependence of the activity coefficient of solute.
The properties are:

(1) The average intensity of light scattered from a
protein solution:

I (c) = α
c

1+ c
(

d ln γ /dc
) (7)

(2) The apparent molar mass of a solute determined from
its radial concentration gradient in a centrifuge cell spinning
at constant rotor speed and temperature at sedimentation-
diffusion equilibrium:

the solution reaches a minimum free energy subject to the positional constraints

on the two specified molecules, which we will denote as Geq(rij). We now define

the potential of mean force to be

U
(

rij
)

≡ Geq

(

rij
)

− Geq(∞) (1F1)

Note that the value of Geq at any center-to-center distance will depend upon

the interactions between all of the solute and solvent molecules in the solution.

Thus the potential of mean force is an effective potential of interaction between

molecules i and j within the solution rather than the interaction between these

molecules in a vacuum. McMillan and Mayer (McMillan and Mayer, 1945)

demonstrated that the calculation of the osmotic pressure of a solution was

formally identical to the calculation of the pressure of a gas, provided that the

interaction between solute molecules was represented by the potential of mean

force instead of the potential acting between molecules in the gas phase. The

potential of mean force therefore takes into account solute-solute and solute-

solvent interactions, but implicitly rather than explicitly.

Mapp (c) ≡ β
d ln c

dx2
=

M

1+ c
(

d ln γ /dc
) (8)

where x denotes distance from the center of rotation.
(3) The osmotic pressure of a solution:

5(c) = λ

[

c+

cw

0

c∗
(

d ln γ

dc∗

)

dc∗

]

(9)

where α, β , and λ denote method-specific constants of
proportionality (Tanford, 1961; Cantor and Schimmel, 1980).
Given experimental data of sufficient accuracy and precision
describing the concentration dependence of any of these
properties, one may in principle invert the appropriate equation
given above to obtain the concentration-dependence of ln γ

(Fodeke and Minton, 2010; Wu and Minton, 2015). In the
following sections, we present a simplified theoretical model for
the potential of mean force, and utilize this model to calculate
the concentration dependence of ln γ and several experimentally
observable properties. Then results of calculations of these
concentration-dependent properties are compared with results of
experimental measurements carried out on protein solutions.

SQUARE WELL POTENTIAL–A SIMPLE
DESCRIPTION OF
NON-SPECIFIC INTERACTIONS

If a highly simplified model of intermolecular interaction
properly captures essentials of the actual intermolecular
interaction, one would expect it to qualitatively reproduce
observed behavior and systematic trends. It follows that if the
model does successfully reproduce observed behavior, one may
have some confidence that the model assumptions are at least
qualitatively correct.

Our investigation therefore starts with a simple model
for the potential of mean force acting between globular
macromolecules in solution. The first protein solutions to
be quantitatively characterized at high concentration were
solutions of hemoglobin (Adair, 1928; Williams, 1973; Ross
et al., 1978). Analysis of the concentration dependence of
osmotic pressure and sedimentation equilibrium of hemoglobin
solutions led to the conclusion that solute-solute interactions
between hemoglobin molecules in solutions of moderate
ionic strength were exclusively repulsive, and that solution
properties could be accounted for by a model in which
the protein molecule was represented by a hard spherical
particle of approximately the same size and shape as the
hemoglobin molecule (Ross and Minton, 1977). Subsequent
experimental studies of the high concentration behavior of
solutions of other proteins revealed that hemoglobin was
a rather special case of a purely steric interaction, and
that more generally, protein molecules interacted with each
other not only via steric repulsion, but also via electrostatic
and other longer-ranged interactions that could be either
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FIGURE 1 | Plot of square well-potential of mean force as a function of

center-to-center distance between two interacting spherical solute molecules.

primarily attractive or repulsive, with a magnitude that
depends upon experimental conditions (Minton and Edelhoch,
1982; Minton, 1995; Jiao et al., 2010; Sarkar et al., 2014;
Guseman et al., 2018). Hence any general model for protein-
protein interaction must allow for contributions from both
steric repulsion and longer-ranged repulsion or attraction.
The simplest model taking both features into account is
the square well (SW) potential of mean force, defined
as follows.

The SW potential of mean force acting between two spherical
solutes of radii ri and rj separated by intercenter distance rij is
characterized by two parameters, L and ε, that define the range
and depth of the attractive square well.

U(rij) =







∞ rij < ri + rj
ε
/

kT ri + rj ≤ rij < Lij
(

ri + rj
)

0 Lij
(

ri + rj
)

≤ rij

(10)

where k denotes Boltzmann’s constant and T the absolute
temperature. This potential is schematically depicted in Figure 1.
For ease of notation, we shall subsequently denote ε/kT by ε∗,
indicating that this value of ε is expressed in units of the thermal
energy kT. In the case of a solution containing only a single
macromolecular solute, ri = rj = r and Lij = L.

ESTIMATION OF THE COMPOSITION
DEPENDENCE OF LN γ IN A
SQUARE WELL FLUID

Our ultimate goal is to develop a qualitatively realistic analytical
model for estimation of the concentration dependence of the
thermodynamic activity of each solute species in a fluid of

particles interacting via square well-potentials. Here we compare
the results of calculations performed using an approximate
analytical model developed previously (Hoppe and Minton,
2016) with numerical results obtained via computer simulation.
We shall subsequently refer to this publication as HM.

Using the method of discrete molecular dynamics as described
in HM, simulations of equilibrium square well fluids were
performed at fractional volume occupancies of up to 0.32
for various values of the range parameter L > 1.25 and the
depth parameter 0 ≤ ε∗≤ −1.5. The value of ln γ was then
calculated via the method of Widom insertion, as described in
HM. The dependence obtained from simulations are regarded as
standards to which we shall compare the approximate estimates
described below.

In the relations described below, the concentration
dependence of activity coefficients and colligative properties
of solutions may be expressed as functions of the molar
concentration of solute c or the unitless fraction of solution
volume occupied by solute φ . The choice of unit is a matter
of convenience in numerical computation. We note that these
quantities are proportional to each other and may be readily
interconverted2 according to

φ = cMv/1000 (11)

where M denotes the molar mass and v the specific exclusion
volume in cm3/g .

Kihara derived exact analytical relations for the second and
third osmotic virial coefficients of a multicomponent square
well fluid (Kihara, 1953, 1955). The second and third osmotic
coefficients are, respectively, proportional to the two- and
three-body interaction coefficients in Equation (5) (Hoppe and
Minton, 2016). In HM it was observed that at fractional volume
occupancies exceeding φ = 0.15, values of ln γ calculated
using the Kihara model became progressively more negative
(or less positive) than those obtained from the computer
simulations, indicating the limits of a calculation that takes
into account explicitly only two- and three-body interactions.
In order to compensate for the underestimate of ln γ at
higher concentrations, we therefore proposed an approximate
extension, previously referred to as the hybrid model, but
which we shall henceforth refer to as the extended Kihara
or Kihara+ model. According to this approximate treatment,
the thermodynamic activity coefficient is partitioned into
contributions from hard core steric repulsion and longer-ranged
non-specific “soft” interactions:

ln γ (c) = ln γhard (c) + ln γsoft (c) (12)

2In our particular computations, we arbitrarily selected M = 70,000 g/mol and v

= 0.73 cm3/g for the purpose of converting φ to c. The fundamental calculation of

ln γ in a SW fluid depends upon the concentration of solute particles, the radius

of the spherical particle, r, and the dimensionless quantities L and ε∗. Since all

distances may be scaled to units of r, volumes to units of r3, and concentrations

to units of r−3, it is clear that ln γ is independent of values of mass and specific

volume defined with respect to an arbitrarily selected set of units, since in principle

they may also be scaled to molecular dimensions.
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Theories of hard sphere fluids provide quantitative treatments
of steric repulsive interactions of hard spherical particles that
have been shown to be quite accurate at fractional volume
occupancies up to 0.5 (Minton, 1998). We accordingly calculate
the contribution from steric repulsion utilizing results obtained
from the scaled particle theory of hard sphere fluids (Lebowitz
et al., 1965):

ln γhard (c) = ln γSPT (c) (13)

The contribution from non-specific attraction is then calculated
according to

ln γsoft
∼= B2,softc+ B3,softc

2 (14)

where coefficients B2,soft and B3,soft in Equation (14) are obtained
from the Kihara expressions for B2 and B3, respectively, by
eliminating the contributions from steric repulsion in each
expression (Hoppe and Minton, 2016). The concentration
dependence of ln γ upon φ calculated using Equations (12–14)
are plotted in Figures 2A,B together with results of computer
simulation. It is evident that the Kihara+ model provides a
better than qualitative estimate of the concentration dependence
of ln γ over the entire range of φ encompassed by computer
simulations, and for values of ε∗ spanning the range between
fully repulsive to partly repulsive to predominantly attractive
interparticle interactions.

It is observed that a similar dependence of the activity
coefficient upon volume fraction is obtained for combinations of
a larger value of L and a less negative value of ε∗ (for example,
compare the dependences calculated for L = 1.25 and ε∗ =

−1.5 in panel A and those calculated for L = 1.5 and ε∗ =

−0.9 in panel B). This is to be expected, as it indicates that
concentration-dependent activity is dependent upon integrals
over the entire potential function, e.g., B2 and B3 (McMillan
and Mayer, 1945), rather than upon the value of an individual
parameter in the potential function. In the following sections
we shall compare calculations of the colligative properties of
solutions calculated utilizing the results of simulations and
the Kihara+model.

COLLIGATIVE PROPERTIES OF A
SQUARE WELL FLUID

Inspection of Equations (2–4) reveals that all three colligative
properties depend upon the concentration dependence of
c
(

d ln γ /dc
)

=φ
(

d ln γ /dφ
)

. Calculation of this quantity is
facilitated by the observation that ln γ may be well-described
over the range 0 < φ ≤ 0.4 by the empirical polynomial

ln γ = Q1φ + Q2φ
2
+ Q3φ

3
+ Q4φ

4 (15)

where the coefficients are obtained by linear least-squares
modeling of the results of simulation or model calculations,

as shown in Supplementary Information, Appendix 1. It
follows that

c
(

d ln γ /dc
)

= φ
(

d ln γ /dφ
)

= Q1φ

+2Q2φ
2
+ 3Q3φ

3
+ 4Q4φ

4 (16)

and

cw

0

c∗
(

d ln γ

dc∗

)

dc∗ =

φw

0

φ∗

(

d ln γ

dφ∗

)

dφ∗
=

1

2
Q1φ

2

+
2

3
Q2φ

3
+

3

4
Q3φ

4
+

4

5
Q4φ

5 (17)

Using the concentration dependence of φ
(

d ln γ /dφ
)

obtained
by modeling results of the computer simulations together with
Equations (15–17), the dependence of scattered light intensity
and the osmotic pressure upon φ , calculated using Equations (2)
and (4) with L = 1.25 and selected values of ε ∗ are plotted in
Figures 3A,B, and calculated with L = 1.5 and selected values
of ε∗ are plotted in Figures 3C,D. Using the concentration
dependence of φ

(

d ln γ /dφ
)

= c
(

d ln γ /dc
)

obtained from
the Kihara+ model and modeled using Equations (15–17), the
dependence of scattered light intensity and the osmotic pressure
uponφ , calculated using Equations (2) and (4) with L= 1.25 and
selected values of ε∗ are plotted in Figures 4A,B, and calculated
with L= 1.5 and selected values of ε∗are plotted in Figures 4C,D.

In the absence of intersolute interactions (i.e., in the limit of
high dilution), the intensity of static light scattering is linear in
concentration (Cantor and Schimmel, 1980). In Figures 3A,C,
4A,C, it is observed that in the presence of repulsive steric
interaction only (ε∗= 0; black curves), the initial slope of
the concentration-dependent scattered light intensity decreases
monotonically with increasing concentration. In the same figures
it is observed that when longer-ranged attraction is added to
the steric repulsion (ε∗< 0; colored curves) the initial slope of
the concentration-dependent scattered light intensity increases
with increasing depth of the square well. For well-depths less
negative than a certain critical value, which we will refer to
as ε∗crit , the scattering reaches a maximum with increasing
φ and subsequently decreases with further increases in φ .
Such behavior is observed in concentrated protein solutions
(Fernández and Minton, 2008; Scherer et al., 2010; Scherer,
2015). When the value of ε∗ becomes more negative than
ε∗crit , indicating stronger solute-solute attraction, the slope of
the curve of I vs. φ increases monotonically, and diverges
(I → ∞ ) at a value of φ such that c

(

d ln γ /dc
)

=

φ
(

d ln γ /dφ
)

= −1, indicated by a vertical line in the plot.
Divergence of scattering is observed experimentally by the rapid
onset of turbidity or opalescence (Taratuta et al., 1990; Raut
and Kalonia, 2015), and indicates the existence of a liquid-
liquid phase transition. In Figures 3B,D, 4B,D it is observed
that when ε∗ becomes more negative than ε∗crit the concentration
dependence of the calculated osmotic pressure exhibits non-
monotonic behavior, which is physically unrealizable, and
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FIGURE 2 | Concentration dependence of ln γ in a square well fluid obtained from computer simulation (solid curves) and calculated using the Kihara+ model

(dashed curves). (A) L = 1.25, with ε∗ = 0 (black), −0.5 (blue), −1.0 (red), and −1.5 (cyan). (B) L = 1.5, with ε∗ = 0 (black), −0.3 (blue), −0.6 (red), and −0.9 (cyan).

FIGURE 3 | Colligative properties of square well-solutions as calculated from computer simulation. Concentration dependence of scattered light intensity I for L = 1.25

(A) and L = 1.5 (C). Concentration dependence of osmotic pressure 5 for L = 1.25 (B) and L = 1.5 (D). Values of ε∗ used for L = 1.25 calculations were 0 (black),

−0.55 (blue), −0.8 (red), −1.05 (cyan), and −1.3 (magenta). Values of ε∗ used for L = 1.5 calculations were 0 (black), −0.5 (blue), −0.65 (red), and −0.8 (cyan).
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FIGURE 4 | Colligative properties of square well-solutions as calculated from Kihara+ model. Concentration dependence of scattered light intensity I for L = 1.25

(A) and L = 1.5 (C). Concentration dependence of osmotic pressure 5 for L = 1.25 (B) and L = 1.5 (D). Values of ε∗used for L = 1.25 calculations were 0 (black),

−0.95 (blue), −1.1 (red), −1.25 (cyan), and −1.4 (magenta). Values of ε∗used for L = 1.5 calculations were 0 (black), −0.55 (blue), −0.7 (red), and −0.85 (cyan).

FIGURE 5 | Phase diagrams calculated from computer simulation. Red symbols: points along the binodal or coexistence curve. Blue curve: best polynomial fit to

binodal points. Black symbols: points along the spinodal curve. Red curve: best polynomial fit to spinodal points. For L = 1.25, φcrit= 0.16 and ε∗
crit

= −1.23, and for

L = 1.5, φcrit= 0.13 and ε∗
crit

= −0.74.
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is likewise indicative of a phase transition, which may be
characterized by analyzing the non-monotonic behavior as
described in Supplementary Information, Appendix 2 and the
following section.

Upon comparison of the results shown in Figures 3, 4 it is
evident that the concentration-dependent colligative properties
calculated from the Kihara+ model are very similar to those
calculated from the computer simulations, and differ only
quantitatively. The significance of this resemblance will be
discussed in the concluding section of this report.

LIQUID-LIQUID PHASE SEPARATION IN A
SQUARE WELL FLUID

Proteins may exist in two (or more) phases when the
chemical potential of the protein is equal in both phases.
We are all familiar with the equilibrium between the
solution and solid (crystalline) phases manifested as finite
solubility. Biochemists are less familiar with the equilibrium
between two immiscible solution phases containing the
same protein at two different concentrations, known as
liquid-liquid phase separation or LLPS. This phenomenon
has been observed experimentally in solutions of several
proteins under specific conditions (Taratuta et al., 1990;
Mason et al., 2010; Reiche et al., 2017), and is thought
to be responsible for the formation of liquid-like globules
enriched in a specific protein within cellular cytoplasm
(Shin and Brangwynne, 2017).

According to the McMillan-Mayer theory of solutions
(McMillan and Mayer, 1945), the solubility equilibrium is
thermodynamically analogous to the equilibrium between a gas
and a solid phase, and LLPS is thermodynamically analogous
to the equilibrium between the gas and a liquid phase. Thus,
the relationship between intermolecular interaction and LLPS
may be quantified using formalism developed for analyzing the
predicted effect of attractive interactions upon the gas-liquid
equilibrium. For given values of L and ε∗, one may calculate the
concentration-dependent osmotic pressure as described above.
If the concentration-dependent osmotic pressure exhibits non-
monotonic behavior, the analysis described in Supplementary
Information, Appendix 2 will yield the upper and lower
compositions of the two phases at equilibrium, and the upper and
lower concentrations corresponding to the limits of metastability
of a one-phase solution. When this analysis is performed for a
single value of L and multiple values of ε∗, a phase diagram may
be obtained by plotting these concentrations as a function of
ε∗. Phase diagrams so constructed using results obtained from
computer simulation are plotted in Figure 5, and phase diagrams
constructed in the same manner using results obtained using the
Kihara+ analytical model are plotted in Figure 6.

The outer curve (red symbols and the best-fit polynomial
drawn through them) represents the equilibrium coexistence
curve, or binodal, and the inner curve (black symbols and best-
fit polynomial) represents composition limits of metastability
of a single phase solution, or spinodal. For comparison with
experimentally measured phase diagrams (see for example

Reiche et al., 2017), it should be noted that a decrease in
the absolute value of ε∗ (i.e., an increase in the value of the
ordinate) corresponds to an increase in the temperature3 or
the concentration of any cosolute, such as salt4, that weakens
the non-specific attractive intermolecular interaction between
protein molecules.

For any given value of ε∗, the value of φ lying on the ascending
side of the binodal represents the equilibrium concentration of
solute in the dilute phase, φ

eq

dil
, and the value of φ lying on

the descending side of the binodal represents the equilibrium
concentration of solute in the concentrated phase, φ

eq
conc. The

value of φ lying on the ascending side of the spinodal represents
the maximum concentration of a single-phase dilute solution
that may exist metastably, even though it is not at equilibrium,
φ∗

lower
, and the value of φ lying on the descending side of the

spinodal represents the minimum concentration of a single-
phase concentrated solution that may exist metastably, φ∗

upper .
The apices of the binodal and spinodal curves (or rather the
best polynomial fits through the calculated points) converge at
a composition and characteristic value of ε∗ referred to as the
critical point. At values of ε∗ more positive than that at the critical
point (attained at higher temperature3 or salt concentration4),
the solution will exist as a single phase at all concentrations. At
values of ε∗ more negative than that at the critical point (lower
temperature or salt concentration), solutions with φ ≤ φ

eq

dil
or

φ ≥ φ
eq
conc will exist as a single phase of uniform concentration.

Solutions with a total concentration φ
eq

dil
< φ < φ

eq
conc will exist

at equilibrium as a mixture of dilute and concentrated phases of
fixed composition, where the volume fraction of the concentrated
phase will be given by

fconc =
φ − φ

eq

dil

φ
eq
conc − φ

eq

dil

(18)

If the total concentration lies between φ
eq

dil
and φ∗

lower
, or between

φ∗
upper and φ

eq
conc, the solution may exist as a single metastable

phase, but depending upon the kinetics of the transition,
will eventually demix to form the two phases coexisting
at equilibrium5.

We observe that the binodal curves calculated from the
computer simulations are significantly broader than those
calculated from the Kihara+ model, although the spinodal
curves are similarly shaped. The reason for this is that the
osmotic pressure calculated using the Kihara+ model at very

3Since ε∗ ≡ ε/kT, it follows that a relative temperature may be defined: Trel =

−kT/ε = −1/ε∗.
4Increasing salt concentration generally damps out intermolecular electrostatic

attraction and repulsion (Cohn and Edsall, 1943; von Hippel and Schleich, 1969).
5The rate of conversion of metastable to stable equilibrium may be so slow that

the single-phase solution appears to be stable over a period of time exceeding the

duration of practical experimental measurement. Measurement of the cloud point

by reduction of temperature may indicate the spinodal rather than the binodal

composition. The most certain way of determining the binodal or coexistence

curve is to increase or decrease the concentration beyond the limits of metastability

and then measure the concentrations of the protein in each of the two phases

formed at equilibrium.
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FIGURE 6 | Phase diagrams calculated from Kihara+ model. Symbols and curves as in Figure 5. For (A) L = 1.25, φcrit = 0.13, and ε∗
crit

= −1.33, and for (B) L =

1.5, φcrit = 0.12 and ε∗
crit

= −0.80.

FIGURE 7 | (A) Concentration dependence of scattering intensity calculated using the Kihara+ model with L = 1.25 and ε∗ = 0 (solid curve), and ε∗ = −0.3 (dashed

curve). (B) Experimentally measured dependence of scattering intensity of ovalbumin in 10mM phosphate buffer, pH 7, in the absence (diamonds) and the presence

of 0.15M NaCl (circles). Data of Wu and Minton (2015).

FIGURE 8 | (A) Osmotic pressure calculated using Kihara+ model with L = 1.25 and ε∗ = 0 (dotted), −1.2 (dashed), and −1.4 (solid). (B) Experimentally measured

osmotic pressure of IgG at pH 7.0. Symbols, data of Yousef et al. (1988). Dashed line is the linear least squares best fit of a cubic polynomial with (0,0) intercept, to

guide the eye. Dotted line is calculated assuming molar mass of 65,500 and ε∗ = 0 (i.e., no attractive interactions).

high concentration is systematically greater than that calculated
from the simulations. Thus, the high end of the coexistence curve
calculated using this model is artifactually shifted toward lower

concentrations. Since the divergence between the simulation
and model calculations is only significant at the highest
concentrations, it may be seen that the spinodal curves and the
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FIGURE 9 | (A) Plot of coexistence curves (binodals) calculated using Kihara+ model for L = 1.25 (diamonds, dotted curve), 1.5 (squares, dashed curve), and 1.75

(circles, solid curve). Results are scaled to φcrit and Tcrit. (B) Plot of scaled coexistence curves of crystallins, lysozyme, and monoclonal antibodies measured under

various experimental conditions (Reiche et al., 2017). Figure reprinted from Reiche et al. (2017) with permission by Elsevier.

values of φcrit and ε∗crit calculated from the Kihara+ model are
very close to those calculated from the computer simulations.

COMPARISON OF RESULTS OF MODEL
CALCULATIONS TO
EXPERIMENTAL MEASUREMENT

The utility of a simplified model potential of mean force
may be judged by its ability to qualitatively account for or
predict the observed behavior of a protein solution. Below we
present comparisons of the results of model calculations with
experimental observations.

Light Scattering
In Figure 7A the relative intensity of light scattering calculated
using the Kihara+model is plotted as a function of concentration
for two values of ε∗ representing no attractive and somewhat
attractive attractive intermolecular interaction. In Figure 7B we
plot the measured intensity of light scattering as a function of
concentration for ovalbumin at pH 7 in low and moderate ionic
strength solutions. The increase in ionic strength results in a
decrease in the strength of repulsive electrostatic intermolecular
interactions, which has the same effect as an increase in the
strength of attractive interactions, namely an increase in the
scattering intensity.

Osmotic Pressure
In Figure 8A the osmotic pressure calculated using the Kihara+
model is plotted as a function of concentration for three values
of ε∗representing different strengths of attractive interaction.
In Figure 8B the experimentally measured osmotic pressure of
immunoglobulin G is plotted as a function of concentration,
together with the dependence of the osmotic pressure upon
concentration calculated for the same molar mass in the absence
of an attractive interaction (i.e., pure hard steric repulsion). The
plot of experimental data displays an inflection point similar
to that calculated using the Kihara+ model and a value of
ε∗ slightly less in magnitude than the value at which a phase
separation appears.

Liquid-Liquid Phase Separation
Coexistence (binodal) curves calculated using the Kihara+
model plotted as ε∗ against coexistence compositions, such
as those shown in Figure 6, may be converted to coexistence
curves plotted as a relative temperature against coexistence
compositions, where Trel ≡ −1/ε∗ . Coexistence curves
calculated in this manner for three values of L and scaled relative
to φcrit and Tcrit are plotted in Figure 9A. These are compared
to similarly scaled coexistence curves obtained via experimental
measurement on various proteins under different experimental
conditions plotted in Figure 9B.

DISCUSSION

One of the objectives of the present work is to demonstrate that
computationally demanding atomistically detailed Monte Carlo
or Brownian Dynamics simulations are not required to obtain a
basic understanding of the major contributions to non-specific
interactions between protein molecules in solution. The square
well-potential is the simplest model for a potential of mean
force containing both short range repulsive and longer-ranged
attractive interactions, containing only two floating parameters,
as opposed to at least four for a Lennard-Jones type potential. Yet,
as demonstrated here, a square well-fluid can exhibit colligative
properties and LLPS behavior in qualitative or semi-quantitative
agreement with experimental measurement.

In addition, we point out that unlike simulations of Lennard-
Jones fluids, square well-fluids at equilibrium may be simulated
rapidly and precisely using the method of Discrete Molecular
Dynamics (Proctor and Dokholyan, 2016) as utilized here. The
algorithms employed in DMD are computationally far simpler
and more rapid than those employed in conventional molecular
or Brownian dynamics simulation, and avoid cumulative
error resulting from the approximate numerical solution of
differential equations.

Petsev et al. (2003) presented an alternative approach
toward characterization of the composition dependence of
intermolecular interaction in concentrated protein solutions.
According to their treatment, the thermodynamic activity
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coefficient may be written as a sum of contributions from
hard spherical repulsion and spherically symmetric “soft”
interactions, just as in our Equation (12). The hard-sphere
contribution is calculated according to the empirical Carnahan-
Starling equation (Carnahan and Starling, 1969), and the soft
contribution is written as a power series in the volume fraction

ln γsoft = B∗2φ + B∗3φ
2
+ B∗4φ

3 (19)

This expression is comparable to our Equation (14), except
that one additional higher-order term is included, and the
coefficients are not defined with respect to any particular
model of solute-solute interaction. At any given temperature,
the values of the coefficients B∗i are determined by fitting
the appropriate expressions for the concentration dependence
of light scattering and osmotic pressure, calculated using
the concentration dependent activity coefficient obtained as
described above, to experimental measurement of concentration-
dependent light scattering in the dilute one-phase regime, and
measured values of φ

eq

dil
and φ

eq
conc in the two-phase regime.

This approach works well, given the precise measurements
of Petsev et al. (2003) of both concentration-dependent
light scattering and the compositions of coexisting phases at
multiple temperatures.

The treatment of Petsev et al may be characterized
as a “top-down” approach, proceeding from experimental
measurement to evaluation of the underlying intermolecular
interaction potential. By contrast, our approach may be
characterized as “bottom-up,” proceeding from a fully-defined
model intermolecular interaction potential to a calculation
of measurable concentration-dependent properties. The top-
down approach, which requires a substantial quantity of high
quality data obtained at multiple temperatures, can provide
a detailed description of the temperature dependence of not
only the potential of mean force, but also the enthalpic
and entropic components of this potential for a specific
protein under a particular set of experimental conditions
(pH, buffer composition, ionic strength). In contrast, our
objective is to explore the effect of systematically varying
intermolecular interaction potential upon the concentration
dependence of experimentally measurable solution properties.
Unlike the top down analysis of Petsev et al. our treatment
may be extended in a straightforward manner to solutions
containing multiple macromolecular solutes. For example,
the intermolecular interaction in a solution containing two
macrosolutes may be characterized at a fixed temperature
by Equation (10), with three values of r (i.e., r11, r22,
and r12), three values of L and three values of ε∗. We
have already presented the results of a Kihara+ calculation

of the composition dependence of ln γi of each of three

solutes in a solution mixture (Hoppe and Minton, 2016),
and the influence of hard and soft interactions upon selected
chemical equilibria. We intend to extend this treatment to
calculate the composition dependence of light scattering, osmotic
pressure, and liquid-liquid phase equilibria in solutions of two
macromolecular solutes.

In this work we have demonstrated how the Kihara+ model
for effective interaction between solute molecules in a solution
containing a single solute species can semi-quantitatively
reproduce the concentration dependence of ln γ in a square
well-fluid as calculated via rigorous computer simulation. The
analytical model and the simulations yield similar predictions
of the concentration dependence of light scattering and osmotic
pressure. Finally, calculations of concentration-dependent light
scattering, osmotic pressure, and liquid-liquid phase separation
have been shown to closely resemble the corresponding
properties measured experimentally in solutions of globular
proteins. The Kihara+ model is particularly useful, as it
is amenable to generalization to solutions containing more
than one macrosolute species without recourse to increasingly
more complex and compute-intensive simulations. Further
development in this direction is underway. We thus conclude
that the square well-potential, the simplest potential representing
both steric repulsion and longer-ranged interactions, provides
a conceptual basis for understanding the concentration-
dependent equilibrium properties of globular proteins at
high concentration, an initial and necessary step toward
understanding the behavior of proteins in more complex
cytomimetic media.
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