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Due to the rarity and heterogeneity, it is challenging to explore and develop new
therapeutic targets for patients with sarcoma. Recently, immune cell infiltration in the
tumor microenvironment (TME) was widely studied, which provided a novel potential
approach for cancer treatment. The competing endogenous RNA (ceRNA) regulatory
network has been reported as a critical molecular mechanism of tumor development.
However, the role of the ceRNA regulatory network in the TME of sarcoma remains
unclear. In this study, gene expression data and clinical information were obtained
from The Cancer Genome Atlas (TCGA) sarcoma datasets, and an immune infiltration-
related ceRNA network was constructed, which comprised 14 lncRNAs, 13 miRNAs,
and 23 mRNAs. Afterward, we constructed an immune infiltration-related risk score
model based on the expression of IRF1, MFNG, hsa-miR-940, and hsa-miR-378a-
5p, presenting a promising performance in predicting the prognosis of patients
with sarcoma.

Keywords: sarcoma, prognostic risk model, ceRNA network, tumor microenvironment, nomogram

INTRODUCTION

Sarcomas are heterogeneous malignancies of mesenchymal origin, accounting for 1% of adult
cancers, which are classified into more than 175 distinct subtypes (Steele and Pillay, 2020). It is
difficult to make impressive progression in new therapeutic approaches for patients with sarcoma
because of the rarity and heterogeneity (Miwa et al., 2019; Gamboa et al., 2020; Grünewald et al.,
2020). Although the combination of resection surgery and multidrug adjuvant chemotherapy has
improved the 5-year survival probability of soft tissue sarcoma to 60–80%, about 25% of patients
develop metastatic disease after curative treatment for the primary tumor, and approximately
10% of patients are found with metastatic lesions at the time of diagnosis (Gamboa et al., 2020;
Hashimoto et al., 2020; Heng et al., 2020). Therefore, it is of pivotal significance to explore potential
molecular mechanisms and identify critical therapeutic targets in sarcoma.

The tumor microenvironment (TME), comprising extracellular matrix (ECM) and cellular
components, has been documented to be firmly associated with the initiation and progression of
sarcoma (Heymann et al., 2019). Combined regimens based on immune checkpoint inhibitors
(anti-PD1 or anti-CTLA4) and modified T-cell therapies are currently being tested in specific
sarcoma subtypes with a significant clinical benefit for the patients (Pollack et al., 2018; Dyson et al.,
2019; Heymann et al., 2020). However, the immune microenvironment in sarcoma substantially
differs from other immune-responsive tumors such as melanoma. Based on a transcriptomic
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analysis of the cell population in TME, sarcoma can be classified
into five different classes, sarcoma immune classes (SIC) from
A (immune desert), C (vasculature), to E (immune and tertiary
lymphoid structures), where patients with SIC A showed worse
overall survival (OS) than SIC E (P = 0.025) (Becht et al.,
2016). Recently, a series of novel algorithms such as ESTIMATE
(Yoshihara et al., 2013) and Cibersort (Chen et al., 2018) have
been publicly released to analyze the infiltrating stromal and
immune cells in TME based on gene expression data, which helps
to study the functioning roles of TME in tumor initiation and
progression (Yoshihara et al., 2013).

Accumulating evidence has shown that transcriptional
regulation between mRNAs and ncRNAs plays a crucial role
in sarcoma progression, including proliferation, migration,
metastasis, and multidrug resistance (Wang et al., 2018, 2019;
Xie et al., 2018; Ma et al., 2019). Competing endogenous
RNA (ceRNA) networks have been reported as an important
mechanism to explain posttranscriptional regulation. Zhu et al.
(2019) constructed ceRNA regulatory networks of both lncRNA–
miRNA–mRNA and circRNA–miRNA–mRNA interactions to
investigate the underlying mechanisms of chemoresistance in
osteosarcoma. Zhang et al. (2019) identified three lncRNAs and
two miRNAs regulating three mRNAs in a ceRNA network as
promising prognostic biomarkers of osteosarcoma recurrence.
The research on ceRNA networks in sarcoma was generally based
on the differential genes screening between tumor and normal
controls, but there were few studies reporting ceRNA networks
related to TME of sarcoma.

Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) is a practical algorithm
identifying highly related genes and aggregating them into the
same genetic module, which is commonly used to investigate the
correlation between gene sets and clinical characteristics, thus
identifying potential biomarker candidates or new therapeutic
targets from genetic data (Maertens et al., 2018). In this study,
we calculated the infiltrating immune and stromal scores of
sarcoma cases in The Cancer Genome Atlas (TCGA) (Grossman
et al., 2016) using the ESTIMATE algorithm, identified the
modules most relevant to the TME of sarcoma through
WGCNA, and then established an immune infiltration lncRNA–
miRNA–mRNA ceRNA network to screen genes of clinical
significance. Furthermore, we constructed a prognostic risk
score model and a nomogram based on the expression of
immune infiltration-related genes. These findings will provide
new insights for the regulatory mechanisms of the tumor immune
microenvironment in sarcoma progression, as well as identify
promising clues in developing the TME related therapeutic
targets for patients with sarcoma.

RESULTS

Association of Immune Infiltration and
Clinical Outcomes of Sarcoma
A flowchart was diagramed to demonstrate the procedure
of our study (Figure 1). RNA-seq data and matched clinical
information of 259 sarcoma patients were obtained from the

TCGA database. The ESTIMATE algorithm was utilized to
evaluate tumor purity and immune/stromal cell infiltration in
the samples by calculating corresponding scores (the ESTIMATE
score indicated tumor purity and the immune/stromal scores
indicated immune/stromal cells infiltration). The ESTIMATE
scores ranged from –3,088.65 to 5,077.57 (median = 1,320.73),
the immune scores ranged from –1,953.32 to 3,212.09
(median = 339.05), and the stromal scores ranged from –1,214.15
to 2,460.46 (median = 988.55). Among the sarcoma patients, 118
(45.56%) were male and 141 (54.44%) were female. The age of
patients at initial diagnosis ranged from 27 to 90 (median = 61).
In the aspect of survival status, 161 (62.16%) patients were alive
and 98 (37.84%) patients were dead. Other clinical characteristics
including race, follow-up period, histological type, tumor margin
status, tumor depth, local disease recurrence, metastasis at
diagnosis, radiation therapy, and tumor necrosis percentages
were all documented (Supplementary Table 1).

By setting the median as cutoff values, 259 sarcoma samples
were divided into low/high ESTIMATE score groups, low/high
Stromal score groups, and low/high Immune score groups.
Survival analysis indicated that there was no significant difference
between low/high ESTIMATE score and low/high Stromal
score groups (log-rank P = 0.05206 and 0.234; Figures 2A,B).
However, OS probability was significantly higher in the high
immune score group (log-rank P = 0.04443; Figure 2C). We
further investigated the association between immune score and
clinical characteristics. We found that age of initial diagnosis
was positively correlated with immune score (R = 0.26,
P = 2.9e-05; Figure 2D). Other clinical characteristics including
tumor margin status, tumor depth, local disease recurrence,
metastasis at diagnosis, radiation therapy, and tumor necrosis
percentages were not significantly associated with immune score
(Supplementary Figure 1).

Identification of Differentially Expressed
Genes
Differentially expressed genes (DEGs) between high and low
immune score groups were analyzed following the criteria
of |log2FC| > 1 and FDR value < 0.05. A total 6,701
genes (4,000 upregulated and 2,701 downregulated) were
detected significantly differentially expressed in the RNA-seq
data (Supplementary Figure 2), among which 3,535 were
mRNAs (2,063 upregulated and 1,472 downregulated) and 1,854
were lncRNAs (1,138 upregulated and 716 downregulated)
(Figures 3A,B). Besides, 110 miRNAs (86 upregulated and
24 downregulated) were detected significantly differentially
expressed in the miRNA-seq data (Figure 3C). Details were
documented in Supplementary Table 2.

WGCNA and Identification of the Immune
Infiltration-Related Gene Module
All lncRNAs and mRNAs with the top 50% variance among
samples were included in WGCNA, with one sample detected
as the outlier in the sample clustering procedure. For
the retained 258 samples, all clinical characteristics and
immune score were included as trait variables (Figure 4A and
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FIGURE 1 | A flowchart for the process of the present study.

Supplementary Figure 3). The best β value in the co-expression
network was calculated to be 7. Next, the method of dynamic tree
cutting was used to further generate gene co-expression modules.
The index for clustering of module eigengenes was modified
to be 0.65 so that we can construct a reasonable number of
merged modules (Figures 4B–D). As shown in the module–trait
relationship figure, the eigengene adjacency heatmap, and the
topological overlap measure (TOM) figure, the yellow-green
module possessed the highest correlation with immune scores
(R = 0.90, P < 0.0001) (Figures 4E–G). For the total 1,414
genes of this module, we observed a high correlation (R = 0.94,
P < 0.0001) between gene significance of immune score and
gene module membership (Figure 4H). Therefore, we identified
the yellow-green module as the hub gene module related to
immune infiltration. Moreover, we screened the top 30% genes
(414 genes) in the yellow-green module as the hub gene sets

for further study, by setting 0.65 of module membership as the
threshold value (Supplementary Table 3).

Construction of an Immune
Infiltration-Related ceRNA Network
Based on the differentially expressed 1,854 lncRNAs, 110
miRNAs, and 3,535 mRNAs between high/low immune score
groups, we constructed a ceRNA network by querying the
RNA interaction relationship from databases using algorithm
prediction (microT-CDS, miRDB) and experimental validated
data (miRTarBase and lncbase v2). A total of 84 lncRNA–miRNA
and 132 mRNA–miRNA interactions were identified, which
comprised 25 lncRNAs, 33 common miRNAs, and 120 mRNAs.
Besides, 778 DEGs were found in the yellow-green module of
WGCNA by intersection. Genes belonging to the yellow-green
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FIGURE 2 | (A–C) Kaplan–Meier survival analysis of sarcoma patients’ overall survival according to scores calculated by the ESTIMATE algorithm: ESTIMATE (tumor
purity), stromal cell infiltration, and immune cell infiltration. (D) The correlation between immune scores and the age of diagnosis in patients with sarcoma.

module were highlighted in the ceRNA network (Figures 5A,B).
By selecting these genes, an immune infiltration-related ceRNA
subnetwork was constructed, which contained 14 lncRNAs, 13
miRNAs, and 23 mRNAs (Figure 5C).

Gene Functional Enrichment Analysis
and PPI Network Construction
For the gene functional enrichment analysis, we enrolled 778
genes by intersecting DEGs and the gene in the WGCNA yellow-
green module. In the KEGG over-representation analysis (ORA),
the top enriched entries were mainly immune-related pathways
including antigen processing and presentation, and Th1/Th2 cell
differentiation. In the GO ORA, enriched biological processes
primarily belonged to immune-related GO terms such as T
cell activation and regulation of lymphocyte activation. In the
Reactome ORA, enriched pathways were also mainly immune
related, such as phosphorylation of CD3 and TCR zeta chains.
Besides, as shown in the gene-concept network, genes in the
top enriched KEGG, Reactome pathways, and GO biological
processes were mainly immune-related biomarkers (Figures 6A–
F and Supplementary Table 4).

A PPI network via the STRING database was built to
investigate the protein–protein interactions, which further
identified three core clusters via the MCODE plugin. The first
core PPI cluster with an Mcode score of 19.68 is composed
of immune response-related proteins, such as the interferon
regulatory factor (IRF) family members, human leukocyte
antigen (HLA) family members, and Fc gamma receptors. The
second core PPI cluster with an Mcode score of 14.28 comprises
proteins highly associated with T cell immune response, such

as CD3D, PDCD1, CD247, ZAP70, and ITGAL. The third core
PPI cluster with an Mcode score of 14 is mainly composed of
CXC chemokine receptors, C–C motif chemokine ligands, and
receptors, which function in regulating lymphocyte chemotaxis
and chemokine-mediated signaling pathway (Figure 6G and
Supplementary Figure 4).

Construction of an Immune
Infiltration-Related Risk Score Model
We extracted the matched normalized RNA-seq data, normalized
miRNA-seq data, and survival follow-up data of 257 sarcoma
samples. Through the Caret R package, we randomly divided
the TCGA sarcoma cases to training and testing cohorts.
In the training cohort (n = 129), we integrated lncRNAs,
miRNAs, and mRNAs in the immune infiltration-related ceRNA
subnetwork and hub genes in the WGCNA yellow-green module
to construct the immune infiltration risk score model. Univariate
Cox regression analysis was firstly performed to identify 67
out of the 461 genes that were significantly associated with
OS. Next, we applied the Lasso penalized Cox regression to
construct a risk score model with optimal number of genes
(Figures 7A,B). A total of five mRNAs and two miRNAs were
identified and further analyzed with a stepwise multivariate Cox
regression (Supplementary Table 5). The most optimal model
with two mRNAs and two miRNAs was finally confirmed with
the analytical method of AIC (Figure 7C). By summarizing the
normalized expression of the two mRNAs and two miRNAs
and the regression coefficient calculated from multivariate Cox
regression analysis, a prognostic risk score model for prediction
of OS was constructed using a formula as the following: risk
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FIGURE 3 | Heatmaps and volcano plots of differentially expressed genes and miRNAs between the high and low immune score groups: (A) mRNAs, (B) lncRNAs,
and (C) miRNAs.

score = (expression level of hsa-miR-940 ∗ 0.0719 + expression
level of IRF1 ∗ (–0.0818) + expression level of MFNG ∗ (–
0.0568)+ expression level of hsa-miR-378a-5p ∗ 0.0028).

Then, we calculated the risk score for each patient and divided
them into high- and low-risk groups using the median as the
cutoff value. As shown in Figure 7D, Kaplan–Meier (K-M)
survival analysis indicated that patients in the high-risk group
had significantly shorter OS (log-rank P = 2.997e-04). The risk
score, survival status, and gene expression levels were discretely
distributed between two groups (Figures 7E–G). We further
analyzed the AUC of time-dependent ROC curves. As shown in
Figure 7H, AUCs of the risk score model were 0.846, 0.774, 0.756,
and 0.722 for 1-, 3-, and 5-year and median survival time of all
patients (5.455 years), respectively. In addition, the C-index of
the risk score model was 0.74 (95% CI: 0.67–0.81, P = 8.02e-13).
The results showed that the risk score model had a good capacity
in OS prediction.

Examination of the Risk Score Model as
an Independent Prognostic Factor
In order to analyze the prognostic significance of the risk score
model, we applied univariate and multivariate Cox regression
analyses combining all available clinicopathologic factors in the
training cohort, including age, gender, race, tumor depth, tumor
margin status, tumor total necrosis percent, local recurrence, and
metastasis at diagnosis. Univariate analysis identified that the risk
scores and other five clinical characteristics were associated with
OS with P-value < 0.1. Moreover, we enrolled these factors in
the following multivariate analysis, which further identified that
age (P = 0.004915), tumor margin status (P = 0.000628), local
recurrence (P = 0.004733), metastasis at diagnosis (P = 0.002333),
and risk score (P = 2.14e-05) were significantly associated with

OS. Among these characteristics, risk score had the highest effect
size (HR: 1.22, 95% CI: 1.11–1.33) (Supplementary Table 6).
Thus, our result demonstrated that the immune infiltration-
related risk score model was independent of conventional clinical
characteristics.

Construction and Evaluation of a
Predictive Nomogram
Based on the five independent prognostics factors (risk score,
age, tumor margin status, local recurrence, and metastasis at
diagnosis), we developed a nomogram model to predict OS
probability of sarcoma patients in 1-, 3-, and 5-year time periods.
As shown in the nomogram plot in Figure 7I, risk score was
presented as a major contributor compared to the other clinical
characteristics. Time-dependent ROC analysis showed that AUCs
of the nomogram were 0.658, 0.76, 0.786, and 0.747 for 1-, 3-,
and 5-year and median survival time of all patients, respectively
(Supplementary Figure 5G). The C-index for the nomogram
was 0.74 (95% CI: 0.66–0.82, P = 3.92e-09). The time-dependent
calibration plots showed that the bias-corrected lines for the
nomogram were close to the standard line in 1-, 3-, and 5-
year time periods (Figure 7J). These results indicated that the
risk score model-based nomogram had an excellent capacity and
consistency for OS prediction in the training cohort.

Internal Validation of Immune
Infiltration-Related Risk Score Model
and Nomogram
The testing cohort (n = 128) was used for internal validation
of the immune infiltration-related risk score model. The risk
score for each patient was calculated using the same formula,
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FIGURE 4 | Identification of immune score-related gene clusters by WGCNA. (A) Sample dendrogram and trait heatmap. (B,C) Calculation and evaluation of the best
β value in the co-expression network. (D) Merged dynamic gene cluster dendrogram. (E) Analysis and visualization of the module–trait relationship. (F) Eigengene
adjacency heatmap with immune score included. (G) The topological overlap measure (TOM) for gene network connections (randomly selected 1,000 genes).
(H) Correlation between gene module membership and gene significance for immune score in the yellow-green module (correlation coefficient = 0.94, P < 0.0001).

and all patients were divided into high- and low-risk score
groups likewise. The K–M survival curve showed that patients in
the high-risk group also have significantly shorter OS (log-rank

P = 0.03159, Figure 7K). The distribution of risk score, the
survival status, and the gene expression levels were similar to
those in the training cohort (Supplementary Figures 5A–C).
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FIGURE 5 | Construction of the immune infiltration-related ceRNA network. (A) A ceRNA network constructed by DEGs between high and low immune score
groups (120 mRNA, 25 lncRNAs, and 33 miRNAs). (B) Intersections of DEGs and the key gene cluster (yellow-green module) identified by WGCNA. (C) A highly
immune-infiltrating-related ceRNA subnetwork constructed by 23 mRNAs, 14 lncRNAs, and 13 miRNAs.

AUCs of the risk score model were 0.62, 0.607, 0.63, and 0.619
for 1-, 3-, and 5-year and median survival time, respectively. The
C-index of the risk score model was 0.61 (95% CI: 0.52–0.71,
P = 0.0229). These results implied that the risk score model was
validated in the testing cohort and could be used to predict OS of
patients with sarcoma (Supplementary Figure 5D).

We further validated the previously constructed nomogram in
the testing cohort (Supplementary Figure 5E). AUCs were 0.791,
0.749, 0.738, and 0.761 for 1-, 3-, and 5-year and median survival
time, respectively, and the C-index was 0.75 (95% CI: 0.68–
0.81, P = 4.92e-14) (Supplementary Figure 5F). Furthermore,
the time-dependent calibration plots showed a similar proximity
between the bias-corrected lines and the standard line in the 1-,
3-, and 5-year time periods (Supplementary Figure 5H). The
DCA analysis was further performed by using the total sarcoma
cases for assessing clinical judgment utility of the risk score model
and nomogram. As shown in Supplementary Figure 5I, the
nomogram curve showed the highest net benefit. Taken together,
the nomogram comprising the risk score model and clinical
characteristics was an excellent model for predicting short-term
or long-term OS in sarcoma patients, which might guide the

therapeutic strategy decision in sarcoma patients’ treatment and
long-term prognosis observation.

Multidimensional Validation of the TCGA
Dataset and External Databases
To further explore the significance of the risk score model,
we performed multidimensional investigation using the TCGA
dataset and external databases. Principal component analysis
was performed using the log2(normalized counts data + 1) of
the TCGA sarcoma cohorts. Furthermore, the result showed
that there existed an obvious gene expression diversity between
samples in the high- and low-risk groups (Figure 8A). We further
explored the Oncomine database for the expression of genes in
our risk score model (Supplementary Figures 6A,B). Compared
to the non-tumor tissues, the expression levels of both IRF-
1 and MFNG were significantly lower in 11 types of sarcoma
including leiomyosarcoma, myxoid/round cell liposarcoma, and
malignant fibrous histiocytoma. By accessing the online databases
R2: Genomics Analysis and Visualization Platform, Serverless,
and Logic, we found that both expression levels of IRF1 and
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FIGURE 6 | Gene functional enrichment analysis of identified genes related to immune infiltration. For KEGG pathway analysis: (A) bar plot and (B) gene-concept
network plot for the over-representative analysis (C,D) for GO analysis, and (E,F) for Reactome pathway analysis. (G) PPI analysis was constructed by utilizing the
STRING database, and three core subnetworks were identified via MCODE plugin.

MFNG were negatively associated with patients’ metastasis-free
survival (MFS) and OS in various sarcomas (Supplementary
Figures 6C–E, datasets: GSE42352, GSE21050, and GSE71118).

Genetic Molecular Characteristics of the
High- and Low-Risk Groups
Gene set enrichment analysis (GSEA) was performed to obtain
a novel understanding on the diverse biological effects and
specific pathways between high- and low-risk groups. We
performed a standard GSEA using the normalized count data
in several aspects, such as the hallmark gene sets, canonical
pathways gene sets (KEGG and Reactome), and ontology
gene sets (GO biological process). Samples in the high-risk
group were enriched with various gene sets including DNA
methylation, DNA damage response/repair, and oncogenesis-
related pathways such as Wnt/β-catenin signaling, Hedgehog
signaling, and TGF-β signaling pathway (Figure 8B1). However,
the gene sets of the low-risk group were mainly enriched
in immune-related pathways and biological processes such
as interleukin production, regulation of immune response,
NK cell-mediated cytotoxicity, interferon response, and TCR
signaling (Figure 8B2). Detailed GSEA results are listed in
Supplementary Table 7.

Microsatellite instability (MSI) is a biological characteristic
indicating the genetic hypermutability of the genomic
microsatellites, which is frequently studied in several types

of cancer including sarcoma. To gain a further biological insight
into genetic hypermutability, we used the computational scores
via MANTIS and MSIsensor algorithms (Niu et al., 2014) and
found no significant difference of MSI MANTIS scores between
high- and low-risk groups. Although we observed a difference
of MSIsensor scores between high- and low-risk groups
(P = 0.0091), the overall MSI scores were relatively low (<3.5),
indicating that sarcoma samples were mostly microsatellite stable
(Figure 8C and Supplementary Table 7).

Immune Microenvironment Analysis
Between High- and Low-Risk Groups
Recently, the important role of exosome from tumor cells
or immune-infiltrating cells in ceRNA networks has drawn
arising interest in exploring TME regulatory mechanisms and
developing promising therapeutic targets. Thus, we accessed the
exoRBase database to show higher mRNA expression levels of
IRF1 and MFNG in exosomes from human blood, compared to
that from multiple tumor tissues (Supplementary Figure 6F).

In aspects of immune infiltrating intensity, the immune score
calculated by ESTIMATE was significantly correlated with risk
score (P < 2.2e-16) (Figure 8D). For the infiltrating abundances
of various immune cell types, a bioinformatic tool, CIBERSORT,
was used to identify several major types of immune cell
infiltration in sarcoma samples to different degrees (Figures 9A,B
and Supplementary Table 7). In the high-risk group with poor
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FIGURE 7 | Construction of the immune infiltration-related risk score model and nomogram. (A,B) Plots for Lasso Cox regression analysis of genes identified by
univariate Cox regression analysis. (C) Forest plot for the four genes in the most optimal model confirmed by multivariate Cox regression using the analytical method.
(D) K–M survival analysis of training-cohort overall survival based on risk scores. (E–G) The risk score curve, survival status, and gene expression levels for each
patient were discretely distributed in two groups. (H) Time-dependent ROC curves of the risk score model for predicting the survival probability of 1-, 3-, and 5-year
and median-survival time overall survival. (I) Nomogram for predicting the survival probability of 1-, 3-, and 5-year overall survival. (J) The time-dependent calibration
plots for the nomogram in the 1-, 3-, and 5-year time periods. (K) K–M survival analysis of testing-cohort overall survival according to risk score level.
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FIGURE 8 | (A) Principal component analysis for examination of the gene expression diversity between the high- and low-risk groups. (B) Gene set enrichment
analysis of the high- (B1) and low- (B2) risk groups. (C) Violin plots for the difference of MANTIS and MSIsensor scores between the high- and low-risk groups.
(D) Violin plots for the difference of ESTIMATE-Immune scores between the high- and low-risk groups.

prognosis, naive B cells, resting memory CD4+ T cells, and
non-activated macrophages (M0) were infiltrated with relatively
higher levels. Functional cells in tumor immune response such
as CD8+ T cells and pro-inflammatory macrophages (M1)
were infiltrated with relatively higher levels in the low-risk
group. However, regulatory T cells (Treg) and anti-inflammatory
macrophages (M2) which may help tumor cells in immune
evasion were also found at a relatively higher infiltrating level in
the low-risk group (Figure 9C).

Moreover, exploring the relationship between immune
infiltration and gene expression/mutation by TIMER database,
we found that the expression levels of IRF1 and MFNG were
positively correlated with the infiltration of B cells, CD8+ T cells,
CD4+ T cells, and macrophages. Besides, IRF1 mutation was
associated with the infiltration of B cells and CD4+ T cells; and
MFNG mutation was associated with infiltration of CD8+ T cells
and CD4+ T cells (Figures 9D,E).

Agents targeting immune checkpoints, such as PD-1 receptor
and its ligand PD-L1, have transformed the treatment of
many solid tumors by reversing immunosuppressive TME, but
adoption in sarcoma has been in slow progress. Efforts are
underway to determine which sarcoma patients will benefit from
immune checkpoint blockade (ICB). Therefore, we investigated
the expression of several inhibitory immune checkpoints between
high- and low-risk sarcoma patients and found that the
expression levels of most checkpoints such as PD-1, PD-L1,
CTLA-4, TIM-3, LAG-3, and TIGIT in the high-risk group
were significantly lower than in the low-risk group (P < 0.05),
indicating higher immune cell infiltration in the TME of the low-
risk group. However, the expression levels of specific inhibitory
immune checkpoints such as VTCN1, B7-H3, and ADORA2A
were close between high- and low-risk groups (Figure 9F).

DISCUSSION

Although most sarcoma harbors distinct biologic features,
the primary treatment approach for locally advanced or
unresectable disease often incorporates cytotoxic chemotherapy
(Hashimoto et al., 2020; Heng et al., 2020; Lin et al., 2020).

Recently, understanding of subtype-specific cancer biology has
expanded and revealed distinct molecular alterations responsible
for tumor initiation and progression (Grünewald et al., 2020;
Steele and Pillay, 2020; Zhu et al., 2020), so has the study
on cross talk between sarcoma cells and TME, as well as the
heterogeneous mechanisms of tumor immune evasion (Becht
et al., 2016; Pollack et al., 2018; Heymann et al., 2019; Miyake
et al., 2020). These findings have motivated the development
of targeted therapies in several ongoing subtype- or biomarker-
specific clinical trials (Pollack et al., 2018; Dyson et al., 2019;
Miwa et al., 2019; Heymann et al., 2020; Peyraud and Italiano,
2020). However, we still have not found validated biomarkers
for predicting sarcoma patients’ response to immunotherapy
and OS. Therefore, our study was conducted to identify
prognostic biomarkers related to TME in sarcoma, so that we
can harness subtype-specific insights into cancer and immune
biology and bring more effective, less toxic therapeutic strategies
to the clinic.

The cross talk between sarcoma cells and TME fuels the
tumor progression, by inducing a local immunosuppressive
environment and regulating proliferation, migration, drug
resistance, dissemination, and/or dormancy of sarcoma cells
(Heymann et al., 2019). In our study, we applied ESTIMATE to
evaluate the tumor purity and immune/stromal cell infiltration in
259 sarcoma patients from the TCGA database, divided them into
high- and low-immune score groups using median as the cutoff
value, and identified DE-lncRNAs/miRNAs/mRNAs to construct
a ceRNA network. Combining with the key immune infiltration-
related gene modules by WGCNA, we constructed an immune
infiltration-related ceRNA subnetwork (14 lncRNAs, 13 miRNAs,
and 23 mRNAs), as well as a prognostic risk score model (IRF1,
MFNG, hsa-miR-378a-5p, and hsa-miR-940).

The anti-tumorigenic role of interferon regulatory factor 1
(IRF1) has been reported in several types of cancer, by regulating
genes related to PD-L1, DNA damage, apoptosis, and lymphocyte
differentiation, also interacting multiple signaling pathways
(Forero et al., 2019; Huang et al., 2019; Ohsugi et al., 2019;
Wu et al., 2020). Moreover, IRF1 expression in tumor cells was
also reported to be critical for the immune response to adoptive
T cell therapy, as well as macrophage infiltration and memory
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FIGURE 9 | The landscape of immune cell infiltration in the high- and low-risk score groups of sarcoma patients by analysis of CIBERSORT. (A) Distribution
proportion of each type of immune cell infiltration in all patients. (B) Relative proportion of immune cell infiltration in each sarcoma patient. (C) Bar plot visualizing
significantly differentially infiltrated immune cells between high- and low-risk score group patients. (D,E) Correlation between immune cell infiltration and gene
expression/mutation levels of IRF1 and MFNG analyzed by the TIMER database. (F) Violin plots of log-scaled normalized expression of inhibitory immune
checkpoints between high and low risk groups.

CD4+ T cell activation (Wu et al., 2020). Zhang et al. found
that Manic Fringe (MFNG) was highly expressed in Claudin-low
breast cancer and functioned as an oncogene by activating Notch
signaling, thereby promoting tumor cell migration, tumorsphere
formation, and epithelial-to-mesenchymal transition (EMT)

(Zhang et al., 2015). Besides, MFNG was shown to be essential
for optimal T and B cell development, such as promoting
Th1 cell development and inhibiting Th2 cell development
(Gu et al., 2012; Song et al., 2016). As for hsa-miR-378a-5p, it is
reported that miR-378a can target SIRP alpha, thereby regulating

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 July 2021 | Volume 9 | Article 652300

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-652300 June 25, 2021 Time: 19:19 # 12

Shi et al. Immune-Related ceRNA Network for Sarcoma

the levels of inflammatory cytokines, as well as macrophage
phagocytosis and polarization (Chen et al., 2019). Besides, miR-
378a-5p was found to work as a tumor suppressor gene in renal
cell carcinoma and colorectal cancer (Li et al., 2014; Liu et al.,
2019). As for hsa-miR-940, it is reported that miR-940 can target
MyD88 and inactivate MyD88/NF-κB signaling pathway, thereby
regulating the inflammation through IL-1β induction (Cao et al.,
2019). Meanwhile, miR-940 has also been demonstrated to
be remarkably downregulated in hepatocarcinoma tissues and
suppress tumor cell invasion and migration through regulating
chemokine CXCR2 (Liu et al., 2018; Li et al., 2019).

Additionally, we demonstrated that risk score remained
an independent prognostic factor after the modification of
clinical characteristics, suggesting the promising potential of local
immune status in accurate prognosis. Therefore, we combined
risk score and other clinical features (age, tumor margin status,
local recurrence, and metastasis at diagnosis), to develop a
nomogram predicting OS probability of sarcoma patients in
the 1-, 3-, and 5-year time periods. Based on the results
of the calibration curves and DCA, our nomogram provides
a complementary perspective on individualizing tumors, thus
arising to be a promising tool for clinicians in the future.

With GSEA, we revealed that the high-risk group was enriched
with various gene sets including DNA methylation, DNA damage
repair, and oncogenesis-related pathways such as Wnt/β-catenin
signaling, Hedgehog signaling, and TGF-β signaling pathway,
while the low-risk group was mainly enriched in immune-
related pathways and biological processes, such as interleukin
production, regulation of immune response, interferon response,
NK cell-mediated cytotoxicity, and TCR signaling. These results
indicated that low-risk sarcoma patients possessed an elevated
immune response state while the high-risk group presented
enhanced activation of oncogenesis-related signaling pathways.

According to the cancer immunoediting hypothesis, less
immunogenic cancer cells are selected (immune selection) and
immunosuppressive networks are established (immune escape),
thus evading antitumor immune responses and promoting tumor
development in immune-competent hosts. Here, we applied
CIBERSORT to analyze the infiltrating abundances of various
immune cell types based on the TCGA sarcoma RNA-seq data.
Consistent with our previous results, resting cells showed higher
infiltration in the high-risk group while more active immune cells
were abundant in the low-risk group. Although the prognostic
role of CD8+ T cells is inconsistent due to high tumoral
heterogeneity, macrophages have been shown to play a crucial
role in tumor immunomodulation, correlating with survival of
multiple sarcomas. Tumor-associated macrophages (TAMs) can
mediate protumor or antitumor effects depending on M1/M2
polarization (Heymann et al., 2019; Miyake et al., 2020). Tregs
and other immunosuppressive populations within the TME have
been identified as the main cause of impaired response to
immunotherapy. However, the controversial results of high Tregs
and M2-TAM infiltration in the low-risk group need further
study. To better estimate the response to immunotherapy, we
investigated the expression of inhibitory immune checkpoints
(PD-1, PD-L1, CTLA-4, TIM-3, BLTA, ADORA2A, LAG-3,
TIGIT, IDO-1, IDO-2, NOX2, VSIR, B7-H3, and VTCN1)

(Dancsok et al., 2019) between high- and low-risk sarcoma
patients. Furthermore, the results indicated that poor prognosis
of high-risk patients is partially due to the global low-level
immune infiltration and latent function of the specific inhibitory
immune checkpoints.

Since monotherapy with PD-1 or CTLA-4 inhibitors showed
modest improvement in sarcoma patients’ survival, novel
combinations with cytotoxic agents, anti-angiogenic agents, etc.,
are undergoing active investigation to induce consistent and
durable responses (Pollack et al., 2018; Gamboa et al., 2020).
Recent publications have highlighted that the important roles
of alternative immune checkpoints such as pro-apoptotic TIM-
3 or anti-proliferative LAG-3, in T-cell exhaustion, partially
explained the resistance to monotherapy with PD-1 or CTLA-4
inhibitors (Dancsok et al., 2019). Also, the connection between
angiogenesis and tumor immunity has aroused strong interest
to the therapy for sarcoma combining an anti-VEGF agent and
immunotherapy (Wilky et al., 2019). The VEGF pathway has
been shown to inhibit T cell and dendritic cell development and
promote suppressive immune cell populations such as Tregs and
MDSCs, thus preventing tumor immune response. Moreover,
normalizing the tumor vasculature helps to traffic tumor-specific
T cells into the tumor bed.

Our research provides insights into the immune infiltration
and inhibitory immune checkpoint expression in sarcoma.
However, it is noteworthy that some limitations came out since
the conclusion was drawn from data on retrospective studies,
and prospective studies are warranted to further confirm our
results. In addition, functional and mechanistic studies of the
genes in risk score model should be conducted to support their
clinical application.

CONCLUSION

In summary, for the first time, we identified and validated a
risk score model based on both ceRNA network and tumor
immune microenvironment. Moreover, a nomogram comprising
the risk score model can assist clinicians to select individualized
therapeutic strategies for sarcoma patients. Notably, the immune
infiltration-related risk score model provides an immunological
perspective to elucidate the mechanisms on tumor progression
and potential clues in developing the immunotherapy for
patients with sarcoma.

MATERIALS AND METHODS

Data Selection and Acquisition
The study reported herein fully satisfies the TCGA publication
requirements1. Gene expression data and the corresponding
clinical data for sarcoma samples (Project: TCGA-SARC) were
acquired from the TCGA website2 through the TCGAbiolinks
R package (Colaprico et al., 2016) in R software (version 4.0.23)

1https://www.cancer.gov/tcga
2https://portal.gdc.cancer.gov/repository
3https://www.r-project.org
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and Rstudio software (Version 1.3.10734). Sarcoma samples
of primary tumors with matched clinical data were included
in the present study. Among them, available gene expression
quantification data (RNA-seq) of 259 samples were downloaded
through the Illumina HT-seq workflow including the count data
and the normalized FPKM (Fragments Per Kilobase of transcript
per Million mapped reads) data. Available miRNA isoform
expression quantification data (miRNA-seq) of 257 samples were
downloaded through the BCGSC miRNA profiling workflow
including the count data and normalized RPM (reads per million
mapped reads) data. The latest HomosapiensGRCh38 annotation
file5 was used for gene symbol annotation. Besides, we obtained
the MSI assessment data of the TCGA sarcoma cohorts from the
cBioPortal platform (Cerami et al., 2012; Bonneville et al., 2017)6.

Identification of DEGs and miRNAs
The ESTIMATE algorithm (Yoshihara et al., 2013) (Estimation
of Stromal and Immune cells in Malignant Tumor tissues using
Expression data), a bioinformatic tool for assessing tumor purity
and the presence of infiltrating stromal/immune cells in tumor
tissues, was used to calculate the corresponding infiltrating scores
of the 259 sarcoma samples in the present study. Samples were
divided to two groups according to the median value of immune
infiltration-related risk scores. After filtering out low-abundance
data, the edgeR R package (Robinson et al., 2010) was applied to
normalize the expression count data and identify differentially
expressed miRNAs (DEmiRs) and DEGs including mRNAs and
lncRNAs. The differential expression was defined with a |log2 fold
change (FC)| > 1 and a false discovery rate (FDR) value < 0.05.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA)
(Maertens et al., 2018) is a commonly used algorithm for
analyzing high-throughput gene expression data with different
characteristics. It has been most widely used in mining gene
co-expression networks and intramodular hub genes based on
pairwise correlations in genomic applications. In the present
study, we applied the WGCNA R package (Langfelder and
Horvath, 2008) as the data exploratory technique to analyze key
gene clusters that were most relevant to immune infiltration-
related risk scores in sarcoma samples.

Construction and Analysis of ceRNA
Network
We selected differentially expressed mRNAs, lncRNAs, and
miRNAs to construct the ceRNA network. For prediction
of the mRNA–miRNA interaction, data from three
databases—miRDB (Chen and Wang, 2020), microT-CDS
(Paraskevopoulou et al., 2013), and miRTarBase (Hsu et al.,
2011)—was used. These databases recorded mRNA–miRNA
interactions based on both bioinformatic algorithm and

4https://rstudio.com
5https://www.ensembl.org
6https://www.cbioportal.org/

experimental verification. Only mRNA–miRNA interactions
recognized by all the three databases were retained. For
prediction of the lncRNA–miRNA interaction, experimental
verified data from LncBase v2 (Paraskevopoulou et al., 2016)
(Experimental Module) was used. Then, an lncRNA–miRNA–
mRNA ceRNA network was constructed based on the recognized
interactions. Based on the result of WGCNA, mRNAs, and
lncRNAs in the “yellow-green” module were considered to be
most relevant to immune infiltration-related risk scores. All
mRNAs and lncRNAs in the “yellow-green” module were used
to select a ceRNA subnetwork which was considered highly
correlated with immune infiltration in sarcoma samples. The
TBtools and Cytoscape software (Shannon et al., 2003) (version:
3.8.1) were used for network analysis and visualization.

PPI Network Construction and Gene
Functional Enrichment Analysis
Based on the result of WGCNA, we delimited genes of module
membership larger than 0.65 as the hub genes, which were of
relatively high correlation in the immune infiltration-related risk
score-related gene cluster. The intersection of these hub genes
and DEGs was used to construct a protein–protein interaction
(PPI) network based on the utilization of the STRING database
(Bader and Hogue, 2003). The minimum required interaction
score was set to be 0.9 (highest confidence). The Cytoscape plugin
MCODE was utilized to explore highly interconnected clusters in
a network. Besides, the clusterProfiler R (Yu et al., 2012) package
was used for gene functional enrichment analysis including
both overrepresentation analysis and GSEA. Analysis of Gene
Ontology (GO) (Carbon et al., 2019), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Ogata et al., 1999) pathway,
and Reactome (Fabregat et al., 2018) pathway was contained in
the present study. An FDR value of 0.05 was considered the
statistically cutoff value.

Construction and Validation of the
Immune Infiltration Related Prognostic
Risk Model
lncRNAs/miRNAs/mRNAs in the immune infiltration-related
ceRNA subnetwork and hub genes identified by WGCNA were
selected for construction of the immune infiltration-related
prognostic risk model. We firstly split the sarcoma patients to
training (n = 129) and testing cohorts (n = 128) randomly by
using the Caret R package (Kuhn, 2008). The training cohort
was used for the construction of the prognostic risk model. The
testing cohort was used for internal validation.

The Survival R package (Therneau, 1997) was utilized to
analyze the correlation between the normalized expression of
objective gene sets and sarcoma patients’ OS. The univariate
Cox regression analysis was used to screen genes of which
the expression was associated with OS. Lasso (least absolute
shrinkage and selection operator) regression analysis was
considered a method for variable selection and regularization
in order to enhance the prediction accuracy and interpretability
of the statistical model. By using the glmnet R package
(Friedman et al., 2010), we utilized Lasso regression for selection
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of key genes screened in the univariate Cox regression analysis.
In the Lasso analysis, we set the maximum number of passes
over the data for all lambda values as default (105). Then, the
multivariate Cox regression was carried out and according to the
method of Akaike information criterion (AIC) (Yamaoka et al.,
1978), we selected the optimal gene sets to construct a risk score
model. For each sample, the risk score equals the sum of the
normalized expression of each gene multiplying the regression
coefficient calculated from multivariate Cox regression analysis.

Sarcoma patients in the training cohort were divided to high-
and low-risk groups according to the median risk score of the
prognostic model. Then, K–M survival analysis was used to
test whether risk score level was associated with prognosis. To
evaluate the predictive accuracy of the risk score model, the
prognostic risk score model was evaluated with time-dependent
receiver operating characteristic (ROC) curve analysis in 1, 3,
and 5 years and the median survival time of all samples by
using the survivalROC R package. Besides, Harrell’s concordance
index (C-index) was calculated by using the survcomp R package
(Schröder et al., 2011).

To verify whether the risk score model was an independent
prognostic factor, univariate and multivariate Cox proportional
hazards regression analyses were performed using the risk
score and clinical parameters including age, gender, race, tumor
depth, tumor margin status, tumor total necrosis percent, local
recurrence, and metastasis at diagnosis. Then, all independent
prognostic factors were retained to construct a prognostic
nomogram for assessment of 1-, 3-, and 5-year survival
probability for sarcoma patients by using the rms (Harrell,
2015) and mstate (de Wreede et al., 2011) R packages. The
discriminative efficacy of the nomogram was evaluated by
analyses of the time-dependent ROC curve (Heagerty et al.,
2000) and C-index. The consistency of the nomogram was tested
by time-dependent calibration plots. Furthermore, the clinical
judgment utility of the risk score model and nomogram was
evaluated via decision curve analysis (Vickers and Elkin, 2006)
by using the rmda R package (Kerr et al., 2016).

As for the internal validation, all the above methods were
used to evaluate the risk score model and nomogram in the
testing cohort. The principal component analysis for sarcoma
samples of high- and low-risk score groups was performed
and visualized by using the psych and factoextra R packages
(Revelle, 2017). Multidimensional external validation of the
mRNAs and miRNAs composing the risk model was performed
based on the online platforms including Oncomine (Rhodes et al.,
2004), cBioPortal (Cerami et al., 2012), TIMER (Li et al., 2020),
exoRBase (Li et al., 2018), SurvExpress (Aguirre-Gamboa et al.,
2013), LOGpc7, and R2: Genomics Analysis and Visualization
Platform8.

Gene Set Enrichment Analysis
To investigate the enriched biological processes and signaling
pathways that differ between sarcoma samples of the high-

7http://bioinfo.henu.edu.cn/DatabaseList.jsp
8http://r2.amc.nl

and low-risk score groups, the standard GSEA9 was performed
by using the EdgeR-processed normalized count data. The
annotated hallmark gene sets, canonical pathway gene sets
(KEGG and Reactome) (Ogata et al., 1999; Fabregat et al., 2018),
and Ontology gene sets (GO biological process) (Carbon et al.,
2019) were selected as the reference gene sets. The threshold for
GSEA was set at the nominal P-value < 0.05, FDR < 0.25, and |
normalized enrichment score (NES) | >1.0. A significant positive
NES presents that the gene set is mostly at the top of the ranked
list of genes, which indicates the enrichment in the high-risk
score group. A significant positive NES indicates the opposite.

Data Analysis
All statistical data was analyzed in the R software (version
4.0.2). An independent t-test was applied for the comparison
of log-transformed normalized expression data between two
groups. Immune cell infiltration scores calculated via ESTIMATE
and Cibersort and MSI scores obtained from cBioPortal were
compared by the Wilcoxon test between two groups. Statistical
tests were two-tailed with a statistical significance level set at
P < 0.05. The ggplot2 R package (Wickham, 2016) was used
for visualization.
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Supplementary Figure 1 | Correlation between immune score and clinical
characteristics in TCGA sarcoma patients: (A) tumor depth, (B) local disease
recurrence, (C) tumor margin status, (D) radiation therapy, (E) metastasis at
diagnosis, (F) tumor total necrosis percent.

Supplementary Figure 2 | Heatmap and volcano plot of differentially expressed
genes between the high and low immune score groups of the whole
annotated RNA-Seq data.

Supplementary Figure 3 | (A) Clustering for the detection of outlier samples in
WGCNA. (B) Gene dendrogram and plot for the dynamic tree cutting. (C)
Clustering of module eigengenes. (D) Eigengene expression in the yellow-green
module for each sample. (E) The topological overlap measure (TOM) for
gene network connections (left: all genes, right: randomly selected
1000 genes).

Supplementary Figure 4 | The total PPI network visualized via Cytoscape.

Supplementary Figure 5 | (A–C) Risk score curve, survival status and the gene
expression levels for each patient were discretely distributed between two groups
in the testing cohort. (D) Time-dependent ROC curves for the risk score model for
predicting the survival probability of 1-, 3-, 5-year and median-survival time overall

survival in the testing cohort. (E) Nomogram for predicting the survival probability
of 1-, 3-, and 5-year overall survival in the testing group. (F) time-dependent ROC
curves for the Nomogram in the testing group. (G) time-dependent ROC curves
for the Nomogram in the training group. (H) The time-dependent calibration plots
for the nomogram in 1,3,5-year time periods in the testing group. (I) The plot of
DCA analysis for assessing clinical judgment utility of the risk score model and
nomogram in the total TCGA sarcoma cohort.

Supplementary Figure 6 | Multidimensional validation of the risk score model in
external databases. (A,B) Expression of Both IRF1 (A1–A7) and MFNG (B1–B13)
were downregulated in sarcomas compared to non-tumor tissues in Oncomine
database. (C) R2: Genomics Analysis and Visualization Platform: both expression
levels of IRF1 and MFNG were negatively associated with patients’ metastasis-free
survival and overall survival in osteosarcomas (datasets: GSE42352). (D)
SurvExpress: both expression levels of IRF1 and MFNG were negatively
associated with patients’ metastasis-free survival in various sarcomas (datasets:
GSE21050). (E) LOGpc: expression level of MFNG was negatively associated with
patients’ metastasis-free survival in various sarcomas (datasets: GSE71118). (F)
the mRNA expression levels of IRF1 and MFNG in exosomes were validated in
human blood exosomes compared to multiple tumor tissues by using the
exoRBase database.
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