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Abstract. MicroRNAs (miRNAs or miRs) have emerged 
as key regulators of gene expression in essential cellular 
processes, such as cell growth, differentiation and development. 
Recent findings have established that the levels of miRNAs 
are modulated by cell signaling mechanisms, including the 
bone morphogenetic protein (BMP) signaling pathway. The 
BMP signaling pathway controls diverse cellular activities by 
modulating the levels of miRNAs, indicating the complexity 
of gene regulation by the BMP signaling pathway. The tight 
regulation of the levels of miRNAs is critical for maintaining 
normal physiological conditions, and dysregulated miRNA 
levels contribute to the development of diseases. In the present 
review, we discuss different insights (provided over the past 
decade) into the regulation of miRNAs governed by the BMP 
signaling pathway and the implications of this regulation on the 
understanding of the cellular differentiation of vascular smooth 
muscle cells (VSMCs), osteoblasts and neuronal cells.
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1. Introduction

Bone morphogenetic proteins (BMPs) are members of the 
transforming growth factor (TGF)-β superfamily, acting as 

potent regulators during embryogenesis and controlling such 
events as vascular development, bone formation and neuronal 
differentiation (1). In response to the binding of BMP ligands, 
a membrane-bound heterotetrameric complex of type I and 
type II BMP receptors becomes activated. The active type II 
receptor kinase phosphorylates the type  I receptor, which 
in turn activates the catalytic activity of the type I receptor. 
Consequently, the Smad signal transducers are phosphorylated, 
and the downstream signal is propagated. In the canonical 
signaling pathway, BMPs activate receptor-specific Smads 
(R-Smads), Smad1, Smad 5 and Smad 8. The phosphorylation 
of these R-Smads promotes their association with the common 
Smad (co-Smad), Smad4, in a complex that translocates to the 
nucleus and regulates gene transcription either positively or 
negatively (2). Recently, BMP signaling was demonstrated to 
directly control the processing of a cohort of miRNAs through 
the non-canonical role of R-Smads (3).

MicroRNAs (miRNAs or miRs) are small non-coding 
RNA molecules evolutionarily conserved from plants to 
humans (4). miRNAs are transcribed by RNA polymerase II as 
long primary transcripts known as pri-miRNAs, which encode 
either single or multiple miRNAs (5). Hairpin-structured pri-
miRNAs are processed into 60-80 nucleotide (nt) precursor 
molecules (pre-miRNAs) by the p68-Drosha microprocessor 
complex (6). Pre-miRNAs are then exported from the nucleus to 
the cytoplasm by exportin 5. In the cytoplasm, the pre‑miRNAs 
associate with Dicer, which cleaves the pre-miRNA into a 
miRNA (mature miRNA) approximately 18-24 nt in size (7,8). 
The miRNA duplex is then loaded onto Argonaute proteins and 
presented to the RNA-induced silencing complex (RISC) for the 
recognition of target mRNAs (9). The mature miRNA guides 
the RISC to partially complementary sequences within the 
target mRNAs to regulate target gene expression. The mature 
miRNAs generally repress protein-coding genes by promoting 
the degradation of mRNAs or repressing their translation (9). 
Individual miRNAs have tissue-specific or developmental 
stage-specific expression patterns and exhibit a broad range of 
roles in a wide range of developmental processes (10).

In the present review, we discuss and summarize the 
miRNAs that are mediated by the BMP signaling pathway 
in essential biological processes involving vascular smooth 
muscle cell (VSMC) differentiation, osteogenesis and neuronal 
development (Fig. 1).
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2. VSMC differentiation

The inactivation of the BMP signaling pathway has been 
shown to result in the development of vascular disorders (11). 
For example, cells isolated from patients with heritable 
pulmonary artery hypertension (PAH) exhibit mutations 
of the type II BMP receptor (BMPRII) or Smad9 (12). Of 
note, although the loss of Smad9 function in the canonical 
BMP signaling pathway is largely compensated by Smad1 
and Smad5, the mutation of Smad9 completely abrogates 
miRNA induction. This result suggests that the regulation of 
miRNAs by BMP signaling is implicated in normal vascular 
development and homeostasis. During vascular develop-
ment, BMP signaling increases the expression of smooth 
muscle cell (SMC)-specific contractile genes and inhibits cell 
proliferation and migration, leading to the differentiation of 
VSMCs (13). The differentiated state of VSMCs is termed 
the ‘contractile phenotype’, and VSMCs can switch between 
the differentiated and dedifferentiated state in response 
to various environmental stimuli  (14). Multiple miRNAs 
have been found to be regulated by BMP signaling and are 
responsible for VSMC differentiation and proliferation under 
physiological or pathological conditions.

miRNA-21. Upon TGF-β and BMP signaling, Smads interact 
with p68 in the Drosha microprocessor complex and promote 
the cleavage of pri-miRNA-21 into pre-miRNA-21, leading to 
an increase in the levels of mature miRNA-21 in VSMCs (15). 
The increased miRNA-21 expression suppresses the expres-
sion of proteins, such as programmed cell death protein-4 
(PDCD4) and multiple members of the dedicator of cytoki-
nesis (DOCK) family, promoting the contractile phenotype of 
VSMCs (16).

In addition to miRNA-21, TGF-β and BMP signals modulate 
the expression of a subset of miRNAs through Smad-mediated 
post-transcriptional regulation (17). Notably, these miRNAs 
contain a conserved sequence (5'-CAGAC-3') toward the center 
of the mature miRNA region that is identical to the consensus 
sequence for DNA binding by Smads.

miRNA-96. The regulation of miRNA-96 expression by BMP 
signaling is critical for the modulation of the VSMC pheno-
type (18). miRNA-96 is downregulated by BMP4 in VSMCs, 
which results in the suppression of a novel target, Tribbles-like 
protein 3 (Trb3). Trb3 is an essential positive regulator of the 
BMP signaling pathway and promotes the contractile phenotype 
in VSMCs (19). The BMP-miRNA-96-mediated upregulation 
of Trb3 in VSMCs leads to an increase in SMC-specific gene 
expression. Unlike the regulation of miRNA-21 by BMP4, the 
downregulation of miRNA-96 by BMP4 is dependent on the 
signal transducer of the BMP signaling pathway, Smad4 (18).

miRNA-302. BMP signaling also downregulates transcrip-
tion of the miRNA-302~367 gene cluster in various types of 
cells, including VSMCs (20). This transcriptional repression of 
miRNA-302 by BMP signaling is mediated by Smads. Smad4 
associates with the miRNA-302 promoter and recruits histone 
deacetylase (HDAC) to repress the transcription of miRNA-302. 
BMPRII has been identified as a novel target of miRNA-302. 
The functional consequence of the miRNA‑302c-dependent 

downregulation of BMPRII on the BMP signaling pathway 
is the inhibition of the contractile phenotype of VSMCs. 
Therefore, the regulatory loop of BMP4-miRNA-302-BMPRII 
is an essential mechanism for the maintenance and fine-tuning 
of the BMP signaling pathway for the modulation of the VSMC 
phenotype (20).

miRNA-143/145. miRNA-143 or miRNA-145 knockout mice 
exhibit an abnormal vascular tone and reduced SMC-specific 
gene expression in VSMCs, suggesting that miRNA-143 and 
miRNA-145, which are encoded as a gene cluster, play a crit-
ical role in the regulation of the VSMC phenotype (21). BMP 
signals activate the transcription of the miRNA-143/145 gene 
cluster through a consensus sequence termed the CArG box 
by serum response factor (SRF) and myocardin/myocardin-
related transcription factor (MRTF)-A. miRNA-143/145 
promote the contractile phenotype of VSMCs by regulating the 
expression of SMC-specific genes and cytoskeletal dynamics 
and by inhibiting the proliferation of VSMCs. miRNA-143/145 
also repress multiple targets, including Kruppel-like factor 4 
(KLF4), which is antagonistic to VSMC differentiation (22).

miRNA-30b/c. miRNA-30b has been shown to be downregu-
lated in human coronary artery atherosclerosis in calcified 
atherosclerotic vessels (23). An increase in BMP2 expression 
and a concomitant decrease in miRNA-30b expression were 
detected by in situ hybridization with vessels, suggesting that 
BMP signaling plays a role in VSMC calcification by regu-
lating miRNAs. Indeed, a microarray analysis demonstrated 
that BMP2 decreases miRNA-30b and miRNA-30c expres-
sion, leading to the promotion of VSMC calcification (23). 
This downregulation of miRNA-30b and miRNA-30c is 
mediated by a Smad-independent pathway. Runt-related 
transcription factor 2 (Runx2) was identified as a target of 
miRNA-30b and miRNA-30c. Runx2 is a master transcription 
factor of the calcification process that induces the differen-
tiation of osteoblasts and chondrocytes. The downregulation 
of miRNA‑30b/c by BMP signaling is sufficient to increase 
Runx2 expression, which in turn results in the increased 
expression of the Runx2-dependent genes, osteopontin and 
osteocalcin, increased intracellular calcium deposition and the 
calcification of VSMCs (23).

3. Osteogenesis

Osteoblast differentiation is a key step in skeletal develop-
ment, and precise control is necessary for the prevention of 
bone-related diseases. The activation of the TGF-β and BMP 
signaling pathways is involved in the differentiation of mesen-
chymal stem cells (MSCs) into the osteogenic lineage (24).

BMP2, 4 and 7 act as potential differentiators through the 
Smad-mediated activation of osteoblast essential genes, such 
as Runx2 (25). Recently, several miRNAs that are modulated 
by BMP signaling have been reported to regulate osteoblast 
differentiation either positively or negatively (26).

miRNA-133/135. miRNA microarray analysis has revealed that 
miRNA-133 and miRNA-135 are downregulated during the 
BMP2-induced osteogenesis of C2C12 mesenchymal cells (27). 
Both miRNAs functionally inhibit the differentiation of osteo-
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progenitors by attenuating the Runx2 and Smad5 pathways. The 
BMP2-mediated downregulation of miRNA‑133 is essential for 
the induction of Runx2 and osteogenic BMP2 signaling. The 
downregulation of miRNA-135 by BMP2 also permits BMP 
signaling through the derepression of its target, Smad5. Both 
Runx2 and Smad5 are essential for osteogenesis and synergize 
for the activation of bone-specific genes (28). Therefore, BMP2 
controls bone cell determination by downregulating miRNA-
133 and miRNA-135 expression, thereby releasing components 
required for osteogenic lineage commitment.

miRNA-141/200a. miRNA expression in BMP-2-treated mouse 
pre-osteoblast MC3T3-E1 cells was previously investigated 
and the downregulation of miRNA-141 and miRNA-200a was 
observed (29). miRNA-141 and miRNA-200a modulate the 
BMP-2-stimulated pre-osteoblast differentiation. Transfection 
experiments with miRNA-141 or miRNA-200a have revealed 
the significant suppression of alkaline phosphatase (ALP) 
activity, which is widely accepted as a potential osteoblast 
differentiation marker. Both miRNA-141 and miRNA-200a 
target distal-less homeobox 5 (Dlx5). Dlx5 is an osteogenic 
transcriptional factor that modulates the expression of BMP2-
induced osteogenic transcriptional master factors, such as 
Runx2 and Osterix (Osx) (30).

miRNA-208/370. The expression levels of miRNA-208 
and miRNA-370 have also been shown to be significantly 
decreased in BMP2- treated MC3T3-E1 cells (31,32). In cells 
transfected with miRNA-208 or miRNA-370, ALP activity and 
mineralization, as determined by Alizarin red staining, were 
suppressed. Moreover, the overexpression of miRNA-208 or 
miRNA-370 in primary murine osteoblast cells significantly 
attenuated BMP2-induced osteoblast differentiation (31,32). 
These results suggest that the downregulation of miRNA-208 
and miRNA-370 is an important common phenomenon for 
osteoblast differentiation. miRNA-208 targets an osteogenic 
transcriptional factor, V-ets erythroblastosis virus  E26 
oncogene homolog 1 (Ets1). Ets1 activates the transcription 
of osteogenic genes, such as osteopontin (OPN), parathyroid 
hormone-related protein (PTHrP), Runx2 and tenascin-C and 
type I procollagen (33). Furthermore, Ets1 is highly expressed 
during the proliferation stages in BMP2-treated MC3T3-E1 
cells (33). Therefore, the enhanced expression of Ets1 through 
the downregulation of miRNA-208 and miRNA-370 upon 
BMP signals may be critical for osteoblast differentiation.

miRNA-20a. miRNA-20a is a member of the miRNA-17-92 
cluster, which is one of the most extensively studied families of 
miRNAs. The members of this family play important roles in 
tissue and organ development. During the course of osteogenic 
differentiation, the expression of endogenous miRNA-20a has 
been shown to be increased (34). Consistently, the transfection 
of miRNA-20a mimics or lentiviral miRNA-20a expression 
vectors into human MSCs promoted osteogenic differentia-
tion. Notably, both the transcriptional and translational levels 
of BMP2, BMP4 and Runx2 were significantly elevated by 
miRNA-20a, but were decreased by anti-miRNA-20a (34). 
Moreover, miRNA-20a targets peroxisome proliferator-
activated receptor γ (PPARγ), Bambi and Crim1, the negative 
regulators of BMP signaling (35). Therefore, miRNA-20a is 

an essential positive regulator that activates BMP signaling 
during osteogenic differentiation.

miRNA-30. Emdogain is a clinical mixture of enamel matrix 
proteins that can induce biomineralization and osteogen-
esis (36). The expression profiles of miRNAs in MC3T3-E1 
cells treated with Emdogain were previously investigated. The 
data indicated that the expression levels of miRNA-30 family 
members, such as miRNA-30a, -30b, -30c and  -30d, were 
significantly downregulated during emdogain-induced osteo-
blast differentiation (37). miRNA-30a and miRNA-30d have 
been shown to be downregulated during the BMP2-induced 
osteogenesis of C2C12 mesenchymal cells as well  (27), 
suggesting that the miRNA-30 family members function as 
negative regulators of osteoblastic differentiation. Runx2 and 
Smad1 were identified as common target genes of miRNA-30 
family members (27). Smad1 is an immediate downstream 
transducing molecule of the BMP receptor and plays an 
important role in mediating BMP signaling (2). Therefore, the 
miRNA-30 family members affect osteogenesis by modulating 
BMP signaling.

miRNA-27a. Special AT-rich sequence-binding protein  2 
(Satb2) is a potent transcription factor that promotes osteoblast 
differentiation and bone regeneration. Satb2 functions as a 
protein scaffold to increase the activity of two essential osteo-
genic transcription factors, Runx2 and activating transcription 
factor 4 (ATF4) (38). The differentially expressed miRNAs 
induced by Satb2 overexpression in murine bone marrow 
stromal cells were previously investigated using miRNA 
microarray, and the downregulation of miRNA-27a was 
observed during osteoblast differentiation (39). miRNA‑27a 
targets BMP2, bone morphogenetic protein receptor, type IA 
(BMPR1a) and Smad9, which are involved in the TGF-β/BMP 
signaling pathway (39). These results suggest that the negative 
regulatory role of miRNA-27a in Satb2-induced osteogenic 
differentiation is mediated by directly targeting positive regu-
lators of the TGF-β/BMP signaling pathway.

miRNA-322. miRNA-322 has been identified as a regulator 
of osteoblast differentiation (40). miRNA-322 gain- and loss-
of-function experiments using C2C12, MC3T3-E1 cells and 
primary cultures of murine bone marrow-derived mesenchymal 
stem cells (BMMSCs) have demonstrated that miRNA-322 
enhances the BMP2 response, increasing the expression of 
Osx and other osteogenic genes (40). The transducer of ERBB2 
(Tob2) is characterized as a target of miRNA-322. Tob2 is a 
negative regulator of osteogenesis that binds and mediates 
the degradation of Osx mRNA (41). Therefore, miRNA-322 
decreases Tob2 mRNA and protein expression, leading to an 
increase in Osx expression. The lentivirus-mediated overex-
pression of miRNA-322 in BMMSCs repressed Smad7, as well 
as Tob2 and induced Osx mRNA levels significantly (41). 

miRNA-210. The expression profiles of miRNAs during 
the osteoblastic differentiation of mouse ST2 mesenchymal 
stem cells were obtained by miRNA microarray analyses, 
and miRNA-210 was found to be highly expressed in these 
cells  (42). Exogenous miRNA-210 positively regulates the 
osteoblastic differentiation of ST2 cells by targeting activin A 
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receptor type 1B (AcvR1b). AcvR1b is a type I receptor known 
to transmit signals to R-Smad, Smad2 and 3, but not Smad1, 
5 or 8, resulting in the transcription of genes that function as 
inhibitory regulators of cell proliferation (43). BMP signals, 
however, are transmitted through other receptors, such as 
AcvR1 (Alk2), BMPRIa (Alk3) and BMPRIb (Alk6), and their 
signals are transmitted to Smad1, 5 and 8, thereby initiating 
osteoblastic differentiation. Smad2/3 and Smad1/5/8 signaling 
has been reported to interfere with each other by competitive 
binding to a co-Smad, Smad4 (44). Therefore, miRNA-210 
acts as a positive regulator of osteoblastic differentiation 
by inhibiting the Smad2/3 signaling pathway by targeting 
AcvR1b, resulting in the acceleration of Smad1/5/8-mediated 
osteoblastic differentiation.

4. Neurogenesis

In addition to well-characterized roles in bone development, 
BMP signaling is crucial during the development of the 
nervous system (45). BMP signaling is involved in the genera-
tion of the neural crest and the induction of both neuronal and 
glial fates from neural stem cells or neural precursors in the 
cortex, hippocampus, midbrain, hindbrain and spinal cord. By 
contrast, the inhibition of BMP signaling is required for the 
formation of the neural plate (45). The regulatory mechanism 
of BMP signaling is likely to be dependent on spatial and 
temporal factors, such as miRNAs. Indeed, the conditional 
knockout of Dicer in cortical neural progenitor cells (NPCs) 
impairs initial neuronal differentiation and later induces cell 
death, suggesting that miRNAs are necessary for appropriate 

cortical development or neuronal survival  (46). Several 
miRNAs have been identified that can modulate the neural 
cell lineage during differentiation (47).

miRNA-17. miRNA expression levels in the mouse cortex 
at different developmental stages have been investigated. 
The expression levels of miRNA-17 have been shown to 
be decreased in the developing cortex (48). As miRNA-17 
represses the expression of BMPRII, the downregulation of 
miRNA-17 activates the BMP signaling pathway, which facili-
tates astrocytogenesis during differentiation (48). However, 
miRNA-17 promotes NPC proliferation, and the inhibition of 
BMP signaling contributes to miRNA-17-mediated increase of 
NPC proliferation (49). Therefore, miRNA-17 plays an impor-
tant role during cortex development by modulating the BMP 
signaling pathway.

miRNA-22. BMPs such as BMP2, 3 and 4 are expressed at the 
external germinal layer during postnatal cerebellum develop-
ment and function as powerful inhibitors of sonic hedgehog 
(Shh)-mediated proliferation of cerebellar granular neuronal 
precursors (CGNPs) (50). To address whether the BMP signals 
that antagonize Shh-dependent proliferation are, at least in part, 
mediated by miRNAs, miRNA expression profiles in CGNPs 
in response to Shh were compared with those treated with 
Shh and BMP2 (51). miRNA-22 levels increased significantly 
following treatment with BMP2. miRNA-22 acts downstream 
of BMPs to modulate the activity of N-myc in CGNPs during 
the development of the cerebellum. The overexpression of 
miRNA-22 had a potent anti-proliferative effect, significantly 

Figure 1. The bone morphogenetic protein (BMP) signaling pathway and the regulation of miRNA levels. BMP ligands induce the phosphorylation and translo-
cation of Smads into the nucleus. The transcription of miRNAs or post-transcriptional miRNA processing is modulated by Smads. This regulation of miRNA 
levels is implicated in BMP signaling-mediated phenomena, such as vascular smooth muscle cell (VSMC) differentiation, osteogenesis and neurogenesis. 
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increasing the cell cycle duration in CGNPs. Moreover, in P7 
rat cerebellum, miRNA-22 distribution largely recapitulated 
the combination of BMP2 and BMP4 expression patterns (51). 
Therefore, BMP-mediated regulation of miRNA-22 is critical 
for neurogenesis by reducing the cell proliferation rate.

miRNA-134. The expression of miRNA-134 has been shown 
to be increased during embryonic neuronal differentiation 
and modulates dendritic maturation in response to exog-
enous BMP4 by targeting the BMP antagonist, Chordin-like 
1 (Chrdl-1) (52). The reduction in Chrdl-1 levels induced by 
miRNA-134 in dividing NPCs leads to the sensitization of 
cortical progenitors to autocrine BMP7 signaling, affecting 
NPC proliferation, neuron migration and neuronal matura-
tion  (52). Consistently, the sensitivity to exogenous BMP 
signals is reduced in miRNA‑134-knockdown cells. Therefore, 
miRNA‑134 is an essential mediator of BMP signaling-associ-
ated cortical development.

5. Conclusions

The BMP signaling pathway is involved in many cellular 
processes, including cell growth and differentiation. BMP 
signals either upregulate or downregulate a subset of miRNAs, 
and these coordinately regulated miRNAs cooperate for 
BMP signaling-mediated cellular functions. Therefore, it is 
important to understand how cells integrate the complicated 
regulation of miRNAs whose expression levels are fine-tuned 
by BMP signaling pathways and transmit a precise signal to 
control normal development and maintain homeostasis.

In the present review, we summarized the regulation of 
miRNA expression during BMP signaling pathway-mediated 
cellular differentiation, in particular VSMC differentiation, 
osteogenesis and neurogenesis. In most reported cases, miRNA 
levels are regulated by BMP signals, but BMP signaling is 
able to be regulated by miRNAs through targeting of BMP 
signal transducers or inhibitory molecules. For example, 
miRNA-30 and miRNA-133/135 target Smad1 and Smad5, 
respectively (27). This information provides insight into the 
mechansisms throug which miRNAs are integrated into the 
BMP signaling pathway and may help in the development 
of miRNA-based novel approaches to modulate the BMP 
signaling pathway for therapeutic applications.

Although the differential expression of a subset of 
miRNAs during BMP signaling-mediated differentiation has 
been elucidated in various contexts, many factors regulating 
the cellular miRNA levels are still unknown. Some miRNAs, 
such as miRNA-302, are transcriptionally regulated by direct 
binding of Smads to the promoter of the miRNA gene (20). 
Alternatively, other miRNAs are post-transcriptionally 
modulated by the association of Smads with pri-miRNA, such 
as miRNA-21 (15). Therefore, elucidating the mechanisms 
responsible for the regulation of miRNA remains a future 
challenge.
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