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Two central pattern generators from the
crab, Cancer borealis, respond robustly
and differentially to extreme extracellular
pH
Jessica A Haley†, David Hampton, Eve Marder*

Volen Center and Biology Department, Brandeis University, Waltham, United States

Abstract The activity of neuronal circuits depends on the properties of the constituent neurons

and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in

extracellular pH – from pH 5.5 to 10.4 – on two central pattern generating networks, the

stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological

properties of ion channels are known to be sensitive to pH within the range tested, it is surprising

that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these

rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-

animal variability was likely a consequence of similar network performance arising from variable

sets of underlying conductances. Together, these results illustrate the potential difficulty in

generalizing the effects of environmental perturbation across circuits, even within the same animal.

DOI: https://doi.org/10.7554/eLife.41877.001

Introduction
Nervous systems must be both robust and adaptable to changes in internal and external conditions.

Many intertidal marine crustaceans, such as the crabs and lobsters inhabiting the North Atlantic,

experience large fluctuations in ocean temperature, acidity, dissolved oxygen levels, and salinity.

The Jonah crab, Cancer borealis, can often be found foraging for food in intertidal zones where it

experiences temperatures between 3˚C and 24˚C with fluctuations as great as 10˚C in a single day

(Donahue et al., 2009; Haefner, 1977; Stehlik et al., 1991). As pH is temperature-dependent,

ocean pH fluctuations occur over the daily, monthly, and yearly experiences of long-lived crusta-

ceans, such as C. borealis.

In several marine invertebrates including the lobster, Homarus americanus, and the crab, Carcinus

maenas, hemolymph pH varies inversely with temperature following the rules of constant relative

alkalinity (Dove et al., 2005; Howell et al., 1973; Qadri et al., 2007; Truchot, 1978; Truchot, 1986;

Wood and Cameron, 1985). In other words, as temperature increases, hemolymph acidifies by

approximately �0.016 pH/˚C to maintain a constant ratio of pH to pOH through a process of bicar-

bonate buffering. Maintenance of this ratio in extra- and intracellular fluids is thought to be impor-

tant for stabilizing macromolecular structure and function (Reeves, 1972; Reeves, 1977;

Somero, 1981; Truchot, 1973). In vitro, shifts in hemolymph pH can alter the frequency and

strength of the lobster cardiac rhythm (Qadri et al., 2007). Like hemolymph, intracellular pH gener-

ally decreases as temperature rises, but has been shown to change at varying rates in different tis-

sues in the crab, Callinectes sapidus (Wood and Cameron, 1985). Active mechanisms for the

maintenance of intracellular pH have been suggested in the crab, Cancer pagurus (Golowasch and

Deitmer, 1993).
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Both temperature and pH alter the biophysical parameters governing the activity of ion channels

and pumps in excitable membranes. Under moderately acidic extracellular conditions, attenuation of

sodium, calcium, and potassium currents by up to 60% has been shown in mammalian and nonmam-

malian systems. (Courtney, 1979; Doering and McRory, 2007; Hille, 1968; Mozhaev et al., 1970;

Tombaugh and Somjen, 1996; Wanke et al., 1979; Woodhull, 1973; Zhou and Jones, 1996). The

reversible effects of pH on these channels may result from protonation of an acidic group with pKa

between 5.2 and 7.1 (Tombaugh and Somjen, 1996). Decreases in glutamatergic synaptic function

(Billups and Attwell, 1996; Bloch et al., 2001; Sinning et al., 2011) and increases in GABAergic

synaptic function (Sinning and Hübner, 2013) in response to extracellular acidification have also

been shown.

Further, respiratory control in mammals is highly pH sensitive and important for the regulation of

CO2 and O2 levels in the blood (Richerson, 1998) as CO2 rapidly dissolves in and acidifies physio-

logical solutions (Nattie, 1999). Multiple pH-sensitive ion channels and pumps, including a family of

acid-sensing ion channels (ASICs) have been discovered in mammalian cells and are hypothesized to

play a role in the maintenance of blood pH (Buckler et al., 1991; Husson and Smith, 2018;

Wang et al., 2018).

Although the biophysical, ethological, and environmental implications of changing pH have been

well studied, less is known about the effect of pH changes on neuronal circuits in marine inverte-

brates. Here, we study the effects of acute changes in extracellular pH on two well characterized

neuronal circuits, the stomatogastric (STG) and cardiac (CG) ganglia, of the crab, C. borealis. These

central pattern generators (CPGs) drive the coordinated and rhythmic muscle movements of the

crab’s stomach and heart, respectively. Although these CPGs are driven by numerically small neuro-

nal circuits, their dynamics involve complex interactions between many intrinsic and synaptic

currents.

Previous studies have shown that the pyloric rhythm of the STG and cardiac rhythm of the CG are

remarkably robust to short- and long-term changes in temperature in both in vivo and ex vivo prepa-

rations (Kushinsky et al., 2018; Marder et al., 2015; Soofi et al., 2014; Tang et al., 2010;

Tang et al., 2012). Despite similarly robust activity under moderate perturbation, these experiments

have revealed animal-to-animal variability in network activity at extreme temperatures (Haddad and

Marder, 2018; Tang et al., 2010; Tang et al., 2012). Given the relative insensitivity of the STG to

moderate shifts in pH (Golowasch and Deitmer, 1993), we sought to probe the robustness and vari-

ability of these circuits to extreme pH perturbation. To provide insight into the animal-to-animal vari-

ability in response to this extreme perturbation, we challenged these preparations with saline whose

pH was outside the range expected in the normal ocean environment. Both the pyloric and cardiac

rhythms are remarkably robust to acute pH changes within the range tested. This is surprising given

the sensitivity of many ion channels to pH in these ranges and suggests that networks can be more

robust to pH changes than expected.

Results
Two neuronal networks were studied in this paper. The stomatogastric ganglion (STG) of the crab,

Cancer borealis, contains the neurons that generate two stomach rhythms, the fast pyloric rhythm

and the slower gastric mill rhythm. The pyloric rhythm is driven by a three-neuron pacemaker kernel

– one Anterior Burster (AB) and two Pyloric Dilator (PD) neurons. The Lateral Pyloric (LP) and Pyloric

(PY) neurons fire out of phase with the PD neurons because they are rhythmically inhibited by the

PD/AB group (Marder and Bucher, 2007). The cardiac ganglion (CG) generates the rhythm respon-

sible for heart contraction, and consists of four pacemaker Small Cell (SC) neurons that drive five

motor Large Cell (LC) neurons (Cooke, 2002).

A schematic diagram of the stomatogastric nervous system preparation is found in Figure 1A.

Intracellular recordings were made from the somata of the desheathed STG and examples of the LP

and PD neuron waveforms are shown. Extracellular recordings from the motor nerves are indicated.

An example of the triphasic activity of the LP, PD, and PY neurons is seen in the inset trace next to

the lateral ventricular nerve (lvn). The connectivity diagram of the major neuron classes of the tripha-

sic pyloric rhythm is given in Figure 1B.
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A schematic diagram of the crab cardiac ganglion preparation shows an example of one burst of

SC and LC activity recorded from the trunk (Figure 1C). Figure 1D shows the connectivity diagram

of the cardiac ganglion.

Figure 1. Preparations and circuit diagrams. (A) Schematic of the stomatogastric nervous system preparation.

Extracellular electrodes were placed in vaseline wells (gray circles) drawn around nerves of interest. An example

extracellular nerve recording from the lateral ventricular nerve (lvn) shows two cycles of the triphasic pyloric rhythm

containing spikes from the Lateral Pyloric (LP), Pyloric (PY), and Pyloric Dilator (PD) neurons. Example intracellular

recordings from the LP and PD neurons are displayed. (B) Simplified diagram of the pyloric circuit. Filled circles

represent inhibitory chemical synapses; resistor symbol represents electrical coupling. (C) Schematic of the cardiac

ganglion preparation. Extracellular electrodes were placed in a well (gray circle) around the trunk of the

preparation. An example extracellular recording shows one burst of the Small Cell (SC) and Large Cell (LC)

neurons. (D) Diagram of the cardiac circuit. Filled triangles represent excitatory chemical synapses; the resistor

symbol represents electrical coupling.

DOI: https://doi.org/10.7554/eLife.41877.002
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The pyloric rhythm is surprisingly robust to extreme changes in pH
To characterize the response of the pyloric rhythm to acute changes in pH, superfused saline was

exchanged every 15 min in steps of approximately pH 0.5 from a control pH of 7.8 to an extreme

pH of either 5.5 or 10.4. Following the first acid or base step protocol, preparations were allowed to

recover for a minimum of 30 min at control pH until the frequency of the pyloric rhythm approached

that of controls. Preparations were then subjected to a step protocol in the opposite direction fol-

lowed by a second recovery period. Acid- or base-first protocols were counterbalanced.

Recordings and analysis from an example STG experiment with an acid-first protocol are shown in

Figure 2. Each box contains simultaneous intracellular recordings of the PD and LP neurons and

extracellular recordings of the lvn during the last minute at each pH step (Figure 2A). STG #1 dem-

onstrated a normal triphasic rhythm in control saline at pH 7.8 (Figure 2A; top left). As the prepara-

tion was subjected to more acidic saline, the rhythm remained triphasic until the most acidic pH, 5.5.

Control activity was recovered when the preparation was once again placed in control saline

(Figure 2A; top right). The bottom row shows the same preparation in basic conditions where it

Figure 2. Robust pyloric rhythm activity across pH. (A) Example recordings from a stomatogastric ganglion experiment with an acid-first protocol.

Intracellular recordings of the PD and LP neurons and extracellular recordings of the lvn are shown. Each colored box displays 5 s of recordings taken

from the last minute at each pH step. The experiment can be read left to right then top to bottom in chronological order. Horizontal lines indicate a

reference membrane potential of �40 mV; vertical lines indicate a scale of 10 mV. (B) Pyloric frequency, (C) number of PD spikes per burst, and (D) PD

duty cycle were calculated for the last 8 min of each pH step. Violin plots show the KDE distribution, mean, median, IQR, and 95% CI for each measure

across pH conditions. Recoveries from acid and base are displayed in the shaded gray regions on the far ends of each plot.

DOI: https://doi.org/10.7554/eLife.41877.003

The following source data is available for figure 2:

Source data 1. Numerical data represented in panel B, C, and D of Figure 2.

DOI: https://doi.org/10.7554/eLife.41877.004
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remained triphasic, although with fewer spikes per burst and lower amplitude slow waves at pH

10.4. Again, the preparation recovered a canonical triphasic rhythm in control saline as seen in the

bottom right.

Measures of the pyloric rhythm burst frequency, PD spikes per burst, and PD duty cycle (the frac-

tion of the pyloric rhythm’s period during which the PD neurons were active) were calculated for the

last 8 min of each 15 min pH step. Violin plots reveal the distribution of these measures for STG #1

at each pH (Figure 2B–D). The pyloric burst frequency of STG #1 increased in acid and decreased in

base (Figure 2B). The number of PD spikes per burst decreased at pH 5.5 (Figure 2C). The duty

cycle of the PD neurons in STG #1 decreased slightly in base (Figure 2D).

While many preparations maintained surprisingly robust pyloric rhythms from pH 5.5 to 10.4,

others exhibited disrupted patterns of activity at the most extreme pH conditions. The activity of

two additional STG preparations across the range of pH tested is shown in Figure 3A. Both prepara-

tions displayed robust activity across a nearly 125-fold range of hydrogen ion concentration but

became weakly active or silent at pH 5.5. At pH 10.4, STG #2 was slow and weakly triphasic while

STG #3 retained a strong triphasic rhythm. These examples highlight both the animal-to-animal vari-

ability of the pyloric rhythm at control conditions and the variable effects of extreme acidosis or alky-

losis on this network.

To characterize these effects across all preparations, we defined five states of activity: (1) ‘normal

triphasic’ rhythm containing PD, LP, and PY with a minimum of three spikes per burst for each unit;

(2) ‘weak triphasic’ rhythm retaining all three units with some units spiking only once or twice per

cycle; (3) ‘intermittent triphasic’ rhythm describing rhythmic activity with only some units active; (4)

‘all silent’; and (5) ‘atypical activity’ or activity that could not be categorized under the first four defi-

nitions (Figure 3B). Preparations were categorized systematically according to the criteria outlined

in Materials and methods. The mean fraction of time that all preparations spent in these five states

during the last 8 min of each pH step was analyzed (Figure 3C).

Rhythms rarely transitioned intermittently between two states. For example, once a pyloric

rhythm had transitioned from normal triphasic to weak triphasic, it rarely transitioned back to normal

triphasic until after recovery in control pH. Further, rhythms generally transitioned in a stereotypical

pattern. The pyloric rhythm often transitioned from normal triphasic to weak triphasic to intermittent

triphasic to all silent. During recovery, this transition pattern was reversed. Both acid and base signif-

icantly decreased the fraction of time that preparations were rhythmic, a combined metric of states

1 (normal triphasic) and 2 (weak triphasic) (Figure 3—figure supplement 1). Preparations were sig-

nificantly less triphasically rhythmic at pH 5.5 and pH 10.4 compared to control pH 7.8.

To describe these effects quantitatively, measures of the pyloric rhythm frequency, the number of

PD spikes per burst, and PD duty cycle were calculated. Violin plots give pooled distributions for

each pH across all preparations (Figure 3D–F). Mean pyloric burst frequency was relatively invariant

across pH values in the presence of acid, but varied significantly across base steps (Figure 3D). Pylo-

ric burst frequency at pH 9.3 and 10.4 was significantly slower than that at control. Both acid and

base significantly affected the mean number of PD spikes per burst (Figure 3E). The number of

spikes per burst was significantly reduced at pH 5.5. Additionally, there was a significant effect of

acid and base on the mean PD duty cycle (Figure 3F). Paired samples t-tests revealed a slight

increase in mean PD duty cycle from control pH 7.8 to pH 6.1.

The pooled distributions for these three measures were highly variable for all pH conditions

reflecting the animal-to-animal variability in the pyloric rhythm. We plotted the distributions for all

15 STG preparations at control pH 7.8 and found similarly variable activity at baseline conditions

(Figure 3—figure supplement 2).

Semi-isolated pyloric neurons are sensitive to extreme pH
To determine how the intrinsic properties of neurons respond to pH, we analyzed several character-

istics of the intracellular recordings from the PD and LP neurons (Figure 4). We isolated the neurons

from most of their pyloric network synaptic inputs by blocking the glutamatergic inhibitory synapses

with 10�5 M picrotoxin (PTX) (Marder and Eisen, 1984) (Figure 1B). We analyzed mean resting

membrane potential (mV), spike amplitude (mV), and burst or spiking frequencies (Hz) for both cells

in the presence of PTX as a function of pH. The waveforms of the PD and LP neurons from an exam-

ple preparation are shown prior to PTX superfusion (Figure 4A; leftmost traces). Note the large LP-

evoked inhibitory post-synaptic potentials (IPSPs) in the trough of the PD neuron waveform and the
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Figure 3. Variability of pyloric rhythm activity at extreme pH. (A) Two additional stomatogastric ganglion experiments displaying 3 s of intracellular PD

and extracellular lvn recordings. Horizontal lines indicate a reference membrane potential of �40 mV; vertical line indicates a scale of 10 mV. (B) Five

states were defined to characterize pyloric rhythm activity. Examples of activity for each state are given. (C) Stacked bars give the mean fraction of time

that all 15 preparations spent in each state. (D) Pyloric rhythm frequency, (E) number of PD spikes per burst, and (F) PD duty cycle were calculated and

pooled across all STG preparations for each pH step. Violin plots show the KDE distribution, mean, median, IQR, and 95% CI for each measure across

pH conditions. Recoveries from acid and base are displayed in the shaded gray regions on the far ends of each plot. Asterisks denote statistical

significance revealed by paired samples t-tests with Bonferroni correction (*p<0.05; **p<0.01; ***p<0.001).

DOI: https://doi.org/10.7554/eLife.41877.005

The following source data and figure supplements are available for figure 3:

Source data 1. Numerical data represented in panel C, D, E, and F of Figure 3 and and panel A, B, and C of Figure 3—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.41877.008

Figure supplement 1. Statistical analysis of the effects of pH on the pyloric rhythm.

DOI: https://doi.org/10.7554/eLife.41877.006

Figure supplement 2. Variability of pyloric rhythm activity at control pH.

DOI: https://doi.org/10.7554/eLife.41877.007
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large amplitude inhibition of the LP caused by activity of the PD, AB, and PY neurons. Following

application of PTX at control pH 7.8 (Figure 4A; center traces), the PD neuron was still bursting but

the LP-evoked IPSPs were entirely blocked. Most of the inhibitory inputs to the LP neuron were

blocked, leaving only the cholinergic inhibition contributed by the PD neurons. At pH 6.7, the PD

neuron of this preparation lost most of its slow wave activity. It then became silent and depolarized

in pH 5.5 saline. At pH 8.8, the PD burst was largely intact, and at pH 10.4, the neuron showed sin-

gle spike bursts. The LP neuron fired tonically from pH 6.7 to 10.4, again showing loss of activity at

pH 5.5 similar to PD.

Figure 4. Intracellular characteristics of semi-isolated pyloric neurons, PD and LP. Several characteristics of the PD and LP neurons in the presence of

picrotoxin (PTX) were measured for the last minute of each pH condition. (A) Example intracellular recordings of PD and LP neurons prior to PTX

application and in the presence of PTX across pH conditions. Horizontal lines indicate a reference membrane potential of �40 mV; the vertical line

indicates a scale of 10 mV. (B,C) Minimum membrane potential and (D,E) spike amplitude are plotted for LP and PD as a function of pH. (F) PD burst

frequency and (G) LP firing rate are also plotted at each pH. Violin plots show the KDE distribution, mean, median, IQR, and 95% CI for each measure

across pH conditions. Recoveries from acid and base are displayed in the shaded gray regions on the far ends of each plot. Asterisks denote statistical

significance revealed by paired samples t-tests with Bonferroni correction (*p<0.05; **p<0.01; ***p<0.001).

DOI: https://doi.org/10.7554/eLife.41877.009

The following source data and figure supplement are available for figure 4:

Source data 1. Numerical data represented in panel B, C, D, E, F, and G of Figure 4.

DOI: https://doi.org/10.7554/eLife.41877.011

Figure supplement 1. Statistical analysis of the effects of pH on semi-isolated PD and LP neurons.

DOI: https://doi.org/10.7554/eLife.41877.010
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Violin plots show pooled values for the most hyperpolarized levels (minimum voltages) of the

membrane potential for PD and LP neurons (Figure 4B,C). For moderate shifts in pH, the membrane

potential was fairly stable. At extreme acid, the mean PD neuron membrane potential depolarized

significantly, while the mean LP neuron membrane potential remained relatively constant (Figure 4—

figure supplement 1). In contrast, the PD neuron’s membrane potential in basic saline was relatively

constant, even at extreme base, but the LP neuron’s membrane potential significantly hyperpolar-

ized. The depolarization of PD at pH 5.5 and 6.1 and the hyperpolarization of LP at pH 8.8, 9.3, 9.8,

and 10.4 were significantly different from control saline.

Additionally, there was a slight effect of pH on mean spike amplitude at the most extreme pH

conditions for both the LP and PD neurons (Figure 4D,E). Acid significantly affected both PD and LP

neuron spike amplitude while alkylosis had an effect on LP, but not PD neurons (Figure 4—figure

supplement 1). At pH 5.5, spike amplitude was significantly attenuated for both LP and PD. Addi-

tionally, LP spike amplitude was significantly decreased at pH 6.1 while PD was only moderately

affected.

There was a significant effect of both acidic and basic saline on mean PD burst frequency and LP

firing rate (Figure 4F,G; Figure 4—figure supplement 1). Mean PD burst frequency was significantly

decreased at pH 5.5. The LP firing rate was significantly reduced in pH 5.5, 6.1, 8.3, 9.3, 9.8, and

10.4 compared to control pH 7.8.

Rhythmic gastric-like activity was elicited upon exposure to and
recovery from extreme acid and base
The STG contains a second slower central pattern generating circuit known as the gastric mill rhythm

(Marder and Bucher, 2007). Unlike the pyloric rhythm which contains a pacemaker kernel, the gas-

tric rhythm is controlled by the reciprocal alternation of activity driven by descending neuromodula-

tory inputs (Marder and Bucher, 2007; Nusbaum et al., 2017). The principal neurons involved in

the gastric mill rhythm are the Lateral Gastric (LG), Medial Gastric (MG), Lateral Posterior Gastric

(LPG), Gastric Mill (GM), Dorsal Gastric (DG), and Interneuron 1 (Int1) neurons (Mulloney and Selver-

ston, 1974a; Mulloney and Selverston, 1974b).

The gastric mill rhythm is often silent in dissected STG preparations and requires stimulation of

descending and/or sensory neurons to elicit activity (Blitz et al., 1999). Interestingly, in 10 of 15

preparations a gastric-like rhythm appeared at pH 8.8 or above, and 4 of 15 showed this type of

activity in acid at or below pH 6.1. Further, a strong gastric-like rhythm was elicited upon recovery

from extreme acid in 5 of 15 preparations and from extreme base in 7 of 15. Preparations in which

gastric rhythms were seen in one of these conditions were likely to display gastric-like activity in the

other conditions.

An example preparation in control pH 7.8 saline is shown as it recovers activity after exposure to

pH 5.5 saline (Figure 5). Intracellular recordings from the LP and PD neurons and extracellular

recordings from five nerves – lateral ventricular (lvn), medial ventricular (mvn), dorsal gastric (dgn),

lateral gastric (lgn), and inferior oesophageal (ion) – are shown. In addition to axons of the LP, PD,

and PY neurons, the lvn contains the LG axon. The mvn contains axons from two neurons, the Infe-

rior Cardiac (IC) and the Ventricular Dilator (VD). Inhibition of IC and VD was coincident with LG

bursting. The dgn shows GM and DG activity and the lgn contains LG activity. Recordings from the

ion reveal Modulatory Commissural Neuron 1 (MCN1) activity. One period of the gastric mill rhythm

can be defined by the time from the onset of one LG burst to the next.

Over the 20 min shown, there was a clear increase in both gastric and pyloric activity with the LP

and PD neurons becoming rhythmic and the emergence of strong rhythmic activity of the MCN1,

LG, DG, and GM neurons (Figure 5A). At the beginning of this recovery period, both the PD and LP

neurons were silent, reflecting loss of activity in pH 5.5 (Figure 5B). Strong LG neuron bursts were

timed with hyperpolarizations of the LP neuron. This is consistent with previous findings that the neu-

rons driving the gastric mill rhythm synapse onto the pyloric network and that gastric mill activity

correlates with slowing of the pyloric rhythm (Bucher et al., 2007). A few minutes later, the LP and

PD neurons started to recover rhythmic slow waves (Figure 5C). The LP and the second PD neuron –

seen here on the lvn recording – were bursting. Both neurons became silent due to a strong inhibi-

tory input coinciding with strong LG and MCN1 activity. Shortly thereafter, the LP and PD neurons

were firing rhythmically (Figure 5D). Depolarizing inhibition resulted in tonic firing of LP and no

activity on the intracellular recording of PD. Finally, the LP and PD neurons were bursting
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(Figure 5E). Inhibitory input coincident with LG and MCN1 activity resulted in depolarization of the

PD and LP neurons and an increased duty cycle of LP bursting.

The rhythmic gastric-like activity seen here is similar to gastric mill rhythms elicited upon stimula-

tion of the Ventral Cardiac Neurons (VCNs) (Beenhakker et al., 2007; Saideman et al., 2007;

White and Nusbaum, 2011). Studies have shown that stimulation of the VCNs triggers activation of

MCN1 and Commissural Projection Neuron 2 (CPN2) in the commissural ganglia (CoGs). This

Figure 5. Rhythmic gastric-like activity upon recovery from extreme acid. (A) 20 min of recording are shown from an example experiment where the

ganglion had become silent at pH 5.5 and began recovering rhythmic activity in control pH 7.8 saline. Intracellular recordings from LP and PD neurons

and extracellular recordings from five nerves – lvn, mvn, dgn, lgn, and ion – are displayed. Horizontal lines indicate a reference membrane potential of

�40 mV; vertical lines indicate a scale of 10 mV. Gray boxes correspond to the one-minute snapshots enlarged in subsequent panels respective to time.

(B–E) Titles describe the pyloric neuron activity during and between LG bursts.

DOI: https://doi.org/10.7554/eLife.41877.012
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MCN1/CPN2 gastric mill rhythm drives the alternation of activity of the protractor motor neurons –

LG, GM, MG, and IC – and the retractor neurons – DG, Int1, and VD. We see similar activity here

with strong MCN1 bursts on the ion corresponding to strong LG and GM bursts on the lgn and dgn,

respectively, in alternation with DG bursts on the dgn.

The cardiac rhythm is robust to acute changes in pH
To characterize the response of the cardiac rhythm to pH, we bath superfused cardiac ganglion

preparations with saline between pH 5.5 and pH 10.4 using the same protocol described above for

stomatogastric ganglion preparations. Example extracellular recordings are shown from the cardiac

ganglia of two animals during the last minute of each pH step (Figure 6A). As shown in the top row

of CG #1, the ganglion started in control saline at pH 7.8 and demonstrated a normal rhythm of

Small and Large Cells bursting together. As the preparation was subjected to both acidic and basic

saline, the rhythm remained. In contrast, the cardiac rhythm in CG #2 became less rhythmic in pH

Figure 6. Robust and variable cardiac rhythm activity across pH. (A) Two example cardiac ganglion experiments with an acid-first protocol. Each

colored box displays 12 s of extracellular recordings of the trunk taken from the last minute of each pH condition. Small Cell (SC) and Large Cell (LC)

activity is visible. Each experiment can be read left to right then top to bottom in chronological order. (B) Cardiac frequency, (C) number of LC spikes

per burst, and (D) LC duty cycle were calculated for CG #1 for each pH step. Violin plots show the KDE distribution, mean, median, IQR, and 95% CI for

each measure across pH conditions. Recoveries from acid and base are displayed in the shaded gray regions on the far ends of each plot.

DOI: https://doi.org/10.7554/eLife.41877.013

The following source data is available for figure 6:

Source data 1. Numerical data represented in panel B, C, and D of Figure 6.

DOI: https://doi.org/10.7554/eLife.41877.014

Haley et al. eLife 2018;7:e41877. DOI: https://doi.org/10.7554/eLife.41877 10 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.41877.013
https://doi.org/10.7554/eLife.41877.014
https://doi.org/10.7554/eLife.41877


5.5 and in pH 9.8 and above. A normal bursting rhythm recovered after superfusion of control saline

as seen in the bottom right.

Measures of cardiac ganglion rhythm frequency, LC spikes per burst, and LC duty cycle were cal-

culated for CG #1. Violin plots reveal the distribution of these measures at each pH (Figure 6B–D).

The cardiac frequency of CG #1 decreased in acid and increased in base (Figure 6B). Further, the

number of LC spikes per burst increased in acid (Figure 6C) while the LC duty cycle for CG #1

decreased slightly in acid and base (Figure 6D). Similar to STG #1, CG #1 retained robust activity

throughout the entire range of pH tested.

To characterize these effects, we defined four states of activity: (1) ‘SC and LC bursting’ rhythm

containing both units with a minimum of one LC spike per SC burst; (2) ‘SC bursting only’ rhythm

containing only SC bursts with no or inconsistent LC spiking; (3) ‘all silent’; and (4) ‘atypical activity’

that could not be categorized under the first three definitions (Figure 7A). The mean fraction of

time that all preparations spent in these states is plotted (Figure 7B). The cardiac rhythm usually

transitioned from SC and LC bursting to SC bursting only to all silent. This transition pattern was

reversed during recovery. The mean fraction of time that preparations were rhythmic (state 1 – SC

and LC bursting) was significantly affected by both acid and base (Figure 7—figure supplement 1).

Rhythmic activity was significantly decreased at pH 5.5, pH 9.3, pH 9.8, and pH 10.4 compared to

control pH 7.8.

To describe these effects quantitatively, measures of rhythm frequency, the number of LC spikes

per burst, and LC duty cycle were calculated and their distributions are displayed in violin plots

(Figure 7C–E). Cardiac rhythm frequency declined in both acidic and basic saline (Figure 7C; Fig-

ure 7—figure supplement 1). At pH 10.4, the cardiac rhythm was significantly slower. The mean

number of LC spikes per burst was significantly affected in both acid and base (Figure 7D). The

number of LC spikes per burst was significantly increased at pH 5.5 and pH 6.1 and decreased at pH

9.8 and pH 10.4. There was a significant effect of base but not acid on mean LC duty cycle

(Figure 7E).

Similar to the STG, we observed a large spread in pooled measures across all pH conditions,

reflecting the animal-to-animal variability in these networks. We plotted the distributions for all CG

preparations at baseline and noted highly variable cardiac rhythm activity independent of the pH

perturbation (Figure 7—figure supplement 2).

The cardiac and pyloric rhythms are differentially sensitive to pH
To compare the effect of pH on the cardiac and pyloric rhythms, the distributions of the fraction of

time that each preparation retained a normal rhythm were compared (Figure 8A). A normal rhythm

was defined as a triphasic rhythm (a combined metric of states 1 and 2) and Small Cells and Large

Cells bursting together (state 1) for the pyloric and cardiac rhythms, respectively. A comparison

between the rhythmicity of these two ganglia across pH reveals similar distributions with maxima

around control pH 7.8 and minima at extreme pH values. Interestingly, these distributions are asym-

metrical, as the CG was more sensitive to extreme base whereas the STG was more sensitive to

extreme acid. There were significant main effects of pH and ganglion as well as an interaction

between pH and ganglion on rhythmicity in both acidic and basic solutions (Figure 8—figure sup-

plement 1). The pyloric rhythm was significantly less rhythmic at pH 5.5, but significantly more rhyth-

mic at pH 9.3 and 9.8 compared to the cardiac rhythm.

To understand better the amount of animal-to-animal variability in these two rhythms, the activity

of individual preparations was plotted in control pH 7.8, extreme acid pH 5.5, and extreme base pH

10.4 (Figure 8B). All preparations were rhythmically bursting at control pH – indicated by darkly col-

ored boxes – and became less rhythmic – lighter colored – in the presence of extreme acid. How-

ever, 14 of 15 STG preparations ceased firing after 15 min of exposure to pH 5.5. In contrast, only 6

of 15 CG preparations showed reductions in rhythmic activity at pH 5.5. Three of 15 CG preparations

maintained a normal rhythm in every pH condition. Interestingly, STG preparations that showed dec-

rements in activity during basic conditions were extremely susceptible to reductions in activity during

extreme acid. The opposite is true in CG preparations suggesting that activity in base is a better

predictor of acid activity in the STG and vice versa in the CG. This finding also suggests that some

preparations were more susceptible to the effects of pH than others.

Furthermore, strong correlations are found between baseline frequency and frequency in extreme

acid or base for PD neurons. Strong correlations are also found between baseline LC frequency and
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LC frequency in extreme acid, but not in extreme base. In other words, the preparations that are

weaker or slower at control conditions remain slower at extreme pH conditions. This suggests that

the variability seen here is inherent in the population and is likely not caused by the pH perturbation.

Discussion
Circuit dynamics depend on the properties of the constituent neurons and their synaptic connec-

tions. Likewise, the intrinsic excitability of an individual neuron depends on the number and proper-

ties of its voltage- and time-dependent channels. Crab central pattern generating circuits are robust

and adaptable to a large range of temperatures (DFO, 2009; Haddad and Marder, 2018;

Rinberg et al., 2013; Tang et al., 2010; Tang et al., 2012). Previous research revealed robust activ-

ity and increasing frequency of the pyloric and cardiac rhythms in response to increasing tempera-

ture in both in vivo and ex vivo preparations (Kushinsky et al., 2018; Tang et al., 2010; Tang et al.,

Figure 7. Characteristics of cardiac rhythm activity across pH. (A) Four states were defined to characterize cardiac rhythm activity. Examples of activity

for each state are given. (B) Stacked bars give the mean fraction of time that all 15 preparations spent in each state for each pH step. (C) Cardiac

rhythm frequency, (D) number of LC spikes per burst, and (E) LC duty cycle were calculated and pooled across all CG preparations for each pH step.

Violin plots show the KDE distribution, mean, median, IQR, and 95% CI for each measure across pH conditions. Recoveries from acid and base are

displayed in the shaded gray regions on the far ends of each plot. Asterisks denote statistical significance revealed by paired samples t-tests with

Bonferroni correction (*p<0.05; **p<0.01; ***p<0.001).

DOI: https://doi.org/10.7554/eLife.41877.015

The following source data and figure supplements are available for figure 7:

Source data 1. Numerical data represented in panel B, C, D, and E of Figure 7 and panel A, B, and C of Figure 7—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.41877.018

Figure supplement 1. Statistical analysis of the effects of pH on the cardiac rhythm.

DOI: https://doi.org/10.7554/eLife.41877.016

Figure supplement 2. Variability of cardiac rhythm activity at control pH.

DOI: https://doi.org/10.7554/eLife.41877.017
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2012). Contrastingly, increasing pH reveals non-linear effects on activity, which may suggest more

complex mechanisms.

Given that the physiological properties of ion channels are sensitive to pH (Anwar et al., 2017;

Bayliss et al., 2015; Catterall, 2000; Cens et al., 2011; Cook et al., 1984; Doering and McRory,

2007; Guarina et al., 2017; Harms et al., 2017; Hille, 1968; Mahapatra et al., 2011;

Marcantoni et al., 2010; Tombaugh and Somjen, 1996; Vilin et al., 2012; Zhou et al., 2018), one

might imagine that a neuronal circuit might be as sensitive to changes in pH as its most sensitive ion

channels. Therefore, it is surprising that the central pattern generating rhythms of both the STG and

the CG of the crab, C. borealis, are relatively insensitive to acute pH change from about pH 6.1 to

pH 8.8 while the individual functions of many ion channels are known to be considerably altered

within this range.

One possible explanation for these results is that crustacean ion channels are more robust to pH

change than channels from other species. In most vertebrate animals, pH is carefully regulated.

Slight acidosis or alkalosis can have deleterious effects on many aspects of vertebrate physiology

(Chesler, 2003; Fencl et al., 1966; Nattie, 1999), which may be partially a consequence of the rela-

tive sensitivity of many vertebrate ion channels and synapses to pH. Unfortunately, little is known

about the pH sensitivity of crustacean ion channels, but it would be surprising if it differed drastically

from that seen in other animals as there is considerable homology across phylogeny in channel struc-

ture and function. Recent evidence suggests that acid-sensing ion channels are evolutionarily con-

served, which presents the possibility of specialized channels for the modulation of pH in crustacean

ganglia (Lynagh et al., 2018). However, the possibility remains that modest evolutionary changes in

channel structure occurred to allow endothermic animals to function in high temperature and low

pH conditions. Evidence of evolved pH robustness has been shown in mammals where smaller volt-

age-gated Na+ and ASIC-mediated currents likely confer greater resistance to acid-induced cell

death in the naked mole-rat brain compared to that of the mouse (Husson and Smith, 2018).

Figure 8. Rhythmicity of the cardiac and pyloric rhythms compared across pH. (A) Mean fraction of time that both the pyloric (blue) and cardiac (green)

rhythms displayed normal activity is plotted as a function of pH. Differences between the activity of the two rhythms were analyzed by independent

samples t-tests at each pH. Recovery from acid and base are displayed on the far ends of the plot. Asterisks denote statistical significance with

Bonferroni correction (*p<0.05; **p<0.01; ***p<0.001). (B) Rhythmicity of individual animal preparations is plotted for extreme acid (pH 5.5), control (pH

7.8) and extreme base (pH 10.4) saline conditions. Each column of boxes represents a single preparation, with position across conditions remaining

constant. The saturation of each box represents the mean fraction of time with a normal rhythm as indicated by the color bars on the right.

DOI: https://doi.org/10.7554/eLife.41877.019

The following source data and figure supplement are available for figure 8:

Source data 1. Numerical data represented in panel A and B of Figure 8.

DOI: https://doi.org/10.7554/eLife.41877.021

Figure supplement 1. Statistical analysis of the differential effects of pH on the pyloric and cardiac rhythms.

DOI: https://doi.org/10.7554/eLife.41877.020
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Another possibility for the circuit robustness seen in this study could be that there are compensa-

tory and/or correlated changes in the effects of pH across the population of channels in these net-

works. Therefore, one prediction of the relative pH insensitivity of these networks is that numerous

pH sensitive changes occur across the population of ion channels, but that these circuits have

evolved sets of correlated ion channels that compensate for these changes (O’Leary and Marder,

2016; O’Leary et al., 2013; O’Leary et al., 2014; Temporal et al., 2012; Temporal et al., 2014;

Tobin et al., 2009). Consistent with this possibility is the finding that in mammalian thalamocortical

neurons, the counterbalancing activities of HCN and TASK channels restricts the effect of extracellu-

lar acidification (pH 7.3 to 6.3) on resting membrane potential (Meuth et al., 2006).

In addition to the relative pH insensitivity of these circuits, we were surprised that the cardiac and

pyloric rhythms of C. borealis are differentially sensitive to acid and base. This was unexpected as

there is almost a complete overlap of ion channel genes expressed in the two ganglia

(Northcutt et al., 2016; Ransdell et al., 2013a; Ransdell et al., 2013b; Schulz et al., 2006;

Schulz et al., 2007; Tobin et al., 2009). This differential sensitivity could be due to differences in

the burst generating mechanisms of the two networks. The pyloric rhythm depends heavily on a

bursting pacemaker neuron and on post-inhibitory rebound as a timing mechanism (Harris-

Warrick et al., 1995a; Harris-Warrick et al., 1995b; Hartline and Gassie, 1979). In contrast, the

cardiac ganglion depends on strong excitatory drive from the pacemaker neurons (Cooke, 1988).

These excitatory and inhibitory synaptic connections could be differentially sensitive to pH. Addition-

ally, although both networks are driven by bursting pacemaker neurons, the relative contribution of

different ion channels to the burst generating mechanism may be sufficiently different so that the

pacemakers themselves respond differently to high and low pH. A similar conclusion comes from a

recent study that demonstrated that the arterioles in the retrotrapezoid nucleus, a region critical for

respiratory chemosensation, and those in the cortex are differentially modulated during exposure to

high CO2/H
+ (Hawkins et al., 2017). Together, these findings support the possibility of specializa-

tion of a circuit’s response to pH in the context of its local function.

The membrane potentials of the semi-isolated pyloric neurons, LP and PD, varied differentially

with changes in extracellular pH. Semi-isolated LP neurons fired tonically and hyperpolarized in

extreme base while semi-isolated PD neurons depolarized in acid. In intact preparations, we

observed depolarization in acid for both neurons, suggesting an important role of circuit connectivity

in regulating network activity across pH. These results illustrate the potential difficulty in generalizing

the effects of environmental perturbation across neurons and circuits, even within the same animal.

Under most control conditions, the gastric mill rhythm was silent as is typically observed in STG

preparations when the descending modulatory inputs are removed (Hamood and Marder, 2015).

Unexpectedly, gastric mill rhythms were frequently activated upon exposure to or recovery from

extreme pH. It is possible that either sensory or modulatory axons were activated by the pH

changes, and it is feasible that specific sensory and/or modulatory neurons might be part of a circuit

important in vivo for a response to altered pH.

In this study, we examined the effects of manipulating extracellular pH. However, the extent to

which intracellular pH was affected and its contribution to changes in activity remain unclear. Neu-

rons penetrated with intracellular recording electrodes exhibited more labile activity in response to

changing pH than ones that were not penetrated with a sharp electrode. This may indicate that

changes in intracellular pH would be more deleterious than what occurs in response to changes in

extracellular pH alone. Golowasch and Deitmer, 1993 revealed that extracellular pH in the STG of

the crab, Cancer pagurus, was reliably around 0.1 pH more alkaline than bath pH while intracellular

pH was 0.3 to 0.4 pH more acidic. Further, moderate shifts in bath pH – from pH 7.4 to 7.0 or 7.8 –

resulted in negligible changes in pyloric frequency and slow and low amplitude shifts in extracellular

pH while NH4Cl induced acidosis resulted in recoverable alkylosis of both the intracellular and extra-

cellular space (Golowasch and Deitmer, 1993). These results suggest the restriction of the free dif-

fusion of protons through the ganglion and the existence of active Na+-dependent mechanisms to

maintain more acidic intracellular and more alkaline extracellular compartments. Golowasch and

Deitmer, 1993 hypothesized that glial cells surrounding the neuronal processes in the neuropil of

the STG may contain a Na+/H+ exchanger.

The results of Golowasch and Deitmer (1993) are consistent with what is known in other sys-

tems. The distribution of pH values within the brainstem during acute hypercapnia, an increase in

blood CO2, is heterogenous and location-dependent, reflecting local blood flow and pH regulatory
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mechanisms (Ichikawa et al., 1989). Further, it remains uncertain as to whether or not pH sensation

involved in the mammalian respiratory response is extracellular or intracellular (Buckler et al., 1991;

Fencl et al., 1966; Lassen, 1990; Ritucci et al., 1997). In the pulmonate snail, Helix aspersa, the

effect of hypercapnic solutions on the ventilatory response was greater than that of NH4Cl solutions

of the same extracellular pH lacking CO2, which suggests that the effects of CO2 on intracellular pH

is responsible for modulating chemoreception in this system (Erlichman and Leiter, 1993;

Erlichman and Leiter, 1994). Mammalian studies have also suggested a role for glia in the modula-

tion and maintenance of extracellular pH (Kaila and Ransom, 1998; Ransom, 1992; Wenker et al.,

2012).

The ocean environment is both warming and acidifying at historic rates. Cancer borealis maintains

relatively robust pyloric and cardiac rhythms in the temperature ranges it usually experiences

(Marder et al., 2015; Soofi et al., 2014; Tang et al., 2010; Tang et al., 2012). The effect of tem-

perature on ocean pH is relatively modest in comparison to the range of pH studied here; though,

ocean pH can fluctuate in response to other environmental conditions. In Carcinus maenas, exposure

to artificial ocean acidification produced relatively small changes in hemolymph pH (Maus et al.,

2018). Therefore, unlike some ocean organisms that are very sensitive to even small ocean pH

changes, we predict that the neuronal circuits in C. borealis, at least in adults, will be largely insensi-

tive to changes in ocean pH, although the effects of pH swings may be exacerbated by changes in

temperature or other environmental variables. Other physiological parameters, such as metabolic

rates and hemolymph flow may be more pH sensitive (Maus et al., 2018). Moreover, network per-

formance may be further attenuated when pH is coupled to increasing temperature and other envi-

ronmental insults.

The data in this paper and in previous work on temperature reveal considerable animal-to-animal

variability in response to extreme perturbations. Here, all preparations behaved predictably and reli-

ably across more than a thousand-fold change in hydrogen ion concentration, an unexpectedly large

range of robust performance. At more extreme pH, animal-to-animal variability became apparent,

consistent with the responses of these circuits to extreme temperatures (Marder et al., 2015;

Soofi et al., 2014; Tang et al., 2010; Tang et al., 2012). This animal-to-animal variability is almost

certainly a consequence of the fact that similar network performance can arise from quite variable

sets of underlying conductances (Goaillard et al., 2009; Grashow et al., 2009; Grashow et al.,

2010; Prinz et al., 2004). What remains to be seen is whether animals that are more robust to a

given extreme perturbation are less robust to others and whether there are given sets of network

parameters that confer robustness to many different perturbations.

Materials and methods

Animals
From March 2016 to May 2018, adult male Jonah crabs (Cancer borealis) weighing between 400 and

700 grams were obtained from Commercial Lobster (Boston, MA). Before experimentation, all ani-

mals were housed in tanks with flowing artificial seawater (Instant Ocean) between 10˚C and 13˚C on

a 12 hr light/dark cycle without food. Animals were kept in tanks for a maximum of two weeks. Ani-

mals were removed from tanks and kept on ice for 30 min prior to dissection.

Saline solutions
Control C. borealis physiological saline was composed of 440 mM NaCl, 11 mM KCl, 13 mM CaCl2,

26 mM MgCl2, 11 mM Trizma base, and 5 mM Maleic acid. Additional quantities of concentrated

HCl and NaOH were added to achieve solutions with pH 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0

at room temperature. Solutions were measured again at 11˚C and determined to be at pH 5.5, 6.1,

6.7, 7.2, 7.8, 8.3, 8.8, 9.3, 9.8, and 10.4, respectively. Solution pH was measured using a calibrated

pH/ion meter (Mettler Toledo S220). For experiments with picrotoxin, 10�5 M PTX was added to

each of the pH solutions.

Electrophysiology
The stomatogastric and cardiac nervous systems were dissected out of the animals and pinned out

in a Sylgard (Dow Corning) coated plastic Petri dish containing chilled saline (11˚C). In all cases, we
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worked only with fully intact stomatogastric nervous system preparations that included the commis-

sural and esophageal ganglia and their descending nerves. Only preparations containing healthy car-

diac or pyloric rhythms with no sign of damage from dissection were analyzed.

Vaseline wells were placed around motor nerves and extracellular recordings were obtained using

stainless steel pin electrodes placed in the wells and amplified using a differential amplifier (A-M Sys-

tems Model 1700). Intracellular sharp-electrode recordings were obtained from cell bodies in the

stomatogastric ganglion using a microelectrode amplifier (Molecular Devices Axoclamp 2B or 900A)

with HS-2A-x1LU headstages holding 15–30 MW boroscilate microelectrodes with filaments (Sutter

Instrument Co. BF150-86-10) pulled with a Flaming/Brown micropipette puller (Sutter Instrument

Co. P-97). Microelectrodes were filled with a solution of 10 mM MgCl2, 400 mM potassium gluco-

nate, 10 mM HEPES, 15 mM Na2SO4, and 20 mM NaCl (Hooper et al., 2015).

Preparations were continuously superfused with physiological saline at 11˚C. Superfusion was

gravity fed at approximately 9 mL/min. The temperature of the superfusing saline was controlled

and recorded using a Peltier device (Warner Instruments CL-100). Instantaneous bath pH was

recorded using a pH microelectrode placed adjacent to the ganglion (Thermo Scientific Orion

9810BN) combined with a preamplifier (Omega PHTX-21). Output from the pH microelectrode was

converted from arbitrary voltage to pH using a temperature-compensated calibration.

Data acquisition and analysis
Data were acquired using a data acquisition board (Molecular Devices Digidata 1440A) and Clampex

10.5 software (Molecular Devices). Data were analyzed using Clampfit 10.5, Spike2 v 6.04 (Cam-

bridge Electronic Design), and/or MATLAB 2017A (MathWorks). Figures were prepared in Adobe

Illustrator CC 2017. All code is available for download at Haley et al. (2018) (copy archived at

https://github.com/elifesciences-publications/haley_hampton_marder_2018).

For analyses of extracellular recordings of the lvn of the STG or the trunk of the CG, we analyzed

the last 8 min of each 15 min pH step to ensure that extracellular pH had stabilized.

Data were categorized into states by manual annotation. A transition from one state to another

was noted when there was a sustained change in activity lasting a minimum of 10 s. In other words,

if the rhythm transitioned from one state into another and maintained the new state of activity for at

least 10 s, a transition was noted at the start of that new state. The mean fraction of time that the

preparations remained in each state during the last 8 min of recording at each pH step is plotted as

stacked bar graphs.

Quantitative variables of frequency, number of spikes per burst, and duty cycle were measured

using extracellular recordings. Spikes and bursts were first isolated in Spike2 by thresholding extra-

cellular recordings. MATLAB was then used for further analysis. Instantaneous burst frequency was

calculated by taking the inverse of the cycle’s period, the time elapsed between the onset of one

burst and the onset of the next. The number of spikes per burst of a given neuron reflects the num-

ber of spikes contributing to each burst. Duty cycle reflects the fraction derived by dividing the burst

duration – time elapsed between the first and last spike – by the burst period. Mean values were

computed for bins of 10 s such that for eight minutes of data, there were 48 binned mean values for

each preparation, condition, and measure. Violin plots show distributions of these binned mean val-

ues pooled for all preparations. The body of the violin is a rotated kernel density estimate (KDE)

plot. The circles give the median of the pooled data and the horizontal bars give the mean. The

interquartile range (IQR) is given by the box plot within each violin with the whiskers giving the 95

percent confidence interval (CI).

For analyses of intracellular recordings of semi-isolated LP and PD neurons, the last minute of

each pH step was analyzed in MATLAB. Minimum membrane potential was first measured by finding

the minimum voltage of the neuron between each burst. Recordings were then low-pass filtered to

remove spikes from the slow wave. Slow wave amplitude was measured by subtracting the trough

from the peak of the slow wave’s membrane potential. Spike amplitude was retrieved by subtracting

the filtered slow wave signal from the original recording and then measuring the amplitude from

trough to peak of each action potential. PD burst frequency was calculated by finding the inverse of

the time period between one slow wave trough to the next. LP firing rate was determined by calcu-

lating the inverse of the inter-spike interval, the time between spikes. Mean values were computed

for bins of 10 s. Violin plots show distributions of these binned mean values pooled for all

preparations.
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Statistics
All statistics were performed using R (v 3.4.3). We performed statistical testing of the effects of acid

and base on measures of the cardiac and pyloric rhythms using a Univariate Type III Repeated-Meas-

ures Analysis of Variance (ANOVA) from the car package. Separate tests were performed for acid

and base step protocols. Post-hoc paired sample t-tests with Bonferroni correction were performed

for each pH step against its respective control, the pH 7.8 condition immediately prior to the acid or

base step protocol. To assess the differences between the effects of pH on the cardiac and pyloric

rhythms, we performed a Two-Way Mixed-Measures ANOVA (Type III) for both acid and base step

protocols using the car package. Post-hoc independent samples t-tests with Bonferroni correction

were performed for each pH condition. T-tests were not performed for non-significant ANOVAs.
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