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Traumatic brain injury (TBI) is one of the injuries that can bring serious consequences if medical attention has been delayed.
Commonly, analysis of computed tomography (CT) or magnetic resonance imaging (MRI) is required to determine the severity of
a moderate TBI patient. However, due to the rising number of TBI patients these days, employing the CT scan or MRI scan to
every potential patient is not only expensive, but also time consuming. ,erefore, in this paper, we investigate the possibility of
using electroencephalography (EEG) with computational intelligence as an alternative approach to detect the severity of moderate
TBI patients. EEG procedure is much cheaper than CTor MRI. Although EEG does not have high spatial resolutions as compared
with CT and MRI, it has high temporal resolutions. ,e analysis and prediction of moderate TBI from EEG using conventional
computational intelligence approaches are tedious as they normally involve complex preprocessing, feature extraction, or feature
selection of the signal. ,us, we propose an approach that uses convolutional neural network (CNN) to automatically classify
healthy subjects and moderate TBI patients. ,e input to this computational intelligence system is the resting-state eye-closed
EEG, without undergoing preprocessing and feature selection. ,e EEG dataset used includes 15 healthy volunteers and 15
moderate TBI patients, which is acquired at the Hospital Universiti Sains Malaysia, Kelantan, Malaysia. ,e performance of the
proposed method has been compared with four other existing methods. With the average classification accuracy of 72.46%, the
proposed method outperforms the other four methods.,is result indicates that the proposed method has the potential to be used
as a preliminary screening for moderate TBI, for selection of the patients for further diagnosis and treatment planning.

1. Introduction

Traumatic brain injury is a trauma to the brain that is caused
by a blow or jolt to the head from a blunt or penetrating
object. ,e trauma can be caused by road traffic accident,
fall, or during sports activity. In emergency situations, the
well-known principle of golden hour, where the treatment
should be delivered within the first 60 minutes for an out-of-
hospital traumatic injury patient, could impact the medical
outcome of that patient [1]. Delayed treatment can cause

sequelae, such as increased intracranial pressure, edema, and
cerebral dysautoregulation [2, 3]. ,erefore, immediate
detection is crucial for the subsequent treatment plan.

,e severity of the traumatic brain injury (TBI) can be
classified using a few grading scores. One of the common
scores is the Glasgow coma scale (GCS) [4]. GCS classifies
TBI into mild, moderate, and severe based on their eye
opening response, verbal response, and motor response. ,e
GCS score corresponding to the TBI severity is shown in
Table 1. Mild, moderate, and severe TBI patients have the
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scores of 14-15, 9–13, and 3–8 respectively. However,
moderate TBI is often difficult to be detected. Patients with
moderate TBI have great variability in injury severity and
acute phase course [5]. In acute phase, both intra- and
intercranial injury may induce secondary brain injury that
can lead to fatality [6–8]. ,us, moderate TBI detection
should be done in the shortest time.

For the detection of moderate TBI, clinical imaging is
useful. ,e golden standard for detecting moderate TBI is by
using the computed tomography (CT) or magnetic reso-
nance imaging (MRI). However, employing the CT or MRI
scan to every patient is expensive and time consuming.
Limited resources in the hospitals can also cause the delay of
performing CT scan and MRI scan on the patient that poses
the risk of moderate TBI. Furthermore, performing scans on
moderate TBI patients that are in the recovery stage can
disturb the sleep-wake rhythm and cause a delay in the
recovery [9, 10]. In addition, repeated scans for reevaluation
of TBI raise concerns over the consequences of radiations
from CT scans [11].

As a potential substitution for early detection of mod-
erate TBI for the further treatment plan, electroencepha-
logram (EEG) is a powerful tool [12]. Studies have suggested
that biomarkers that can indicate a TBI can be found by
analyzing the qEEG of frequency bands of the signal which
are known as alpha, beta, theta, and gamma bands. Analysis
has been done on EEG signals and it is found that there are
reduction in mean alpha band frequency and an increment
in theta band activity as compared to healthy people [13–16].
,ese findings are suggested as the biomarkers for TBI.

,ere are many works done on TBI detection based on
EEG as it has a high temporal resolution and is able to
measure brain activity directly [17]. In the work by Fisher
et al. [18], EEG with the implantation of cortical somato-
sensory evoked electroencephalographic potentials (SSEPs) is
used to detect and track, in real-time, neural electrophysio-
logical abnormalities following head injury in an animal
model. It was found that the amplitude of the signal improved
over time but decreased significantly after one hour of
monitoring. ,eir analysis found significant changes in low-
frequency components and an increase of EEG entropy up to
30minutes after the injury. From their experimental results, it
is suggested that cortical SSEPs could potentially be used to
rapidly detect and monitor TBI. On the other hand, McBride
et al. [19] have studied the visual evoked potential EEG in TBI
patients. In this study, TBI patients were required to perform
memory tasks during EEG recording. Event-related Tsallis
entropies were extracted as features to train a support vector
machine (SVM) to discriminate between normal and TBI
individuals. ,eir results suggested the potential of EEG as an
effective method for early stage detection of TBI. A decent
review is also carried out by Rapp et al. [20] on the

applications of EEG on detecting TBI. From the literature, it
can be seen that external stimulations are often exposed to the
patients during EEG recording [21, 22]. ,e purpose of ex-
posing patients to stimulations is to facilitate the diagnoses of
the functionality and response of the human brain towards
external stimulus [23].

However, the recording of EEG using stimulants has its
limitation. Task-related paradigms rely on higher abilities of
cognitive function such as attention or language compre-
hension [24]. Patients that suffer from moderate TBI might
be in coma states in the acute phase course and they may not
be able to perform a task or respond to the stimulant given.
In addition, requiring patients to perform specific tasks and
exposing them to stimulants will disturb their sleep-wake
rhythm and affect their recovery process [9, 10]. ,erefore,
resting-state EEG is a better alternative. It is recorded when
the patient is resting with their eyes closed, providing an
advantage of not disturbing the patient’s sleep cycle.

We reviewed four similar computational intelligence
approaches, which are used to classify severe or mild TBI
from healthy samples, respectively. In the work of den Brink
et al. [24], a Naive Bayes classifier was used to classify severe
TBI patient and healthy control. ,e classifier was trained
based on features of average power from the beta band of
each electrode and EEG connectivity of delta, theta, and
gamma bands extracted from resting-state EEG. ,eir
method first preprocessed the signal by applying a notch
filter to remove line noise, followed by a low-pass filter at
100Hz. Next, a high-pass filter with a 0.5Hz cutoff is ap-
plied. ,e artifacts in the signal are removed manually. ,e
resulting signals of each subject are divided into two-second
segments. Subsequently, the three features were extracted
from the resultant segments. ,e connectivity of the three
bands is obtained by computing the correlation between the
log-transformed orthogonalized amplitude envelopes of
delta, theta, and gamma bands [24].,eir approach is able to
present high classification accuracy. Nonetheless, their work
approach heavily relies on the extracted features. ,erefore,
extensive exploration has to be done to select discriminative
features to ensure an effective classifier learning.

McNerney et al. [25] make use of resting-state EEG and
adaptive boosting (AdaBoost) for classification of mild TBI.
First, a band-pass filter with cutoff frequency from 0.1Hz to
100Hz is applied. Subsequently, artifacts and spikes are
manually marked and removed from the signal. ,e features
that are extracted in their method are power spectral den-
sities (PSD) of delta, theta, alpha, and gamma bands. ,e
PSD are calculated for signals of channels AF7 to FpZ and
AF8 to FpZ. ,e base 10 logarithms of the average PSD for
each frequency bands are used as features to train the
AdaBoost classifier. AdaBoost is a powerful classifier that
creates a highly accurate classifier by combining several weak
and inaccurate classifiers, creating a cascade of classification
model. It carries advantages such as being simple and re-
quiring less tweaking of parameters to achieve high classi-
fication result despite being sensitive to noisy data and
outliers. ,us, preprocessing becomes an unavoidable stage
in the work of McNerney et al. [25] to remove external
noises.

Table 1: TBI severity based on GCS score.

GCS score Traumatic brain injury severity
14-15 Mild
9–13 Moderate
<9 Severe
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In the work of Cao et al. [26], an automatic classification
of athletes with concussion has been proposed by using an
EEG-based support vector machine (SVM).,eir approach is
able to detect mild TBI in athletes and determine whether they
are suitable to return-to-play (RTP) or not. ,e resting-state
EEG has been recorded from the subjects in three different
conditions, where the subject is seated, standing on a firm
surface, and standing on a foam surface. Artifacts were re-
moved from the recorded EEG manually, by using visual
inspection. One minute of artifact-free EEG is then band-pass
filtered between 0.5 and 30Hz with zero phase shift. A fast
Fourier Transform (FFT) is performed on the resultant signal
and the signal was divided into theta, alpha, beta1, beta2, and
beta3. Power averages were calculated for each of the fre-
quency bands. In addition to the feature set, power averages
for individual 1Hz frequency between 1 and 30Hz for all the
electrodes were computed. In order to reduce the huge feature
size, feature reduction was performed using heuristic minimal
redundancy maximal relevance (MRMR) framework. ,e
features were ranked based on mutual information. Top 10
features were selected and directed to an SVM for classifi-
cation of the healthy subject and mild TBI patient.

Previously, we also has proposed one method to classify
moderate TBI patients and healthy subjects using the resting-
state eye-closed EEG [27]. Similar to the work of Cao et al.
[26], our method is also using SVM as our computational
intelligence method. However, our feature to be fed to the
SVM is the power value, extracted from the alpha band.

EEG recording is often contaminated with unwanted
elements such as noises and artifacts. Preprocessing is crucial
to remove all the unwanted elements in a signal [28].
However, it is time consuming to locate and remove the
impurities in the signal. Eventually, both feature selection and
preprocessing the EEG are complicated and time consuming.
Furthermore, analysis of resting-state EEG can be even more
challenging as it contains less information as compared with
EEGwith external stimulants. It is preferable for themachines
to find and learn the data itself, especially the implementation
of resting-state EEG.

In order to overcome the complex design of pre-
processing, feature extraction, and feature selection, CNN is
one of the common computational intelligence methods used
in development that requires classification [29]. CNN is a
machine learning method which is inspired from the bio-
logical system [30], which was originally proposed for image
classification task [31]. Due to its great potential in analysis of
small details presented by pixels in an image, CNN is also
applicable for EEG analysis [32–34]. ,is is because the data
points of the EEG can be arranged in matrix form, which is
similar to the matrix of pixels [35].

,e topology of CNN is made up of multilayer perception
(MLP), combining the input layers, hidden layers, and output
layers. ,e hidden layers include the convolutional layer and
the conventional backpropagation neural network dense
layer. ,e convolutional layers are made up of convolutional
kernels that carry learnable parameters which require mul-
tiple iterations of learning and validation to determine the
optimum value empirically [36].,e convolutional layers play
the role of extracting important features from the input

matrix through the weighted learnable kernels [37]. Each
forward input of the matrix computes a feature map. ,e
convolutional layers learn to activate the feature maps when
the patterns of interest are detected in the input. Activated
feature maps will be downsampled by using the pooling layer
and further fed forward to the next layers. Fully connected
layer (also known as dense layer) is trained using the feature
map.,e learning process of the learnable parameters implies
backpropagation [31] and gradient descent [38].

,e objective of this paper is to propose an eye-closed,
resting-state EEG-based moderate TBI detection method
using CNN. ,e proposed method can avoid human error
and potentially become an early screening tool for TBI in the
emergency department. ,e parameters of the CNN are
selected empirically for an optimum tuning of the archi-
tecture. ,e parameters are the learning rate and the mini
batch size. Our method is further compared to existing state-
of-art approaches and our previous work [27].

2. Methods

2.1. Subjects. ,e dataset that is used in this study was col-
lected at the Hospital Universiti Sains Malaysia, Kelantan,
Malaysia. Ethical approval has been obtained from Universiti
SainsMalaysia, with reference number USM/JEPeM/1511045.
A total of 30 resting-state eyes-closed EEG recordings were
collected from 30 subjects, which are divided into 15 mod-
erate TBI patients and 15 healthy volunteers. ,e TBI data
was contributed by 15 patients. ,e healthy data were col-
lected from 15 healthy persons. ,e age range for moderate
TBI subjects is between 18 to 65 years old. All of them
sustained nonsurgical moderate TBI according to the GSC,
corresponding to a score between 9 and 13, where all of them
suffer the initial hit involving the left frontal-temporal-pa-
rietal lobe as diagnosed by CT scan of the brain. Each of the
subjects is required to close their eyes during the recording to
obtain the resting-state EEG data.

2.2. Recording System and Electrode Placement. ,e EEG
signals were continuously recorded by using 64 electrodes
mounted on a 64-channel WaveGuard EEG cap. ,e
placement of the channels is based on the international 10-
10 EEG electrode system, which is shown in Figure 1. ,e
electrical activities from the scalp will be recorded at 64 sites.
However, CPz channel recording is excluded in this study,
leaving only 63 useful channels, because CPz channel is used
as an electrooculography (EOG) channel in this study. ,e
ground electrode is located 10% anterior to Fz, linked
earlobes served as reference and electrode impedances are
below 5 kOhm. EEG signals are recorded using a pro-
grammable DC coupled broadband SynAmps amplifier. ,e
EEG signals are amplified (gain 2500, accuracy 0.033/bit)
with a recording range set for ± 55mV in the DC to 70-Hz
frequency range. ,e EEG signals are digitized at 1000Hz
using 16-bit analog-to-digital converters.

2.3. Data Preparation. ,e first 60 seconds of the recording
are discarded as they are normally contaminated by artifacts
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because subjects are usually not calm enough at the early
phase of the recording. Segments that contained artifacts are
removed based on inspection. Next 60 seconds of the re-
cording is then divided into 60 segments of one second each.
A study has shown that 60 seconds of recordings is sufficient
for obtaining reliable diagnosis results [39]. In addition, the
presence of more discriminative characteristic of EEG is
close to the beginning of the recording [40].

As the input to the CNN, the EEG is arranged in the form
of matrix of amplitude of the channel versus time. ,e
arrangement of the channels refers to the default arrange-
ment given by the 64-channelWaveGuard EEG cap. Because
each segment is in one second, the matrix size of the EEG is
N × Fs, where N is the number of channels and Fs is the
sampling frequency. In this research, the matrix size is
63×1000 because the sampling rate of 1000Hz is used and
the number of channels is 63. ,erefore, each data contain
60matrices.,e components in thematrix is stored from the
EEG data points using the formula:

M(i, t) � xi(t), (1)

where i is the channel of the sampling point (i.e.,
i � 1, 2, . . . , N), t is the index of the sampling point (i.e.,
t � 1, 2, . . . , Fs), and xi(t) is the amplitude of the sampling
point of channel i at time t.

2.4. Convolutional Neural Network Topology. ,e CNN to-
pology used in this study is shown in Table 2 and Figure 2.
,e CNN topology used in this study is made up of six
convolutional layers, two pooling layers, and one fully
connected layers. Each convolution layer consists of six 5 × 5
filters. A smaller filter size is selected in order to capture finer
orientation and information from the signal. Six filters are
used in one convolution layer to create a feature map
consisting of more variation of feature from the input. ,e
CNN architecture is made up of nine layers in total.

,e input to the CNN is a 63×1000matrix.,e filter size
of the convolution layers used in this study is fixed to 5× 5.
,e input with size h × w will generate a feature map of size
h′ × w′ × l′ by a convolution layer, which can be calculated
using

h′ �
h − f + s

s
􏼢 􏼣, (2)

w′ �
w − f + s

s
􏼢 􏼣, (3)

where f is the size of filter, l′ is the number of filter in the
convolution layer, and s is the stride length. In this study, f is
set as five, l′ is set as six, and s is set as one for all convolution
layers.
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Figure 1: Arrangement of EEG channels on the WaveGuard EEG cap.
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After the first convolution layer, a feature map of
59× 996× 6 is produced. ,e feature map is next directed to
the second convolution layer, outputting a feature map with
size 55× 992× 6. After passing through the third convolu-
tion layer, a feature map of 51× 988× 6 is generated. Going
through the fourth convolution layer, a 47× 984× 6 feature
map is produced. Subsequently, the fifth convolution layer
outputs a 43× 980× 6 feature map.

Next, the feature map will go through an average pooling
layer. Input feature map of size h × w × l will generate an
output feature map of size h′ × w′ × l′ using (2)–(4). f is set
as two, l′ is set as six, and s is set as two for all average pooling
layers in this study. ,e average pooling layer generated a
21× 490× 6 feature map. ,e resulting feature map will be
passed to the last convolution layer, producing a 17× 486× 6
feature map. ,e feature map is then passed to an average
pooling layer, which generates a 8× 243× 6 feature map.,e
output is then flattened and passed to the fully connect layer.
,e activation function used for the fully connected layer is
Softmax. Processing of the input throughout the CNN can
be visualized in Figure 2. For the CNN topology used in this
study, batch normalization and rectified linear unit (ReLU)
are used after each convolutional layer.

,ere are seven parameters that are chosen in this study
for an optimum CNN topology. Table 3 shows these pa-
rameters. ,e learning rate of 0.0001 is selected and remains
constant throughout the training of the CNN. L2 normali-
zation is used to perform batch normalization after every

convolution layer.,emini batch size for every iteration is set
as 128. As the epoch consists of 680 training data, six iter-
ations are needed to complete one epoch passing through the
CNN. ,e training iteration per epoch is fixed with 30. To
prevent overfitting in this design, L2 regularization is used
with regularization faction of 0.0005. ,e optimizer used for
the backpropagation for CNN training is the stochastic
gradient descent (SGD) with momentum of 0.9.

2.5. Training Procedure. In this study, the performance
measure that is used to evaluate the training for the CNN is
measured using classification accuracies in terms of per-
centage, which is testing accuracy and validation accuracy.
,e testing and validation accuracies are obtained using a
threefold cross validation. ,e division of dataset for the
fourfold cross validation is shown in Table 4. In this table, k
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Figure 2: CNN topology.

Table 3: Parameters and values.

Parameter Setting
Learning rate 0.0001
Batch normalization L2 normalization
L2 regularization 0.0005
Mini batch size 128
Optimizer Stochastic gradient descent
Training repetitions per epoch 30
Momentum 0.9

Table 2: Layers of CNN and kernel size.

Index Layer Kernel size Number of filter
1 Convolution layer 5× 5 6
2 Convolution layer 5× 5 6
3 Convolution layer 5× 5 6
4 Convolution layer 5× 5 6
5 Convolution layer 5× 5 6
6 Average pooling layer 2× 2 —
7 Convolution layer 5× 5 6
8 Average pooling layer 2× 2 —
9 Fully connected layer — —
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is the number of fold, and each of the subjects is labeled as
training or testing dataset on each k-fold validation.

,e testing accuracy is calculated by using the following
formula:

Accuracy �
TP + TN

TP + TN + FP + FN
, (4)

where TP is the moderate TBI input which is predicted
correctly as moderate TBI, TN is the healthy control input
that is predicted correctly as the healthy subject, FN is the
TBI input that is predicted wrongly as healthy subject, and
FP is the healthy control input that is predicted wrongly as
moderate TBI patient. Testing accuracy is obtained using the
testing set, while validation accuracy is obtained using the
training set itself.

In the application of bioinformatics, small dataset often
becomes an issue due to unforeseen restrictions, such as
limited amount of patients. Small dataset can cause evalu-
ation of the classifier to be optimistic biases, which is in-
accurate in estimating its performance. Data augmentation
can be done to increase the number of dataset, which is
commonly seen in image classification. However, aug-
mentation of moderate TBI patient’s EEG can increase the
classification error as random noises can be added in the
process of augmentation. To overcome small dataset issue in
the evaluation of the proposed architecture, bootstrap
method is used in this study [41]. Bootstrap method is a
resampling approach that generates bootstrap sample sets.
,e bootstrapping concept that generates the bootstrap
sample set can be explained in three steps. First, a random
sample will be selected from the original dataset. Next, the
random sample will be added to the new dataset and returns
to the original dataset. ,e two steps repeat until the
bootstrap sample set reaches the fixed number of samples.
For computational intelligence approach, the bootstrap
sample sets that are generated will be the number of data of
the original dataset [42]. ,erefore, some samples will be
represented repetitively, while some will not be selected at all
[42]. Bootstrapping is a useful approach as the prediction
results from the trained machine learning model using the
bootstrap sample sets often present a Gaussian distribution.
Moreover, 95% confidence interval (CI) can be calculated
from the prediction results to estimate the accuracy and
stability of the machine learning model.

In this study, the proposed architecture is tested by 100
iterations of resampled bootstrap sample set. It was sug-
gested by Efron that the iterations be in the range of 50 to 200
[41]. ,reefold cross validation is performed on each
bootstrap sample and the cross-validation accuracy was
recorded for each generated bootstrap sample set. 95%
confidence interval (CI), mean cross validation accuracy
(ACC), and standard deviation (SD) are calculated from the
recorded cross-validation accuracies.

3. Results

To select the optimum learning rate and mini batch size for
the training of CNN, experiments are carried out by vali-
dating the performance of different parameters. ,e

parameters are the learning rate and mini batch size. Trained
CNN models are then compared with Naive Bayes [24],
AdaBoost classifier [25], SVM (MRMR) [26], and SVM
(power) [27].

3.1. Selection of Optimum Learning Rate. Learning rate is an
important parameter that determines the update step for
backpropagation learning [43]. It controls the adjustment of
the learnable weights with respect to the loss gradient. When
the learning rate is too huge, the gradient descent can
recklessly increase rather than decrease the training error.
On the other hand, using learning rate which is too small can
cause slow training and might cause invariable high training
error. ,erefore, determining the optimum learning rate is
crucial, as it will affect the search of the minimum point of
loss in the backpropagation learning.

,e current study shows that a good learning rate can be
estimated by initiating a low learning rate and increasing it at
each iteration [44]. Experiments are carried out by varying
the learning rate using the CNN topology with six con-
volutional layers and 32 mini batch size. Five learning rate
values have been investigated. ,e learning rates used are
0.1, 0.01, 0.001, 0.0001, and 0.00001, respectively. ,e
training times for the CNN using different learning rate are
recorded and shown in Figure 3. ,is graph shows that a
longer training time is needed for smaller value of the

Table 4: Data division for threefold cross validation.

k� 1 k� 2 k� 3
Patient 1 Training Testing Training
Patient 2 Training Testing Training
Patient 3 Training Testing Training
Patient 4 Training Testing Training
Patient 5 Training Testing Training
Patient 6 Training Training Testing
Patient 7 Training Training Testing
Patient 8 Training Training Testing
Patient 9 Training Training Testing
Patient 10 Training Training Testing
Patient 11 Testing Training Training
Patient 12 Testing Training Training
Patient 13 Testing Training Training
Patient 14 Testing Training Training
Patient 15 Testing Training Training
Healthy 1 Training Testing Training
Healthy 2 Training Testing Training
Healthy 3 Training Testing Training
Healthy 4 Training Testing Training
Healthy 5 Training Testing Training
Healthy 6 Training Training Testing
Healthy 7 Training Training Testing
Healthy 8 Training Training Testing
Healthy 9 Training Training Testing
Healthy 10 Training Training Testing
Healthy 11 Testing Training Training
Healthy 12 Testing Training Training
Healthy 13 Testing Training Training
Healthy 14 Testing Training Training
Healthy 15 Testing Training Training
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learning rate. Besides, from the experiment, the means of 3-
fold cross-validation accuracy, SD, and 95% CI are shown in
Table 5. From this table, it is shown that the learning rate of
0.0001 gives the best performance, in terms of the mean
accuracy and SD.

3.2. Determining the Optimum Mini Batch Size. In CNN
learning, training set is divided into numbers of mini
batches, each consisting of a small number of training
samples. ,e mini batch size is one of the parameters that
has to be determined empirically for an optimized CNN
topology. A larger mini batch can lead to a faster CNN
training. However, a large mini batch uses high computa-
tional power. In addition, a study has shown that using a
mini batch size that is too large can cause significant deg-
radation in the quality of the trained CNN model [45].
,erefore, the optimum mini batch size has to be deter-
mined to ensure a better convergence rate and a better
stability of the CNN training [43].

In this experiment, mini batch size of 32 has been used as
the starting point based on recommendation by some studies
[36, 46]. Mini batch sizes of 32, 64, and 128 were evaluated to
select the optimum mini batch size using six convolution
layers CNN topology and learning rate of 0.0001. Table 6
shows their testing accuracies, respectively. From this table,
it is shown that the mini batch size of 128 gives the best
performance.

3.3. Comparison of the ProposedMethod with ExistingWorks.
,e proposed method is compared with four existing
methods which are similar, as thereis no existing work that
classifies moderate TBI from healthy group.,e first method
for comparison is the work done by den Brink et al. [24]
which uses task-free EEG and Naive Bayes classifier for TBI
classification. ,e second method that is compared was
proposed by McNerney et al. [25] that uses AdaBoost
classifier. ,e third method that is compared is the work
done by Cao et al. [26] that uses SVM. ,e fourth method
that is compared is our previous work that proposed an
EEG-based SVM classifier using alpha band power for
moderate TBI detection [27]. For a fair comparison, the
same dataset and training procedure are used. Mean, SD,

and CI of cross-validation accuracy (ACC) for different
approaches using the same dataset are shown in Table 7.

4. Discussions

From Table 5, results show that the learning rate of 0.0001
presents the highest accuracy, which is 56.57%. At this
learning rate, the step is optimum to search for the best
weights of the CNN, as compared to other learning rate
values. By using a larger learning rate, the step taken might
over-shoot and miss out the local minimal. Meanwhile,
using a lower learning rate can cause a longer CNN learning
time. In Figure 3, it can be seen that the training time in-
creases when the learning rate increases.

For the selection of suitable mini batch size, it is shown
in Table 6 that mini batch size of 128 gives the highest testing
accuracy. Mini batch size of 32 presents the lowest accuracy
(56.57%) as it converges to a flat minimal, giving a lower
testing accuracy. Mini batch size of 128 can efficiently
generalize the data and converge to a sharp minimal, giving
the trained CNN model a higher testing accuracy of 72.46%.

Comparing to other existing methods, the proposed
method reaches a high accuracy of 72.46%, which stands out
compared to the work by den Brink et al. [24], McNerney
et al. [25], Cao et al. [26], and our previous work [27]. By
using the same dataset, these approaches achieve the mean
cross-validation accuracies of 59.05%, 54.00%, 51.17%, and
49.64%, respectively, as shown in Table 7.

Having established that the features that are extracted
from the frequency bands can provide important infor-
mation during the training on classifier, den Brink et al. [24]
and McNerney et al. [25] both performed feature extractions
relying on the frequency bands. On the other hand, for the
proposed method in this paper, the raw signal did not
undergo any feature extraction. ,e EEG is arranged in
matrix form and fed to the input of the CNN topology. ,e
convolution layers perform feature extraction to obtained
distinct features from the input. ,e convolution layers that
are made up of learnable kernals aim at extracting local
features from the input. ,e feature extraction that take

Table 5: Mean, SD, and CI of cross-validation accuracy (ACC) for
different learning rate.

Learning rate Mean ACC SD 95% CI
0.1 50.12 0.27 [49.93 50.31]
0.01 51.85 1.20 [50.99 52.71]
0.001 52.02 2.83 [50.00 54.04]
0.0001 56.57 9.07 [50.08 53.06]
0.00001 52.68 2.48 [50.90 54.45]

Table 6: Mean, SD, and CI of cross-validation accuracy (ACC) for
different mini batch size.

Mini batch size Mean ACC SD 95% CI
32 56.57 9.07 [50.08 53.06]
64 55.04 7.13 [52.87 57.21]
128 72.46 1.90 [67.73 77.19]
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Figure 3: Training time by different learning rate.
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place in the convolution layers started by extracting low level
features and subsequently progressed to extract higher level
features.

In comparison of mean cross-validation accuracies, the
proposed method outperforms the other four approaches.
Naive Bayes makes assumptions that each feature is inde-
pendent from each other, which removes the dependency
between channels of EEG. It caused the correlations between
channels to be ignored which can cause information to be
lost in the process of classifier training. ,erefore, the
proposed method that makes use of CNN can overcome the
shortcoming of Naive Bayes. AdaBoost classifier is a ma-
chine learning method which requires less tweaking of
parameters and is easy to use. However, it is sensitive to
noises and outliers, which is unavoidable in EEG recordings.
,erefore, more efforts have to be done to ensure noises and
artifacts have to be totally removed to ensure an effective
classifier training. ,e proposed method using CNN does
not require filtering of the signals to discard noises. ,e
learnable kernels of the convolutional layers can effectively
extract the important features and at the same time reject
noises in the signal.

In the work by Cao et al. [26], a MRMR feature selection
framework was employed to reduce the size of the large
feature set. However, it shows low detection accuracy when
our dataset is used. In the original work of Cao et al. [26], the
EEG dataset that are used require subjects to be in three
different postures when the EEG is recorded. In our case, the
EEG is recorded when the subjects are relaxed and seated.
,erefore, the features that are extracted using their method
do not provide enough information to the SVM. ,e
multiposture EEG that is used in their work supplies more
variation of information to the classifier. On the other hand,
it results in a large dataset, where feature selection has to be
performed. In the process of feature selection, information
lost may take place and cause reduction in detection ac-
curacy. In our proposed method, feature extraction and
selection are automated by the kernals, where the learnable
parameters of these kernals are updated using the back-
propagation. ,e automated process is more efficient
compared to their approach.,e efficiency of feature extract
using CNN can avoid tedious feature selection and reduction
process, as well as human bias.

In comparison with our previous work [27], alpha band
power was extracted from the EEG as features to train a
SVM. However, it has shown a lower classification than our
proposed method. Alpha band power can be included as one
of the features for moderate TBI classification, but using
alpha band power alone is not sufficient. To provide

sufficient information to train a SVM, other features have to
be extracted, like correlation coefficient, phase difference,
and more.

5. Conclusion

From this study, it was shown that the number of convo-
lution layer, learning rate, and mini batch size are important
parameters that have to be determined empirically for a
design of a robust CNN. Values of parameters may vary for
different applications. In the application of a CNN with six
convolution layers, it was found that the learning rate of
0.0001 and amini batch size of 128 give the best classification
accuracy for moderate TBI classification purpose. ,e
proposed method is further compared with four existing TBI
classification approaches. Result indicates that the proposed
method outperforms the others in terms of cross-validation
accuracy as well as the ease of execution. ,is study has
suggested that CNN is a potential substitution for EEG
machine learning application which required complex
procedure for preprocessing of the signals and feature ex-
traction. Further improvement of this study can potentially
introduce an immediate diagnosis tool at the emergency
department for moderate TBI patients which can be used as
a second opinion for physicians.
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