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Colorectal cancer, also known as rectal cancer, is one of the most common forms of
cancer, and it can be completely cured with early diagnosis. The most effective and
objective method of screening and diagnosis is colonoscopy. Polyp segmentation
plays a crucial role in the diagnosis and treatment of diseases related to the digestive
system, providing doctors with detailed auxiliary boundary information during clinical
analysis. To this end, we propose a novel light-weight feature refining and context-
guided network (FRCNet) for real-time polyp segmentation. In this method, we first
employed the enhanced context-calibrated module to extract the most discriminative
features by developing long-range spatial dependence through a context-calibrated
operation. This operation is helpful to alleviate the interference of background noise and
effectively distinguish the target polyps from the background. Furthermore, we
designed the progressive context-aware fusion module to dynamically capture
multi-scale polyps by collecting multi-range context information. Finally, the multi-
scale pyramid aggregation module was used to learn more representative features, and
these features were fused to refine the segmented results. Extensive experiments on
the Kvasir, ClinicDB, ColonDB, ETIS, and Endoscene datasets demonstrated the
effectiveness of the proposed model. Specifically, FRCNet achieves an mIoU of
84.9% and mDice score of 91.5% on the Kvasir dataset with a model size of only
0.78 M parameters, outperforming state-of-the-art methods. Models and codes are
available at the footnote.1

Keywords: deep learning, polyp segmentation, enhanced context-calibrated module, progressive context-aware
fusion module, multi-scale pyramid aggregation

1 INTRODUCTION

Colorectal cancer (CRC) is an ordinary malignant tumor of the gastrointestinal tract and is one of the
most common types of cancer. Fortunately, CRCmortality can be greatly reduced if colon polyps, the
bulging masses on the surface of the colon, are removed before CRC is formed (Kolligs, 2016). The
localization and delineation of colon polyps play an important role in surgical treatment and medical
care decision. Detailed boundary information can be provided by segmenting images of the polyp for
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subsequent clinical diagnosis and treatment. Several studies
(Leufkens et al., 2012; Tajbakhsh et al., 2015b) have shown
that approximately a quarter of polyps are missed during
colonoscopy, which may increase the rate of missed diagnoses
of colorectal cancer. Furthermore, colonoscopy procedures
require polyp segmentation algorithms to present the results
in real time to doctors to assist them in making suitable
judgments and responses. At present, the main research
direction is polyp detection and polyp segmentation
technology. However, there are serious problems in the
inspection methods of colorectal polyps. Due to the low
contrast between the foreground and background information
in the gastrointestinal channel, the accuracy of polyp resection in
the process of endoscopic surgery under the image-level detection
method cannot be guaranteed. Semantic segmentation gives a
pixel-level classification in an image, that is, it classifies the pixels
into its corresponding classes, whereas object detection classifies
the patches of an image into different object classes and creates a
bounding box around that object. To this end, the former can
extract more abundant semantics than the latter, which is
conducive to distinguishing the polyp tissue from the
background well, thereby improving the probability of polyps
detected. On the other hand, detection and localization of polyps
are usually critical during routine surveillance and to measure the
polyp load of the patient at the end of the surveillance while pixel-
wise segmentation becomes vital to automate the polyp boundary
delineation during the surgical procedures or radio-frequency
ablations. To sum up, we argue that it is necessary to employ
segmentation-based approaches to support colonoscopy.

Precisely, segmenting polyps from colonoscopy videos is a
challenging task. Firstly, the low contrast between the colon
background and polyp foreground makes it difficult for the
model to segment polyps from colonoscopy videos precisely,
which may lead to false segmentation results of polyps
(Figures 1A,B). Secondly, colon polyps can vary substantially
in shape and scale (Figure 1C–F ). Thirdly, the segmentation
results should be carried out in real-time so that the results can be

presented to doctors immediately for prompt action during the
colonoscopy. Figure 2 shows the network performance (Dice and
IoU) of several current advanced algorithms on the Kvasir-SEG2

and CVC-ClinicDB datasets.3 As can be seen in the figure, the
proposed FRCNet can achieve light-weight state-of-the-art
performance.

It was difficult for early automatic polyp segmentation
methods (Jerebko et al., 2003; Bernal et al., 2012; Ganz et al.,
2012), to accurately separate the polyp target from the
surrounding tissue because the polyps and surrounding
mucosa have similar characteristics such as color, texture, scale
and so on. Although some inherent characteristics of polyps can
be utilized to distinguish a polyp from its surrounding
background, such methods, which are based on hand-crafted
features, are far from able to meet the above challenges. In recent
decades, as deep learning and computer vision techniques have
gradually developed and attracted researcher’s interest, a series of
methods based on convolutional neural networks (CNNs) have
been designed to segment polyps, substantially improving the
accuracy of the segmentation results. For instance (Akbari et al.,
2018), an image patch selection method based on a fully
convolutional network (FCN) (Long et al., 2015) was proposed
to perform polyp segmentation. However, owing to the inherent
limitations of the FCN architecture, valuable detailed polyp
boundary information may be lost after it has passed through
a series of downsampling layers, which is fatal for pixel-level
segmentation tasks such as semantic segmentation, especially
medical image segmentation. In general, it is challenging to
develop a method to meet the above-mentioned challenges of
polyp segmentation and produce satisfactory results while
maintaining real-time performance.

In order to yield satisfactory segmentation results meanwhile
maintain real-time performance, in this study, we propose the

FIGURE 1 | Typical challenging examples of polyp segmentation results: (A,B) the polyps with low contrast to the background, (C,D) the small polyps, and (E,F)
the large polyps.

2https://datasets.simula.no/kvasir-seg/
3https://polyp.grand-challenge.org/CVCClinicDB/
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feature refining and context-guided network (FRCNet), which is
an adaptive context network for efficient polyp segmentation.
First, we employ the enhanced context calibrated (ECC) module
to obtain the most discriminative features by dynamically
developing long-range spatial dependence through context
calibration. Next, to address the large variation in the scale
and shape of polyps, the progressive context-aware fusion
(PCF) module is used to extract multi-scale contextual
information. Finally, the multi-scale pyramid aggregation
(MPA) module is developed to dynamically fuse the
representative features output from multiple levels for refining
the polyp segmentation map. Our experiments demonstrate that
the proposed FRCNet can achieve better results than the state-of-
the-art algorithms at a satisfactory speed. We can summarize the
contributions of this article as follows:

• Two novel context modules, the ECC and PCF modules,
were developed to effectively extract the most discriminative
features and multi-range context information, respectively

• To generate more refined segmented results, we designed
the MPA module to adaptively aggregate the multi-level
output features

• Extensive experiments show that the proposed FRCNet
achieves better results than other state-of-the-art methods
while maintaining real-time performance

2 RELATED WORK

2.1 Polyp Segmentation
Most early studies on polyp segmentation tasks rely on various
hand-crafted features. For instance, Näppi and Yoshida (2002)
employed the gradient concentration to differentiate between a
polyp and the background. The Radon transformation (Deans,
2007) and Canny edge detection algorithm (Canny, 1986) have
been used to segment images of polyp candidates by Jerebko et al.
(2003). Using a combination of fuzzy c-means clustering and
two-dimensional knowledge-guided intensity adjustment, Yao
et al. (2004) designed an automatic method for reducing false
positive detections in polyp segmentation. Gross et al. (2009) used
multi-scale filtering and edge enhancement techniques to locate
polyps, whereas Hwang and Celebi (2010) used Gabor texture

features to further improve polyp segmentation accuracy. In some
specific cases, these approaches can obtain good results but hand-
crafted features are insufficient when the characteristics of the
image become complicated, and hence they are unable to handle
complex cases.

Recently, an innovative network, the FCN (Long et al.,
2015), has achieved impressive results in semantic
segmentation. In contrast to the hand-crafted features
extracted by the traditional methods, the features extracted
by the deep-learning–based methods are more discriminative
and hence yield more precise results. In addition, there are also
some excellent models in the field of target detection. (Li et al.,
2019; Jiang et al., 2021a; Jiang et al., 2021b) which provide
some advanced and efficient models. Bai et al. (Bai et al., 2022)
provide an improved model based on deep feature fusion,
which provides a new idea for future model optimization.
Huang et al. (Huang et al., 2022) utilize multi-scale feature
fusion, which can effectively focus on smaller target features.
Optimization from multiple perspectives based on split
attention networks and feature pyramid networks by Hao
et al. (Hao et al., 2022) also provides a new solution for
subsequent research. During the same period, U-Net
(Ronneberger et al., 2015), which not only captures rich
context information but also enables precise localization,
was also recently proposed and has been applied in the field
of medical image segmentation. Subsequently, many variants
based on U-Net have been developed for polyp image
segmentation. For instance, Li et al. (Li et al., 2017) directly
employed an end-to-end U-shape structure for segmenting
colorectal polyps. To further enhance the ability of model
feature extraction, ResU-Net++ (Jha et al., 2019) used an
atrous spatial pyramid pooling module (Chen et al., 2017;
Chen et al., 2018) to extract multi-scale context information.
DRCNet (Qin et al., 2020) enables each pixel to associate global
semantic information by modeling the association of internal
and external contextual information. To overcome the fact that
polyps at different scales depend on different local or global
contextual information, ACSNet (Zhang et al., 2020) uses a
method that can adaptively select the context. PraNet (Fan
et al., 2020) used a parallel method to predict the fuzzy regions,
and used the attention mechanism to recover the boundary
and internal region of the polyp, so as to achieve more accurate

FIGURE 2 | FRCNet shows better performance as compared to other state-of-the-art algorithms.
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segmentation results. In the latest research, an HarDNet
(Huang et al., 2021) method based on a simplified coding
and decoding architecture was proposed. HarDNet improves
the segmentation accuracy of the network while maintaining
fast inference. Despite their success, the above methods are
incapable and effectively model global context information to
handle the large variation in polyps, in real-time performance.

2.2 Context Modeling
Context modeling is crucial for computationally intensive
prediction tasks such as semantic segmentation, especially
medical image segmentation. Moreover, the receptive field in
the network determines how much context information is used.
To enlarge the receptive field of the network, Yu and Koltun
(2015) first designed an atrous convolution to comprehensively
collect multi-scale context. Subsequently, Chen et al. (2017)
designed an atrous spatial pyramid pooling block by manually
and empirically setting atrous rates to capture multi-context
information. Considering the full use of contextual
information, a pyramid pooling module (Zhao et al., 2017)
was designed to make use of the global context. Using a self-
calibrated operation, SCNet (Liu et al., 2020) explicitly expands
the fields-of-view of a network by adaptively building long-
distance spatial dependencies. Inspired by the above approach,
in this study, we developed two context-related methods, the ECC
and PCF modules, which effectively extract the most

discriminative features and multi-range context information,
respectively.

3 METHOD

Our proposed FRCNet is depicted in Figure 3, where the overall
architecture is based on the symmetrical classical encoder-decoder
framework, which not only captures rich context but also enables
precise localization. Due to the low contrast between the surrounding
tissue and the polyps, we employ the enhanced calibration
convolution (ECC) module to replace vanilla convolution and
extract more discriminative features. At the bottom of the encoder,
we further developed the progressive context-aware fusion (PCF)
module that extracts multi-scale contextual information and can
adapt to large variations in the scale and shape of polyps. Finally,
to improve polyp segmentation accuracy in colonoscopy images, the
multi-scale pyramid aggregation (MPA) module was designed and
used in the decoder to learn more representative features by
dynamically fusing the multi-level output features.

3.1 Enhanced Calibration Convolution
Module
Considering the trade-off between the computation and accuracy of
the network, the size of the convolution kernel in traditional CNNs is

FIGURE 3 | The overall architecture of our proposed FRCNet, which mainly includes three core modules, that is, ECC, PCF, and MPA. We employ the ECC and
PCF module to encode more discriminative and multi-scale features, respectively. Finally, the MPA module is designed to adaptively fuse the output of the multi-level
feature by the decoder for refining the final segmented result.
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usually fixed (e.g., 3 × 3). It can be seen that traditional convolutional
neural networks usually use a fixed convolutional pattern to obtain a
larger perceptual field by stacking the depth of the network, which
will greatly limit the expressiveness of the network, resulting in
important feature information that will be lost as the network
deepens, thus making the model confusing and unable to
distinguish polyps from the background tissue. Therefore, rather
than introducing amore complex network architecture, we employ a
context-calibrated operation to help the network learn more
discriminative features. As Figure 4 shows, the ECC module is
implemented via a split-fuse-select strategy.

In FRCNet, for any given input featuremapXin ∈ RC×H×W, as the
default, we first split the input featuremap into two new featuremaps
X1 ∈ RC/2×H×W and X2 ∈ RC/2×H×W, according to the channel
dimensions via a 1 × 1 convolution. Related research (Chen et al.,
2019; Han et al., 2020) has shown that there are a substantial number
of redundant feature maps in CNNs, which may reduce the feature
extraction efficiency of CNN-based models. To address this problem,
we first process X1 with a 1 × 1 convolution followed by a batch
normalization algorithm and ReLU non-linear activation function,
keeping the original feature transformation, as shown in the below
part of Figure 4. Thus, the output feature map X1′ ∈ RC/2×H×W can
be generated. On the other hand, to reduce the interference of
background tissues, the context-calibrated operation is specifically
designed to develop long-range spatial dependence, described below.

As shown in the upper part Figure 4, we first perform the
transformation F̂ : X2 → X2′ ∈ RC/2×H×W with a kernel size of
three. Note that F̂ is composed of convolution, batch
normalization, and a ReLU activation function in that

order. For further efficiency, depthwise separable
convolution (Howard et al., 2017) is adopted, which
substantially enhances efficiency without significantly
reducing effectiveness, because this enables the model to
learn richer feature representations with fewer parameters.
Next, we utilize a context calibration operation to obtain the
attention map representing the importance in each feature
map. The calibration operation is formulated as follows:

Xatt � σ X2 ⊕ Up F̂ 3×3 Down X2( )( )( )( )( ) (1)
where σ and ⊕ represent the sigmoid function and element-wise
summation operation, respectively. Here, Up(·) denotes a regular
bilinear upsampling operation and Down (·) denotes the
downsampling operation. Mathematically, the output of the
ECC module Xout ∈ RC×H×W can be defined as follows:

Xout � Xin ⊕ Cat X1′, F̂ 3×3 Xatt ⊗ X2′( )( ) (2)
where ⊗ and ⊕ are the element-wise multiplication and
summation operation, respectively, and the Cat(·) represents a
concatenation. Clearly, when compared with vanilla convolution,
the ECC module can encode more accurate and discriminative
features because it uses the context-calibrated operation. The
ECC module, not only models the dependencies between
channels through a simple scaling mechanism (downsampling
and upsampling), enlarging the receptive-field of the network, but
also considers the contextual information around each spatial
position rather than taking the global contextual information into
account.

FIGURE 4 | The flowchart of the ECC module.
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3.2 Progressive Context-Aware Fusion
Module
In this study, inspired by the global context block (Cao et al.,
2019), we designed a PCF module to extract multi-range context
information and guide the model to concentrate on the region of
interest, in order to solve the problem of large shape changes in
the process of polyp identification. The overall mechanism of the
proposed PCF module is depicted in Figure 5. Features, also
called as descriptors, the information extracted from images in
terms of numerical values, are laborious to be perceived and
correlated by humans. Surrounding features generally describe
the image patches, whereas local features describe the smaller
group of pixels. Intuitively, it is hard to understand the scene only
depending on local features. Inspired by the human visual system,
if we can obtain the region of interest and its surrounding
contextual information, it will be easier to assign the category
to the corresponding pixels.

Given a high-level abstract feature map x ∈ RC×H×W from the
output of the encoder, we first feed it into a normal convolution to
compress the channels of the network, reducing the complexity of
the network. After that, we first used a 3 × 3 convolutional kernel
for feature extraction, which is also called a local feature extractor
L (·) due to the small receptive field obtained. Subsequently, to
obtain richer contextual information, we used a dilated
convolution with a dilation rate of 5 for feature extraction,
which we refer to as a surrounding feature extractor S(·). The
above two approaches extracted the feature maps xl ∈ RC/2×H×W

and xs ∈ RC/2×H×W respectively. The surrounding context helps
the network better distinguish the polyps from the background
tissues. Intuitively, the recognition accuracy of the network can be
further improved if we can consider the global context. To this
end, the two feature maps xl and xs are concatenated as x′, where
x′ = Cat(xl, xs). The next steps of context modeling and feature
transformation are shown in Figure 5. First, we use 1 × 1
convolutions S1 to reshape the feature maps x′ and the
softmax function to obtain the attention weights. Then, the

global context is obtained by an attention operation. Second,
the features are transformed via 1 × 1 convolutions S2 and S3.
Finally, the channel-wise global context information is aggregated
onto the channels of the original features. Thus, the output yi of
the PCF module can be expressed as follows:

yi � x + S3ReLU LN S2 ∑Tp

j�1
βjxj′⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (3)

Here, Tp = H ·W is the number of locations in x′ and βj � eS1xj′∑q
eS1xq′

is a weight for the global attention pooling for context modeling,
and γ(·) � S3ReLU(LN(S2(·))) denotes the bottleneck transform
for capturing channel-wise dependencies. Finally, we use a skip
connection (He et al., 2016) for feature fusion to accelerate the
network convergence. Therefore, compared with the input
feature map x, in the output map y, the contextual
information that exists in the target region has been strengthened.

3.3 Multi-Scale Pyramid Aggregation
Moudle
In FRCNet encoding process, we jointly use the enhanced
attention module ECC to extract features and the PCF module
to suppress background noise in the high-dimensional semantic
information. During the decoding process, the conventional
convolution method is also replaced by the ECC module to
recover the same resolution as the original input image.
Although the inclusion of skip connection between the
encoder and decoder is effective in bridging some of the
spatially detailed information between the layers, the
difference in semantic information between the layers still
does not allow for more efficient information interaction.
Since the foreground information of polyps in the intestine
does not differ much from the background information and
there is a lot of interference from background noise such as

FIGURE 5 | An overview of the proposed PCF module.
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folds in the intestine, using only skip connection would lead to
inaccurate polyp segmentation results. In order to solve the above
problem, multi-level feature fusion strategies (Lin et al., 2017; Xie
et al., 2020) were applied and were effectively proven to be
capable of the above segmentation task. However, most
previous studies (Zhang et al., 2018) have not taken into
account the semantic information gap between different levels,
and the traditional feature fusion approach only performs feature
fusion by direct pixel-level summation, which inevitably leads to
degradation of segmentation accuracy. It is widely accepted that
deep networks have a powerful ability to express hierarchical
features, with low-level features focusing on edge or texture
information but lacking sufficient semantic information, and
high-level features on the contrary. Therefore, combining
high-dimensional and low-dimensional information through a
dynamic modeling approach will greatly improve the accuracy of
the model.

To this end, in order to avoid performance penalty and to
retain more fine-grained information to capture as many detailed
features of the network as possible, a multi-scale pyramid
aggregation (MPA) module was designed to collect more
important details to refine the final segmentation results as
shown in Figure 6. Finally, considering the disparity between
different levels of output feature maps, we further employed
SENet (Hu et al., 2018) to adaptively fuse multiple levels of output
features, thus improving the overall fusion efficiency. Assuming
that there exist k output layers of the decoder from themodel given
the multi-level output features L � [l0, l1, l2, l3, l4] ∈ RC×H×W, we
first perform a bilinear upsampling operation B to unify them to
the same spatial resolution and then concatenated them to
obtaining G, which is also fed into a feature projection function
W1 to reduce the number of channel dimensions

G � W1 Concat B l4, l1, l2, l3( ), l0( )( ). (4)

Finally, a squeeze-and-excitation technique (Hu et al., 2018) is
employed to re-weight the rough features and yield the final
refined segmentation results:

Y � G ⊗ δ M g G,ω( )( )( )( ), (5)
where (ω) is the relative parameter. Function $g(\mathbf{X}) =
\frac{1}{H \times W}∑H

i�1∑W
j�1X(i, j) is calculated using global

average pooling (GAP) to generate the channel-wise statistics.
Moreover, M(·) represents the information interaction among
channel dimensions. δ(·) denotes the sigmiod function, which is
used to obtain the attention weight maps, and then pixel-level
multiplication ⊗ is used to re-weight G.

3.4 Loss Function
Loss functions are one of the significant ingredients in
colonoscopy image segmentation. Because there is a serious
imbalance in the ratio of foreground (polyp regions) to
background tissue in colonoscopy images, a comprehensive
loss function is required to enable the network to converge
faster and better. A significant advantage of the most
commonly used loss function, binary cross-entropy loss, is
that it can converge very quickly, but it is easily affected by
any imbalance in the categories. It is expressed as follows:

LBCE � −∑
i

ti ln t̂i( ) + 1 − ti( )ln 1 − t̂i( )( ), (6)

where t and t̂ represent the polyp ground truth and polyp region
predicted by the network, respectively. To handle the class
imbalance problem, FRCNet also employs the Dice loss
(Milletari et al., 2016), which is defined as follows:

LDice � 1 − 2 · 〈t h,w( ), t̂ h,w( )〉 + ξ

t h,w( )
���� ����1 + t̂ h,w( )

���� ����1 + ξ
, (7)

FIGURE 6 | Illustration of the proposed MPA module.
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where (h, w) refers to the pixel coordinates and ξ is the Laplace
smoothing factor to speed up the network convergence. Here, we
set the ξ to 1e-8 in our works. Finally, by combining the
abovementioned loss functions, we obtain the final loss function:

Ltotal � λ1 · LBCE + λ2 · LDice, (8)
where λ1 and λ2 represent the relevant weight coefficient of the
loss function. In this paper, we empirically set it to 0.6 and 0.4.

4 EXPERIMENTS

4.1 Dataset and Evaluation
In this work, we conducted our experiments on five commonly
used polyp datasets, including Kvasir-SEG (Pogorelov et al.,
2017), CVC-ClinicDB (Bernal et al., 2015), CVC-ColonDB
(Tajbakhsh et al., 2015a), EndoScene (Vázquez et al., 2017),
and ETIS-Larib Polyp DB (Silva et al., 2014) datasets, to

FIGURE 7 | Visualization of the results of the ablation study.

TABLE 1 | Ablation studies of different modules on four different test datasets.

Settings Kvasir ClinicDB ColonDB ETIS Endoscene

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

Baseline 0.801 0.732 0.818 0.741 0.615 0.543 0.501 0.436 0.72 0.631
Baseline + ECC 0.889 0.823 0.901 0.862 0.711 0.64 0.663 0.61 0.857 0.782
Baseline + PCF 0.876 0.811 0.883 0.844 0.708 0.631 0.684 0.619 0.849 0.785
Baseline + MPA 0.856 0.798 0.861 0.805 0.687 0.613 0.591 0.531 0.823 0.712
FRCNet 0.915 0.849 0.933 0.886 0.741 0.67 0.71 0.647 0.886 0.811

The bolded value indicate that the obtained scores are the best and can be easily read by the reader.
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evaluate the effectiveness and efficiency of the proposed FRCNet.
The Kvasir-SEG and ClinicDB datasets were our primary data
sources for evaluating model learning ability. The Kvasir-SEG
consists of 1000 labeled color polyp images that were captured
from real colonoscopy video sequences, where the images vary
from 487 × 332 to 1072 × 1920 pixels in size. Similarly, the images
in the CVC-ClinicDB dataset were taken from the frames of 29
real colonoscopy videos. The dataset consists of 612 polyp images
that are 384 × 288 pixels in size. We follow the setup in PraNet
(Fan et al., 2020) and use 900 and 550 images from Kvasir-SEG
and ClinicDB, respectively, as training sets, and keep 100 and 62
images, respectively, as test sets. In order to effectively test the
generalization ability of the model, in addition to the Kvasir-SEG
and ClinicDB datasets, we used three additional datasets for
validation, ColonDB, ETIS, and EndoScene, which were not
present during training and were open-sourced by different
medical centers.

Several common metrics were adopted to quantitatively
evaluate the FRCNet and other state-of-the-art methods. These
metrics are mDice (Milletari et al., 2016), mIoU, mean absolute
error (MAE), weighted F-measure(Fw

β )(Margolin et al., 2014),
S-measure(Sα)(Fan et al., 2017), and E-measure(Eξ)(Fan et al.,
2018). Among these metrics, mDice and mIoU are similar in that
they both indicate the degree of similarity at the region-level and
focus on the consistency of the segmented objects within. MAE is
a pixel-level comparison metric, and it is also capable of

measuring the difference between predicted and labeled values.
In order to solve the situation that precision and recall may
contradict each other, we use F-measure(Fw

β ) to eliminate the
contradiction. S-measure(Sα), whose full name is Structure
measure, is applied to measure the structural similarity
between the original image and the image to be measured.
E-measure(Eξ) is used to evaluate the segmentation results at
pixel level and image level. In the results presentation section of
this paper, we use mEξ and maxEξ to denote the mean and max
value of the E-measure.

4.2 Implementation Details
FRCNet was implemented in the PyTorch framework on an
Ubuntu 18.04.2 system in the Python 3.8 environment. During
the training process, we adopted Adam optimization (Kingma
and Ba, 2014) with a 1e-3 initial learning rate to optimize our
model. In this work, we set the batch size to four and used an
NVIDIA RTX 3090 Ti, which is a graphics card with 24 GB of
G6X memory. To address the over-fitting problem and improve
network performance, several data augmentation strategies were
employed, including random horizontal and vertical flips,
random rotations at 90° angles, and random adjustments to
the brightness and contrast. The size of our model training
input is 512 × 512 and our model is trained with at least 80
epochs to ensure full convergence. Note that, no image post-
processing was needed in our study. Furthermore, all models were

FIGURE 8 | Visualization of the results of polyp segmentation on CVC-ColonDB dataset, where red, green, and blue colors in the figure are indicated as false
positive, true positive, and false negative, respectively (best view in color).
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evaluated using the same experimental settings for fair
comparison.

4.3 Ablation Studies
In this section, we present the results of several ablation studies to
evaluate the major components in our proposed approach.

We conducted the ablation studies on five different datasets to
evaluate the influence of different modules on our proposed
FRCNet. In this ablation study, we used a U-Net-like
architecture as our baseline model, where the output of each
encoder layer is directly added instead of concatenated to the
corresponding decoder layer for faster speed of inference. In the
Baseline model, we next replaced the traditional convolutional
operator with the ECC module to obtain Baseline + ECC, which
has been proven to greatly reduce the number of redundant
parameters. By further adding the PCF and the MPA module to
the baseline model, we obtained another two models (Baseline +
PCF and Baseline + MPA). Finally, we integrated the three
modules into the Baseline model to obtain FRCNet.

We used 900 and 550 images from Kvasir-SEG and ClinicDB
as training sets, and 100 and 62 images from Kvasir-SEG and
ClinicDB as test sets, respectively, and we also used additional
datasets from ColonDB, ETIS, and EndoScene to verify the
generalization ability of the model, and, typical polyp
segmentation results can be viewed in Figure 7. It is clear that
the baseline method is unable to obtain acceptable segmentation
results, especially under demanding conditions with extremely

low contrast regions with irregular shapes and sizes. In
comparison, by performing feature transformations in spaces
with various field-of-view to collect more instructive contextual
information for each object location, the Baseline + ECC method
obtained more satisfactory results than Baseline, which can be
observed that the background tissue area is suppressed well.
Moreover, to address the varied irregular shapes and sizes
challenges, the Baseline + PCF is capable of dynamically
extracting multi-range context information for capturing the
varied sizes and shapes of polyps by gradually combining local
features, surrounding features, and global features, as can be seen
in the fifth column of Figure 7. Furthermore, contributed by the
effectiveness of the attention mechanism, multi-level output
features can be adaptively fused after adding the MPA module
to the Baseline, which could be refined as the final segmented
results. As shown in the last column of Figure 7, the proposed
FRCNet achieves the best performance, particularly on images
with extremely low contrast or various polyp sizes and shapes.
Furthermore, we also presented quantitative mIoU and mDice
scores of the different models as shown in Table 1. The results
show that directly replacing vanilla convolution with the ECC
module, we can clearly observe that the Baseline + ECC model
gains a higher score in the total analysis metrics. Adding the PCF
module to the baseline, it improves nearly 10% over the baseline
in mIoU and mDice, respectively, as shown in Table 1. The
Baseline + MPAmodel also obtains better segmentation accuracy
than Baseline, which indicates that the multi-level feature fusion

FIGURE 9 | Visualization of the results of polyp segmentation on ETIS-LaribPolypDB dataset.
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FIGURE 10 | Visualization of the results of polyp segmentation on the Kvasir-SEG dataset.

TABLE 2 | Statistical comparison with different state-of-the-art methods based on the Kvasir-SEG dataset. The best results are bold faced.

Kvasir mDice mIoU Fw
β Sα mEξ maxEξ MAE Param

U-Net 0.818 0.746 0.794 0.858 0.881 0.893 0.055 31.38
UNet++ 0.821 0.743 0.808 0.862 0.886 0.91 0.048 9.16
DCRNet 0.886 0.825 0.868 0.911 0.933 0.941 0.035 -
ACSNet 0.898 0.838 0.882 0.92 0.941 0.952 0.032 -
PraNet 0.898 0.84 0.885 0.915 0.944 0.948 0.03 32.50
HarDMSEG 0.897 0.839 0.885 0.912 0.942 0.948 0.028 33.34
FRCNet 0.915 0.849 0.911 0.919 0.948 0.959 0.024 0.78

The bolded value indicate that the obtained scores are the best and can be easily read by the reader.

TABLE 3 | Statistical comparison between different models on the CVC-ClinicDB
dataset.

ClinicDB mDice mIoU Fw
β Sα mEξ maxEξ MAE

U-Net 0.823 0.75 0.811 0.889 0.913 0.954 0.019
UNet++ 0.794 0.729 0.785 0.873 0.891 0.931 0.022
DCRNet 0.896 0.844 0.89 0.933 0.964 0.978 0.01
ACSNet 0.882 0.826 0.873 0.927 0.947 0.959 0.011
PraNet 0.899 0.849 0.896 0.936 0.963 0.979 0.009
HarDMSEG 0.909 0.864 0.907 0.938 0.961 0.969 0.007
FRCNet 0.933 0.886 0.915 0.942 0.968 0.981 0.007

The bolded value indicate that the obtained scores are the best and can be easily read by
the reader.

TABLE 4 | Statistical comparison between different models on the CVC-ColonDB
dataset.

ClolonDB mDice mIoU Fw
β Sα mEξ maxEξ MAE

U-Net 0.512 0.444 0.498 0.712 0.696 0.776 0.061
UNet++ 0.483 0.41 0.467 0.691 0.68 0.76 0.064
DCRNet 0.704 0.631 0.684 0.821 0.84 0.848 0.052
ACSNet 0.716 0.649 0.697 0.829 0.839 0.851 0.039
PraNet 0.712 0.64 0.699 0.82 0.847 0.72 0.043
HarDMSEG 0.735 0.666 0.724 0.834 0.859 0.875 0.038
FRCNet 0.741 0.67 0.728 0.831 0.863 0.878 0.036

The bolded value indicate that the obtained scores are the best and can be easily read by
the reader.
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is beneficial to boost performance. We have seamlessly integrated
the above three modules together to form our FRCNet, which is
nearly 15% ahead of the baseline on each dataset.

4.4 Comparison With the State of the Art
To further evaluate the effectiveness and efficiency of FRCNet on
polyp segmentation task, a comparison was made with several
state-of-the-art algorithms: U-Net (Ronneberger et al., 2015),
U-Net++(Zhou et al., 2018), DRCNet (Qin et al., 2020), ACSNet
(Zhang et al., 2020), PraNet (Fan et al., 2020), and HarDNet
(Huang et al., 2021). To make the comparison as fair as possible,
we implemented all of the comparison methods and evaluated
them on the five different datasets, including Kvasir-SEG (Jha
et al., 2020), CVC-ClinicDB (Bernal et al., 2015), CVC-ColonDB
(Tajbakhsh et al., 2015a), Endoscene (Vázquez et al., 2017), and
ETIS-LaribPolypDB (Silva et al., 2014). The tested datasets use
the same experimental settings, such as data augmentations
methods and hardware environments.

The qualitative results show three sets of polyp
segmentation result plots under different data sets, as
shown in Figure 8, Figure 9, and Figure 10, which include
numerous challenging cases with polyps of various sizes and
irregular shapes. Moreover, the extremely low contrast
between the foreground polyps and the background tissue
may increase the probability of inaccurate segmentation. It
is obvious to see that the classical U-Net is unable to handle the
above challenging cases because of the limitations inherent in
its architecture. U-Net++ outperforms the U-Net because it
uses a residual technique to fuse the features effectively.
DRCNet proposes a collaborative and interactive approach
that uses internal and external contextual information to
evaluate the similarity between each location of an image
and all locations separately. As shown in the fourth column
in Figure 9, UNet++ produces many false negative pixels
because it does not have a sufficient global receptive field
and context information. By contrast, ACSNet is able to
adapt to more complex intestinal environments, and it
enables the algorithm to maintain sensitivity to complex
spatial environments, thus increasing the recognition
accuracy of multi-scale polyps. Different from those UNet-
based methods, PraNet is based on a parallel reverse attention
mechanism, in which the reverse attention module is able to
mine the cues of polyp boundaries and model the relationship

between region and boundary information. Compared to
previous competitors, HarDNet can produce more true
positive pixels and achieve a satisfactory performance.

Despite their success, due to the inherent real-time
requirements of the polyp segmentation task, the above
algorithms do not meet the problem of clinical application.
To comprehensively overcome the above challenges, by
integrating three novel modules, that is, ECC, PCF, and
MPA, the proposed FRCNet generally outperforms the
other seven rivals. Compared to previous methods, the
proposed FRCNet can not only effectively extract multi-
scale features by fusing contextual information at a multi-
range step by step, but also efficiently suppress the interference
of background noise by building long-range dependence, to
help the network learn more discriminative and useful
features. Moreover, to gain a more refined dense prediction,
based on attention mechanism and multi-level feature
aggregation strategy, the MPA module is also developed to
retain more representative features and more precise detailed
information. Overall, the proposed FRCNet can not only
segment polyps of a variety of large scales and irregular
shapes but also effectively handle the complicated semantics
variations of polyps.

In addition to the qualitative comparisons, we performed a
statistical comparison to quantitatively evaluate the test
results. As shown in Table 2, U-Net++ is slightly better
than U-Net according to all estimate metrics. According to
the table, the FRCNet achieved the highest mDice, reaching
0.915. By contrast, we can plainly discover that DRCNet,
ACSNet, PraNet, and HarDMSEG all perform much better
than the classical U-Net model with average improvements of
6%–8% in the mDice and mIoU. Furthermore, as the most
competitive opponent, HarDNet achieves satisfactory
performance with only 33.34 M parameters after the
proposed FRCNet. Compared to the above-advanced
algorithms, the proposed FRCNet achieves the highest
performance in the vast majority of metrics, which
demonstrates the effectiveness and efficiency of FRCNet.
Note that, even given its remarkable performance, FRCNet
only takes up 0.78 M parameters, indicating that it is suitable
for use in colonoscopy procedures, which require fast polyp
segmentation. A comparison of the performance on the CVC-
ClinicDB, CVC-ColonDB, ETIS-LaribPolypDB, and

TABLE 5 | Statistical comparison between different models on the ETIS-
LaribPolypDB dataset.

ETIS mDice mIoU Fw
β Sα mEξ maxEξ MAE

U-Net 0.398 0.335 0.366 0.684 0.643 0.74 0.036
UNet++ 0.401 0.344 0.39 0.683 0.629 0.776 0.035
DCRNet 0.556 0.496 0.506 0.736 0.742 0.773 0.096
ACSNet 0.578 0.509 0.53 0.754 0.737 0.764 0.059
PraNet 0.628 0.567 0.6 0.794 0.808 0.841 0.031
HarDMSEG 0.7 0.63 0.671 0.828 0.854 0.89 0.015
FRCNet 0.712 0.647 0.682 0.837 0.873 0.892 0.036

The bolded value indicate that the obtained scores are the best and can be easily read by
the reader.

TABLE 6 | Statistical comparison between different models on the EndoScene
dataset.

EndoScene mDice mIoU Fw
β Sα mEξ maxEξ MAE

U-Net 0.71 0.627 0.684 0.843 0.847 0.875 0.022
UNet++ 0.707 0.624 0.687 0.839 0.834 0.898 0.018
DCRNet 0.856 0.788 0.83 0.921 0.943 0.96 0.01
ACSNet 0.863 0.787 0.825 0.923 0.939 0.968 0.013
PraNet 0.871 0.797 0.843 0.925 0.95 0.972 0.01
HarDMSEG 0.874 0.804 0.852 0.924 0.948 0.957 0.009
FRCNet 0.886 0.811 0.853 0.927 0.956 0.969 0.008

The bolded value indicate that the obtained scores are the best and can be easily read by
the reader.
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EndoScene datasets are presented in Tables 3–6. The results
reveal that FRCNet also achieved satisfactory performance on
this dataset, again with lower computational complexity.

5 CONCLUSION

In this work, we presented a feature refining and context-
guided network, called FRCNet, to comprehensively address
the challenges of the polyp segmentation tasks. To suppress the
background noise, we employed the ECC module to
dynamically develop long-range spatial dependence while
extracting the most discriminative features. Furthermore, to
enable the network to segment polyps of different sizes and
shapes, we proposed the PCF module, which adaptively
captures multi-range context information. Finally, the MPA
component was developed to learn more representative
features for enhancing the final segmented results. Extensive
experiments on five famous polyp datasets (Kvasir-SEG, CVC-
ClinicDB, CVC-ColonDB, ETIS-LaribPolypDB, and
EndoScene) demonstrate the advantages of the proposed
FRCNet. Future investigations will include testing its
robustness and generalization ability on more datasets and
we believe that it could be easily extended to similar tasks in
which varied sizes and shapes or ambiguous boundaries are the
key challenges.
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