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Viral interfering RNA (viRNA) has been identified from several viral genomes via directly
deep RNA sequencing of the virus-infected cells, including zika virus (ZIKV). Once
produced by endoribonuclease Dicer, viRNAs are loaded onto the Argonaute (AGO)
family proteins of the RNA-induced silencing complexes (RISCs) to pair with their RNA
targets and initiate the cleavage of target genes. However, the identities of functional ZIKV
viRNAs and their viral RNA targets remain largely unknown. Our recent study has shown
that ZIKV capsid protein interacted with Dicer and antagonized its endoribonuclease
activity, which requires its histidine residue at the 41st amino acid. Accordingly, the
engineered ZIKV-H41R loss-of-function (LOF) mutant virus no longer suppresses Dicer
enzymatic activity nor inhibits miRNA biogenesis in NSCs. By combining AGO-associated
RNA sequencing, deep sequencing analysis in ZIKV-infected human neural stem cells
(NSCs), and miRanda target scanning, we defined 29 ZIKV derived viRNA profiles in
NSCs, and established a complex interaction network between the viRNAs and their viral
targets. More importantly, we found that viRNA production from the ZIKV mRNA is
dependent on Dicer function and is a limiting factor for ZIKV virulence in NSCs. As a result,
much higher levels of viRNAs generated from the ZIKV-H41R virus-infected NSCs.
Therefore, our mapping of viRNAs to their RNA targets paves a way to further
investigate how viRNAs play the role in anti-viral mechanisms, and perhaps other
unknown biological functions.

Keywords: zika virus (ZIKV), RNA interference (RNAi), viral interfering RNA (viRNA), Dicer, neural stem cells (NSCs)
INTRODUCTION

Zika virus (ZIKV), a member of the Flaviviridae family, is a single-stranded positive-sense RNA
virus. The Flavivirus genus is composed of more than 50 arthropod-borne viruses such as Dengue
virus (DENV), Japanese encephalitis (JEV), West Nile virus (WNV), which all pose threats to the
public health. ZIKV was originally identified in the Zika forest of Uganda in 1947 (Dick et al., 1952;
gy | www.frontiersin.org February 2021 | Volume 11 | Article 6288871
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Weaver et al., 2016). In 2015, ZIKV outbreaks emerged
unexpectedly in the Americas, and spread swiftly to 86
countries or territories worldwide in the following years,
causing more than 3 billion people subject to the risk of ZIKV
transmission (Baud et al., 2017).

The most concern of ZIKV is its ability to induce fetal
microcephaly and congenital Zika syndrome (Rasmussen et al.,
2016; Hoen et al., 2018). For example, fetal microcephaly is
linked with ZIKV infection during pregnancy (Musso et al.,
2016), and thousands of infants born from ZIKV-infected
mothers developed abnormally with thinner cortical layers
(Orioli et al., 2017). ZIKV has an intrinsic tropism for neural
stem and progenitor cells (NSCs) in cell cultures, brain organoids
and fetal brain slices (Cugola et al., 2016; Dang et al., 2016;
Garcez et al., 2016; Liang et al., 2016; Qian et al., 2016; Tang et al.,
2016), whereas ZIKV has much lower infectivity to more
differentiated immature or mature neurons (Li et al., 2016a;
Muffat et al., 2018). ZIKV infection impairs NSC proliferation
and differentiation, triggers cell death, and results in cerebral
developmental delay (Shao et al., 2016; Shao et al., 2017; Nielsen-
Saines et al., 2019; Zeng et al., 2020). Notably, mammalian
multipotent stem cells, including NSCs, intrinsically produce
little interferon (IFN) and response poorly to IFN treatment
compare to somatic cells (Hong and Carmichael, 2013; Wu et al.,
2019), and thus these cells often rely on other machineries once
the virus breaches the surveillance (Ding and Voinnet, 2007).

RNA interference (RNAi) is a gene silencing mechanism at
post-transcriptional level in eukaryotes and also considered as an
innate antiviral immunity (Samuel et al., 2018; Guo et al., 2019).
Host Dicer recognizes and cleaves the viral replicative dsRNA
intermediates via its endoribonuclease activity to produce virus-
derived small interfering RNAs (viRNAs) during RNAi
processing. Subsequently, the Argonaute protein (AGO) of the
RNA-induced silencing complexes (RISC) utilizes viRNAs and
cleaves cognate viral RNAs in infected cells. Despite RNAi is
considered as an antiviral mechanism in fungi, plants and
invertebrates (Li et al., 2013; Maillard et al., 2013; Qiu et al.,
2017), the physiological importance of RNAi in mammals
remains elusive (Cullen and Cherry, 2013; Cullen, 2017;
Berkhout, 2018; Ding et al., 2018). A recent study using deep
RNA-seq showed the existence of small viral RNAs at the size of
viRNAs in ZIKV-infected human progenitor cells (Xu et al.,
2019), however, functional characterization of ZIKV viRNAs
remain unexplored.

Our recent study has shown that ZIKV capsid specifically
interacts with Dicer and inhibits its endoribonuclease activity.
Consequently, ZIKV infection inhibits global miRNA
production in NSCs and drives neurodevelopmental defects in
mouse model. Importantly, ZIKV capsid relies on its histidine
(H) at 41st amino acid to antagonize the Dicer activity.
Accordingly, we defined the capsid H41R mutation from
histidine to arginine (R), which on longer suppresses Dicer
enzymatic activity due to the loss of interaction with Dicer. As
a result, the ZIKV-H41R mutant virus failed to dampen miRNA
biogenesis in NSCs, nor impaired corticogenesis in vivo (Zeng
et al., 2020). However, whether ZIKV also utilizes its capsid to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
dampen Dicer-dependent viRNA production remains unknown.
Via AGO-associated RNA sequencing, deep sequencing
analysis in ZIKV-infected NSCs, and target scanning by
miRanda, we have now depicted AGO-associated viRNA
profiles and also established a complex network between the
ZIKV viRNAs and their potential viral RNA (vRNA) targets. As
a result, total 29 viRNAs were mapped to the ZIKV genome, and
these viRNAs are predicted to target 114 sites on ZIKV genome
based on target scanning. We found that much higher levels of
viRNAs were generated from this mutant ZIKV-H41R virus with
reduced virulence. Therefore, our previous and current studies
demonstrated that ZIKV capsid modulates Dicer-dependent
miRNA and viRNA productions for viral pathogenesis.
MATERIALS AND METHODS

Viruses and Cell Culture
ZIKV strain SPH2015 and according ZIKV-H41R mutant virus
were separately rescued from the ZIKV infection clone as
described previously (Zeng et al., 2020). Vero cells were
cultured in DMEM with 10% FBS and 4 mM glutamine. NSCs
were derived from the H9 human embryonic stem cells via
embryoid body and rosette formation, followed by rosette
selection using Neural Induction Medium from STEMCELL
Technology (Catalog #05835). The NSCs were subsequently
maintained as monolayer culture before infection. NSCs were
plated on poly-L-Ornithine (10 µg/ml) coated plates when
adherent culture was needed. ZIKV WT capsid and H41R
capsid were cloned into lentivirus pCDH-cmv-mcs-ef1-puro
vector as described previously (Zeng et al., 2020). Lentiviruses
were generated by co-transfection of pCDH-vector, pCDH-Flag-
capsidWT or pCDH-Flag-capsidH41R with three packaging
plasmids into HEK293T cells. The culture supernatant was
collected at 72 h post-transfection and purified by Lenti-X
Concentrator (Clontech, #631231) and then titrated with
standard colony formation assay (Zeng et al., 2020).

siRNA Gene Silencing
Small interfering RNA (siRNA) targeting human Dicer (siRNA ID:
s23754), Drosha (siRNA ID: s26490), Ago2 (siRNA ID: s25930),
and negative control siRNAs were purchased from Thermo Fisher
Scientific. viRNAp18 (AGAGUGGGACUUUGUCGUGAC) and its
scramble control (GCCGUCGUGTAGTTGAGTGAA) were
synthesized from Thermo Fisher Scientific. siRNAs were
transfected to the human NSCs via Lipofectamine RNAiMAX
Transfection Reagent (Thermo Fisher Scientific, #13778030)
according to the manufacturer’s instructions. The knock-down
efficiency was verified by quantitative RT-PCR at 48 h after
transfection or replaced with fresh medium for indicated virus
infection at 12 h after transfection.

Quantification of miRNAs by Real-Time
PCR
Profiling of immature or mature forms of miRNAs in NSCs was
performed, as described previously (Zeng et al., 2020), using
February 2021 | Volume 11 | Article 628887
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TaqMan Advanced miRNA assays (Thermo Fisher Scientific,
#A25576) on StepOne Plus Real-time PCR system (Applied
Biosystems) following the manufacturer’s instructions. In brief,
20 ng total RNA was used for preparing cDNA templates
including poly(A) tai l ing, adaptor ligation, reverse
transcription and miRNA amplification steps (14 cycles) using
the TaqMan Advanced miRNA cDNA synthesis kit (Thermo
Fisher Scientific, #A28007), following the manufacturer’s
instructions. TaqMan miRNA real-time PCR reactions were
performed on StepOne Plus Real-time PCR system, in
triplicates for each sample. The 20 µl reaction volume
consisted of 2x TaqMan Fast Advanced Master Mix (10 µl),
20x TaqMan Advanced miRNA Assay (1 µl), 4 µl nuclease free
water and 5 µl of amplified miRNA. RT-PCR reactions were
performed according to the standard protocol with 95°C for 20 s
for enzyme activation first, and then 40 cycles of 95°C for 1 s for
denature and 60°C for 20 s for annealing and extension. Assays
used for mature miRNAs let-7, miR-9, and miR-17 were: hsa-let-
7a-5p (assay ID: 000377), hsa-miR-9-5p (assay ID: 000583), and
hsa-miR-17-3p (assay ID: 002308). Assays used for precursor
miRNAs let-7, miR-9, and miR-17 were: hsa-let-7a-1 (assay ID:
Hs03302533_pri), hsa-mir-9-1 (assay ID: Hs03303201_pri), and
hsa-mir-17-1 (assay ID: Hs03295901_pri). Relative quantities of
miRNA were determined using the Applied Biosystems real-time
PCR Analysis Modules and standard DDCt method, by
normalizing to an endogenous control assay (U6 snRNA, assay
ID: 001973).

RNA Extraction and Quantitative RT-PCR
Total RNA prepared from cells using the RNeasy Mini Kit
(Qiagen) was treated with RNase-free DNase according to the
manufacturer’s protocol. Complementary DNA was reversely
transcribed from 1 mg of the prepared RNA using the ProtoScript
First Strand cDNA Synthesis Kit (NEB) and qPCR was
conducted with iQ SYBR Green Supermix (Bio-Rad). Primer
sequences for qPCR were as follows: human GAPDH, sense:
GAGTCAACGGATTTGGTCGT, anti-sense: TTGATTTT
GGAGGGATCTCG; human Dicer, sense: TTAACCTTTTGG
TGTTTGATGAGTGT, anti-sense: GCGAGGACATGA
TGGACAATT; human Drosha, sense: CATGTCACAG
AATGTCGTTCCA, anti-sense: GGGTGAAGCAGCCTCA
GATTT; human Ago2, sense: CCGGCCTTCTCTCTGGAAAA,
anti-sense: GCCTTGTAAAACGCTGTTGCT.

AGO-Associated RNA Preparation
AGO HITS-CLIP was previously utilized to map AGO-bound
miRNA (Chi et al., 2009; Clark et al., 2014). To discriminate
functional ZIKV-derived viRNAs from ZIKV genome, we
conducted the crosslinking and immunoprecipitation (CLIP)
with minor modifications. Briefly, NSCs were grown to 90%
confluency and infected ZIKV at a MOI of 1 for 48 h. At 24 hpi,
Protein A Dynabeads (Invitrogen) were washed three times with
PBS and resuspended in antibody binding (AB) buffer (1×PBS,
0.02% Tween-20). Per cell sample, 150 ml of the beads was used.
Beads were then incubated with 8 ml of pan-Ago antibody (2A8,
EMD Millipore) or rabbit anti-mouse IgG antibody (Cat#315-
005-008 from Jackson ImmunoResearch) as an isotype non-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
specific control. Beads were then rotated for overnight at 4°C.
After 48 h post ZIKV infection, NSCs were washed twice with
PBS and UV irradiated at 254 nm for a total energy dispersion of
600 mJ/cm2 in a Stratalinker XL-500 (Stratagene). Cells were
lysed with 1×PXL (1×PBS, 0.1% SDS, 0.5% deoxycholate, 0.5%
NP-40, protease inhibitors). Cell lysates were treated sequentially
with RNAsin (Promega) and RQ1 DNase (Promega) prior to co-
immunoprecipitation of RNA-protein complexes on the protein
A Dynabeads for 4 h at 4°C. Beads were then washed twice each
with 1×PXL, 5×PXL (5×PBS, 0.1% SDS, 0.5% deoxycholate, 0.5%
NP-40, protease inhibitors), and 1×PNK buffer (50 mM Tris-Cl,
10 mM MgCl2, 0.5% NP-40, protease inhibitors). CLIP-RNAs
were liberated with their on-bead protein complexes by
treatment with 4 mg/ml protease K (Sigma) and subsequent
phenol/chloroform extraction as described previously (Chi et al.,
2009). miRNA libraries of CLIP-RNA were constructed and
sequenced on HiSeq3000. As the CLIP-RNAs in the IgG
antibody group were undetectable using Nanodrop 2000
Spectrophotometers or when analyzed by the Agilent small
RNA bioanalyzer, the sample was not included in subsequent
library construction and sequencing.

AGO-Associated RNA Sequencing
Primary sequencing data were examined by FastQC version
0.11.7 for quality control purpose. Reads were trimmed by
cutadapt version 1.16 (Martin, 2011) to remove adapter
sequences with at least 5bp overlap (-a AACTGTAGGCAC -O
5 -m 15 –max-n 0). To increase accuracy, reads have N base or
are shorter than 15bp, the minimal length of miRNA in miRbase,
were removed. Trimmed reads were first mapped to human
genome GRCh38 and the reads do not match human genome
were mapped against Zika virus genome (KU321639.1) using
Bowtie version 1.2.2 (Langmead et al., 2009) with option -n 0 -l
18 -a –best –strata to find the best aligned reads. Seed length for
alignment was set as 18 and no mismatch was allowed in seed
region. Peak calling to define the viRNA loci was carried out by
HOMER package (Heinz et al., 2010) as previous researches
(Luna et al., 2017). Explicitly with the following setting:
findPeaks -style factor -size 27 -fragLength 22 -tagThreshold 5
-minDist 20 -o auto -LP 0.05 -L 2. Reads on positive strand and
negative strand were used to define positive strand or negative
strand viRNA separately. viRNAs loci with overlapped
coordinates were manually split by visualizing read distribution
in integrative genomics viewer. The common viRNA peaks
among different samples was determined by mergePeaks. More
specifically, any reads with middle position didn’t fall in the peak
regions were discard for downstream comparison analysis. The
Zika virus secondary structure was predicted by RNAfold with
minimum free energy (MFE) and partition function (Lorenz
et al., 2011). The figure was colored by base-pairing probability
and visualized with virus miRNA highlighted using forna tool
(http://rna.tbi.univie.ac.at/forna/).

Small RNA Library Construction
As described previously (Zeng et al., 2020), 1x106 NSCs that were
infected with ZIKV at MOI of 1 were subject to total RNA
extraction at 2 dpi. The construction of miRNA sequencing
February 2021 | Volume 11 | Article 628887
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library was performed by QIAseq miRNA Library Kit (Qiagen,
#331505) by UCLA Technology Center for Genomics &
Bioinformatics (TCGB), followed by deep sequenced using
Illumina HiSeq3000. Briefly, the workflow consists of 3’
ligation, primer hybridization, 5’ ligation, first strand synthesis
and PCR amplification. Different adapters were used for
multiplexing samples in one lane. AMPure XP Beads
were used for dual size selection. Library quality was checked
with Bioanalyzer (Agilent) and Qubit (Life Technologies).

Small RNA Sequencing
As described previously (Zeng et al., 2020), primary sequences
data were processed as AGO HITS-CLIP data. Specifically, it was
checked by FastQC version 0.11.7 for quality control purpose.
Reads have N base were removed by cutadapt version 1.16
(Martin, 2011) (–max-n 0). Trimmed reads were mapped to
human genome GRCh38 using Bowtie version 1.2.2 (Langmead
et al., 2009) with option -n 0 -l 17 -a –best –strata to find the best
aligned reads. Seed length for alignment was set as 17 and no
mismatch was allowed in seed region. Reads that failed to align to
human genome were mapped to ZIKV genome. The reads were
assigned to defined viRNA if the middle position of the read is
within the viRNA.

Quantification of viRNA by Real-Time PCR
Quantification of viRNA was conducted by Taqman assay as
described previously (Zeng et al., 2020) with minor modification.
Profiling of viRNA in ZIKV infected human NSCs was
performed using TaqMan Advanced miRNA assays (Thermo
Fisher Scientific, #A25576) on StepOne Plus Real-time PCR
system (Applied Biosystems) following the manufacturer’s
instructions. In brief, 5x105 NSCs or Drosha- or Dicer-
knockdowned NSCs were infected with ZIKV-WT or ZIKV-
H41R at a MOI of 1, and small RNA was extracted by mirVana
miRNA kit at 48 hpi for quantification of viRNA copy.

1 ng of small RNA was used for preparing cDNA templates
including poly(A) tailing, adaptor ligation, reverse transcription
and miRNA amplification steps (14 cycles) using the TaqMan
Advanced miRNA cDNA synthesis kit (Thermo Fisher Scientific,
#A28007), following the manufacturer’s instructions. TaqMan
miRNA real-time PCR reactions were performed on StepOne
Plus Real-time PCR system, in triplicates for each sample and
each miRNA. The 20 µl reaction volume consisted of 2x TaqMan
Fast Advanced Master Mix (10 µl), 20x TaqMan Advanced
miRNA Assay (1 µl, customed by Thermo Fisher Scientific), 4
µl nuclease free water and 5 µl of amplified miRNA with 10-fold
dilution. RT-PCR reactions were performed according to the
standard protocol with 95°C for 20 s for enzyme activation first,
and then 40 cycles of 95°C for 1 s for denature and 60°C for 20 s
for annealing and extension. For viRNA Taqman positive
control, 21 nt-long single-strand RNA corresponding to
viRNAp18 (5-AGAGUGGGACUUUGUCGUGAC-3’) was
synthesized with termination of 5’PO4 and OH-3’ in the
condition of RNase free HPLC by Integrated DNA
Technologies. Similarly, 1 ng (theoretically containing 9.0 x
1010 copies of 21nt-long ssRNA copies) of synthesized ssRNA
was used for miRNA cDNA synthesis and Taqman miRNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
real-time PCR. Accordingly, copy of the viRNAp18 in total small
RNAs purified from 5 x 105 NSCs can be calculated, and the
resultant total copies of the viRNAp18 divided by cell numbers (5
x 105) produce the viRNAp18 copy per cell. Taqman probes and
assays are not intercalating dyes and melt curves do not need to
be performed. The probe is designed to anneal specific to target
of interest which minimizes primer dimers and/or nonspecific
PCR product detection.

viRNA Target Prediction by miRanda
The viRNA target scanning was performed by miRanda v3.3a with
default setting. Sequences of viRNAs predicted on either positive or
negative strand were used to for target prediction against either
ZIKV genome or its reverse complementary sequences.

Viral Plaque Assays
Viral plaque assays were performed as described previously (Zeng
et al., 2020). In briefly, cells were plated at a density of 5.0 × 104 cells/
well in 1 ml DMEM, 10% FBS, on 24-well plates and incubated at
37°C, 5% CO2 atmosphere. On the next day, 300 ml of appropriate
ten-fold dilutions (usually ranging from undiluted to 10-7-fold
diluted) of supernatants from infected cultures were added to
each well. After incubation of 1.5 h, supernatants were discarded
and the Vero cells layer were rinsed and overlaid with 0.7%
methylcellulose. After incubation of 4 days, the overlaid
methylcellulose was discarded, and the Vero cell layer was fixed
and stained with crystal violet. Virus content of the supernatants
was calculated as plaque forming units (PFU)/ml.

Statistical Analysis
All data were expressed as Mean ± SD. For parametric analysis, the
F test was used to determine the equality of variances between the
groups compared; statistical significance across two groups was
tested by Student’s t-test; one-way analysis of variance (ANOVA)
followed by Bonferroni’s post hoc test were used to determine
statistically significant differences between multiple groups. P-
values of less than 0.05 were considered significant.
RESULTS

AGO-Associated viRNA Profiles in
ZIKV-Infected NSCs
As viRNAs are loaded into the RISC for pairing with their RNA
targets and then initiating cleavage of the target genes, we
decided to perform AGO-associated RNA sequencing in
ZIKV-infected NSCs (Figure 1A). We analyzed overall small
RNAs (< 50 nt) that are pulled out by endogenous AGO proteins
with specific antibody (Clone 2A8) (Chi et al., 2009). Consistent
with previous AGO-CLIP data (Chi et al., 2009), 53% of AGO-
associated miRNAs can be mapped onto 3’UTR of human
mRNA transcripts (Supplementary Figures 1A, B). The read
lengths of viRNAs identified were enriched to 22 ± 1 nt
(Figure 1B), which is the size of human Dicer products
(Chi et al., 2009). Mapping of the 22 ± 1 nt viRNA reads
showed that they were unequally originated from positive
(73%) and negative strands (27%) (Figure 1C). The majority
February 2021 | Volume 11 | Article 628887
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of these negative-stranded viRNAs reads were generated from
the terminal regions of antigenomic RNAs, and these viRNAs at
the terminal formed continuous complementary pairs with their
counter partners mapped on positive strand (Figure 1D),
suggesting that these viRNAs were generated by Dicer from
viral dsRNA intermediates as previously reported (Li et al.,
2016b; Qiu et al., 2017). As a result, total 29 viRNAs were
identified across ZIKV genome (Supplementary Table 1).
88.04% of the identified viRNAs were mapped to the coding
region of the positive strand in ZIKV genome (Figure 1C).

The Mapping of viRNAs and Their Viral
Targets by the miRanda Scanning
Next, we mapped the 29 viRNAs with their potential ZIKV RNA
targets. The targeting efficiency of viRNA is defined not only by
nucleotide sequence property but also by the surrounding secondary
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
structure of their targeting sequences. Therefore, we systematically
predicted the viRNA-viral target interaction using the miRanda
software (Betel et al., 2010). Overall, we identified 114 viRNA-viral
target interactions (Supplementary Table 2), and found 30.7% and
69.2% viRNA targets are located on the positive (Figures 2A, B) and
negative (Figures 2C, D) strands, respectively. Similar to host
miRNAs, viRNAs utilize a seed sequence (nucleotides 2-8 from 5’
of viRNA) to recognize complementary target mRNAs (Bartel,
2009), as shown by several representative viRNA-vRNA target
pairings (Figure 2E). These analytic results indicate that a
complexed viRNA-dependent host-viral inhibition network exist
in NSCs during ZIKV infection.

viRNA Production Is Dicer-Dependent
Since Dicer has been considered to be critical for ZIKV viRNA
production (Xu et al., 2019), and we previously defined the H41R
A B

D

C

FIGURE 1 | viRNAs are identified via AGO-associated RNA sequencing in ZIKV-WT-infected NSCs. (A) Schematic diagram for AGO-associated RNA sequencing.
(B) Size distribution of viRNAs in AGO-associated RNA sequencing in ZIKV-WT-infected NSCs (MOI:1, 48 h post-infection). Red, positive-stranded viRNAs; blue,
negative-stranded viRNAs. (C) The distribution and relative abundances of viRNA reads (21~23 nt) from AGO-associated RNA sequencing on the ZIKV genome
(Red) and complementary sequence (blue). (D) Read sequence along 5’UTR region of ZIKV genome. Read counts (in brackets), read length, and genomic position
are indicated.
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LOF mutation that no longer inhibits Dicer, we next performed
direct deep RNA sequencing of NSCs infected with ZIKV-WT- or
ZIKV-H41R virus. Via analyzing small RNA profiles (Figure 3A),
we found that the 29 viRNA peaks identified in the AGO-associated
RNA sequencing are all present (Figure 3B). More importantly,
much higher levels of viRNAs were generated from NSCs infected
with the ZIKV-H41R virus (Figure 3B). The detailed analysis
indicated that ~90% of the viRNA profiles were upregulated in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
ZIKV-H41R infection when compared with ZIKV-WT infection
(Figure 3C, Supplementary Table 3). As an example, viRNA-p18
(viRNAp18), the highest profile based on the AGO-associated RNA-
seq (Figure 1C), was produced 2.59-fold higher in the ZIKV-H41R
virus-infected NSCs (Figure 3D). These results suggest that the
viRNAs identified in AGO-associated RNA sequencing were
products of Dicer, and capsid-mediated inhibition of Dicer and
viRNA production is key to its virulence.
A B

D

E

C

FIGURE 2 | Mapping ZIKV viRNAs-viral RNA interactome via miRanda target scanning. (A–D) Circos plot of long-range interaction between viRNA from ZIKV
positive (+)- or negative (-)-strand and its predicted viral targets from viral positive (+)- or negative (-)-strand by miRanda (omictools.com/miRanda-tool) in ZIKV
(SPH2015) genome. In details, (A) (31 pairings): viRNA(+)-target (+); (B) (four pairings): viRNA(-)-target(+); (C) (76 pairings): viRNA(+)-target(-); (D) (three pairings):
viRNA(-)-target(-); (E) Paring between representative viRNAs identified and its viral targets predicted by miRanda.
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viRNA Is a Limiting Factor for ZIKV
Infection in NSCs
We recently reported that ZIKV infection suppresses the host
RNAi machinery in NSCs (Zeng et al., 2020). For example,
ZIKV-WT infection significantly reduced mature miRNA
production in NSCs, including let-7a (Figure 4A), miR-9
(Supplementary Figure 2A), and miR-17 (Supplementary
Figure 2B), compared to ZIKV-H41R infection. For
quantitative detection of individual viRNA in ZIKV-infected
NSCs, we designed and customized Taqman assays, which
allow us to calculate viRNA copies per cell (see Method). As a
result, we found that the representative viRNAp18 was detectable
in ZIKV-WT infected NSCs, and its level was 2.37-fold higher in
ZIKV-H41R infected NSCs (Figure 4B). Consequently, ZIKV-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
H41R mutant virus has much lower replication capacity than
ZIKV-WT in NSCs (Figure 4C).

Next, we determined the anti-viral effects of miRNAs and
viRNAs in NSCs. As Drosha is only responsible for precursor
miRNA (pre-miRNA) generation in nucleus upstream of Dicer,
it only participates in miRNA production, while Dicer and Ago2
govern both miRNA and viRNA functions (Figure 4D). Thus,
we hypothesize that combining ZIKV-H41R mutant with
individually knockdown of Drosha or Dicer will allow us to
tease out the anti-ZIKV roles of miRNA and viRNA in NSCs. As
expected, Drosha knockdown dampened pre-miRNAs including
pre-let-7a, pre-miR-9 and pre-miR-17 (Supplementary Figures
3A, B), while knockdown of Dicer significantly impaired mature
miRNA production including let-7a (Figure 4E) and miR-9/
A

B

DC

FIGURE 3 | The identified viRNAs are potentially the products of Dicer activity via directly deep small RNA-seq of ZIKV-infected NSCs. (A) Schematic diagram of
comparative analysis for directly deep small RNA-seq in ZIKV-WT- or ZIKV-H41R-infected NSCs. (B) Comparison of read counts in 29 ZIKV viRNA peaks in ZIKV-
WT- or ZIKV-H41R-infected NSCs at MOI of 1 for 2 days. The fold change of presented peaks was log2 scale. (C) 90% viRNA peaks identified from AGO-
associated RNA sequencing are increased in ZIKV-H41R infected NSCs compared to ZIKV-WT infected ones. (D) Peak landscape of representative viRNA-p18 in
AGO-associated RNA-seq and deep small RNA-seq. Value in the small RNA-seq (lower panel) in y-axis indicates reads per 10 million sequenced reads.
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miR-17 (Supplementary Figure 3C). In addition, Drosha
knockdown has no effect on viRNAp18 production in either
ZIKV-WT or ZIKV-H41R infected NSCs (Figure 4F),
indicating that Drosha is not involved in viRNA biogenesis.
More importantly, knockdown of Dicer not only significantly
reduced viRNAp18 production but also normalized the difference
of viRNA production between ZIKV-WT and ZIKV-H41R
(Figure 4F). On the other hand, Drosha knockdown only led
to increased viral burdens of both ZIKV-WT and ZIKV-H41R
viruses, but failed to normalize the difference between both
(Figure 4G), suggesting that both miRNA and viRNA systems
have antiviral effects in NSCs upon ZIKV infection.

To further reveal the RNAi suppression activity of ZIKV
capsid, we examined the viRNAp18 level in ZIKV-infected NSCs
with ectopically expression of capsidWT or capsidH41R. The
ectopic expression of capsidWT but not capsidH41R reduced the
viRNAp18 production in ZIKV-WT- or ZIKV-H41R-infected
NSCs (Supplementary Figure 4). To preliminarily determine
the physiological importance of the viRNAp18, we transfected
NSCs with synthesized viRNAp18 mimetic RNA (viRNAp18) and
found that it reduced ZIKV burden significantly, when compared
to a scramble control (vi.scramble) (Supplementary Figure 5),
suggesting the antiviral potential of individual viRNA in NSCs.

In sum, our data demonstrated that both miRNA and viRNA
systems are part of the antiviral response during ZIKV infection
in NSCs, and targeting these pathways may offer new
therapeutic approaches.
DISCUSSION

RNAi is a main antiviral mechanism in fungi, plants and
invertebrates. Due to the undetectable viRNAs in mammalian
somatic cells infected with some wild-type human viruses such as
EV71, IAV, and Sindbis virus (Parameswaran et al., 2010; Girardi
et al., 2013; Backes et al., 2014; Bogerd et al., 2014), the role of RNAi
as a critical mammalian antiviral defense mechanism remains
under-debate. The recent study via direct deep RNA-seq has
shown that ZIKV infection generated detectable production of
viRNAs in human NPCs, which is comparable to mosquito Aag2
cells (Xu et al., 2019). In the present study, we combined AGO-
associated RNA-seq with direct deep RNA-seq and identified 29
potentially functional viRNAs in ZIKV-infected NSCs. The
utilization of the mutant H41R highlighted that the viRNA
production across ZIKV genome is associated with Dicer
function. Our results also demonstrated that that ZIKV capsid is
a viral suppressor of RNAi (VSR) via targeting Dicer directly.
Therefore, the identification of the AGO-associated viRNAs in the
present study paves a way to investigate physiological antiviral
function of individual viRNA in mammals. In addition, it is
reasonably to speculate that viRNAs achieve their biological
function by targeting host genes. Considering the potential
complexity of viRNA-host targets, we first studied how viRNAs
target viral genome to achieve their potential antiviral function.
Comprehensive analysis and functional exploration for viRNAs-
host targets are scheduled in future.
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The universal detectable viRNAs in fungi, plants, and
invertebrates makes a logical hypothesis that viRNAs may be
also readily detectable and physiologically important in
mammals. However, the successive studies on a group of
wild-type human viruses including IAV, EV71, and Sindbis
virus have failed to detect viRNAs in mammalian somatic cells.
Such negative results were suspected to be caused by virus
encoded VSRs, as the VSR-defective viruses in fact can produce
detectable viRNAs in mammalian somatic cells (Ding et al.,
2018). The potential interaction between interferon response
and RNAi pathway is likely to be another reason, as in somatic
cells interferon represents a main anti-viral immunity to
antagonize pathogenic agent. ZIKV replicates preferentially
in NSCs with poor interferon response, which provides a
unique opportunity to detect viRNAs and characterize their
biological functions.

Mammalian multipotent stem cells largely rely on RNAi
machineries as antiviral surveillance mechanism (Ding and
Voinnet, 2007). Interestingly, histidine at the 41st position is
crucial for ZIKV capsid to suppress RNAi machineries including
miRNA and viRNA, which benefits ZIKV pathogenesis in
progenitor cells of fetal brain. Nevertheless, other flaviviruses
primarily target somatic cells and have evolutionarily developed
complicated strategies to counter IFN pathway. In addition,
flaviviruses have also evolved different ways to antagonize the
Dicer-mediated viRNA mechanism. For example, viral proteins
3A, NS1, NS2A, and capsid have been identified as the VSRs for
human EV71, IAV, DENV, and SFV, respectively (Qiu et al.,
2017; Tsai et al., 2018; Qian et al., 2020; Qiu et al., 2020).
Accordingly, the VSR-defective mutant viruses can produce
abundant viRNAs in mammalian cells. Our recent study
identified that ZIKV capsid targets Dicer and suppresses its
ribonuclease activity, while the Dicer-binding defective H41R
mutant lost this function (Zeng et al., 2020). As a result, much
more abundant viRNA productions across ZIKV genome were
observed in ZIKV-H41R-infected NSCs, suggesting that the
capsid is a new VSR of ZIKV.

Recent study have demonstrated that the well-known RNAi
enhancer, enoxacin, substantially ameliorated ZIKV-induced
microcephaly in brain organoids (Xu et al., 2019), suggesting
that combating ZIKV invasion largely depends on RNAi
immunity at early stage of human brain development.
Nevertheless, the physiological role of RNAi in mammals
remains elusive. There was a prevailing view that viRNAs are
produced by Dicer cleavage of viral replicative dsRNA
intermediates, as the viRNA reads often fall in the untranslated
regions (UTR) based on direct sequencing (Xu et al., 2019).
However, the peaks in the middle of viral genome are often
strand-specific, yet remain unexplored. Because individual RNAi
such as viRNA and miRNA exerts their function only when
loaded into the AGO, AGO-associated RNA-seq is likely to
identify true functional viRNAs (Ding et al., 2018). Our results
have shown that most of viRNA peaks were mapped to the
positive strand and in the middle of ZIKV genome, suggesting
they are likely produced through a different mechanism, which
should be determined in future studies.
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FIGURE 4 | Dicer-dependent viRNAs are potentially anti-viral in ZIKV-infected NSCs. (A) Taqman Advanced miRNA assays for miRNA let-7a in NSCs infected with
ZIKV-WT or ZIKV-H41R. Mean ± SD; **p < 0.01 by one-way ANOVA and Bonferroni’s post hoc test. n.s., not significant. (B) Customed Taqman Advanced assays
for viRNA-p18 (viRNAp18) detection in NSCs infected with ZIKV-WT or ZIKV-H41R. Mean ± SD; ***p < 0.001 by one-way ANOVA and Bonferroni’s post hoc test. (C)
NSCs were infection with ZIKV-WT or ZIKV-H41R mutant virus at MOI of 0.01, and culture supernatant were collected for virus titer determined by plaque assay. (D)
Schematic diagram for the involvement of RNAi machinery components in miRNA or viRNA biogenesis. (E) Taqman Advanced miRNA assays for mature miRNA let-
7a in scramble, Drosha, or Dicer siRNA-treated NSCs. Mean ± SD; ***p < 0.001 by Student’s t-test. (F) viRNA generation is dependent on Dicer function. 5x105

NSCs transfected with si.scramble, si.Drosha, or si.Dicer for 24 h were infected with ZIKV-WT or ZIKV-H41R at MOI of 0.1, and representative viRNAp18 expression
was detected by customed TaqMan Advanced assays (see Materials and Methods). Mean ± SD; ***p < 0.001 by one-way ANOVA and Bonferroni’s post hoc test.
n.s., not significant. (G) Both miRNA and viRNA play important role to limit ZIKV replication in NSCs. 5 x105 NSCs were individually transfected with si.scramble,
si.Dicer, or si.Drosha for 24 h, followed by infection with ZIKV-WT or ZIKV-H41R mutant virus at MOI of 0.01, and culture supernatant were collected for virus titer
determined by plaque assay. Mean ± SD; **p < 0.01 and ***p < 0.001 by Student’s t-test. n.s., not significant.
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