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Abstract: In recent years, several synthetic strategies aiming at the peripheral functionalization
of porphyrins were developed. Particularly interesting are those involving the modification
of β-pyrrolic positions leading to pyrrole-modified porphyrins containing four-, five-, six- or
seven-membered heterocycles. Azeteoporphyrins, porpholactones and morpholinoporphyrins are
representative examples of such porphyrinoids. These porphyrin derivatives have recently gained an
increasing interest due to their potential application in PDT, as multimodal imaging contrast agents,
NIR-absorbing dyes, optical sensors for oxygen, cyanide, hypochlorite and pH, and in catalysis.
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1. Introduction

Porphyrins and porphyrinoid compounds, including contracted and expanded porphyrin
derivatives, are highly versatile compounds, both in terms of chemistry (which is extremely rich) and
diversity of (potential) applications. These two strands have driven the continuous development of
new routes to the synthesis of such compounds.

Porphyrin derivatives are being used in biomedical and environmental applications, in catalysis,
and in a range of technical applications [1–5]. Most of these applications require compounds that
display absorption bands in the 600–800 nm region. Since “simple” porphyrins hardly fulfill this
requirement, chlorins, bacteriochlorins, π-extended porphyrins, pyrrole-modified porphyrins, and
other porphyrinoids, are a better choice. Such compounds are typically prepared by: (i) the structural
modification of already existing porphyrins via, for instance, cycloaddition reactions, electrophilic
or nucleophilic aromatic substitutions, pyrrole ring-contraction or -expansion reactions; or (ii) by
constructing the porphyrin macrocycle using adequate pyrrolic building blocks. Considering the last
approach, the “3 + 1 method” was extensively used for the synthesis of chlorins and pyrrole-modified
porphyrins. This subject has been reviewed recently [6–9] and will not be covered here. The metallation
of porphyrinoids has also been covered in recent reviews [10–12].

The modification of the periphery of porphyrins using cycloaddition reactions, namely Diels-Alder
reactions and 1,3-dipolar cycloadditions, is a remarkable method to produce chlorins, bacteriochlorins
or isobacteriochlorins [13–15]. We and other groups have reported several works using porphyrins as
dienophiles in Diels–Alder reactions [16–21] or as dipolarophiles in 1,3-dipolar cycloadditions [22–31].

Concerning the transformation of porphyrins into pyrrole-modified porphyrinoids, many pyrrole
ring-contraction and -expansion reactions were reported during the last three decades. However,
a substantial part of that work was published in recent years by the group of Brückner that, by using
the “breaking and mending of porphyrins” approach [32], was able to produce an enormous diversity
of pyrrole-modified porphyrins (some are exemplified in Figure 1).
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This review covers the reported methods for the modification of the porphyrin macrocycle and 
the potential applications of the resulting porphyrinoid compounds. This subject has already been 
discussed in recent reviews [33,34]. 
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Figure 1. meso-Tetraphenylporphyrin (TPP) (for comparison) and examples of pyrrole-modified porphyrins 
discussed in this review. 

2. Chemistry 

The conversion of a porphyrin, or a metalloporphyrin, into a pyrrole-modified porphyrinoid is 
frequently a multi-step process that requires the separation, purification and structural characterization 
of the intermediate compounds. However, in this article only the final steps of such transformations 
are discussed. The methods described below were organized according to the types of porphyrin 
derivatives used as immediate precursors of pyrrole-modified porphyrinoids. 

2.1. From N-Substituted Porphyrins 

The metallation of the N-substituted porphyrin 1 with nickel acetate in a refluxing CHCl3/MeOH 
mixture leads to the formation of two new porphyrinoids: the expanded porphyrin 2 and the 
pyriporphyrin 3 (Scheme 1) [35,36]. Compounds 2 and 3 result from the insertion of a C atom in an 
α–meso bond or in an α–β bond, respectively. This reaction, reported by Callott and Schaeffer in 1978, 
is one of the first examples of the direct conversion of a porphyrin into a pyrrole-modified porphyrin. 
  

Figure 1. meso-Tetraphenylporphyrin (TPP) (for comparison) and examples of pyrrole-modified
porphyrins discussed in this review.

This review covers the reported methods for the modification of the porphyrin macrocycle and
the potential applications of the resulting porphyrinoid compounds. This subject has already been
discussed in recent reviews [33,34].

2. Chemistry

The conversion of a porphyrin, or a metalloporphyrin, into a pyrrole-modified porphyrinoid is
frequently a multi-step process that requires the separation, purification and structural characterization
of the intermediate compounds. However, in this article only the final steps of such transformations
are discussed. The methods described below were organized according to the types of porphyrin
derivatives used as immediate precursors of pyrrole-modified porphyrinoids.

2.1. From N-Substituted Porphyrins

The metallation of the N-substituted porphyrin 1 with nickel acetate in a refluxing CHCl3/MeOH
mixture leads to the formation of two new porphyrinoids: the expanded porphyrin 2 and the
pyriporphyrin 3 (Scheme 1) [35,36]. Compounds 2 and 3 result from the insertion of a C atom in an
α–meso bond or in an α–β bond, respectively. This reaction, reported by Callott and Schaeffer in 1978,
is one of the first examples of the direct conversion of a porphyrin into a pyrrole-modified porphyrin.
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Scheme 1. Synthesis of an expanded porphyrin and a pyriporphyrin [35,36]. 

2.2. From β-Aminoporphyrins 

In 1984, Crossley and King [37,38] found that the oxidation of β-amino-meso-tetraphenyl-
porphyrin (4) with m-chloroperbenzoic acid (MCPBA) affords porpholactone 5 in 55% yield (Scheme 2). 
The same porpholactone can be obtained in similar yield by oxidation of the imino-oxochlorin 6 (obtained 
by photo-oxidation of 2-aminoporphyrin 4). In their initial communication, these authors also reported 
the synthesis of a ring-expanded morpholinoporphyrin derivative and a ring-contracted azeteoporphyrin 
(see Scheme 15). 

The method reported by Crossley and King (involving β-nitration of meso-tetraarylporphyrins, 
followed by reduction and oxidation of the resulting β-aminoporphyrins with MCPBA) was used by 
other groups to prepare porpholactones and the corresponding iron complexes [39]. 
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2.3. From 2,3-Dihydroxychlorins 

In 1993, Bonnett and co-workers [40,41] reported that the oxidative cleavage of the nickel(II) 
dihydroxychlorin Ni7 with lead tetraacetate, at room temperature, affords the secochlorin diketone 
Ni8 in 76% yield (Scheme 3) [42]. Treatment of Ni8 with potassium tert-butoxide in tert-butyl alcohol 
at 40 °C leads to the formation of the pyridone-modified porphyrin Ni9 in 64% yield (via an 
intramolecular aldol condensation). Pb(OAc)4 cannot be used in the oxidation of the free-base 7 since it 
does not allow the isolation of any product in reasonable yield. 

 
Scheme 3. Route to the pyridone-modified porphyrin Ni9 reported by Bonnett and co-workers [40,41]. 

  

Scheme 1. Synthesis of an expanded porphyrin and a pyriporphyrin [35,36].

2.2. From β-Aminoporphyrins

In 1984, Crossley and King [37,38] found that the oxidation of β-amino-meso-
tetraphenyl-porphyrin (4) with m-chloroperbenzoic acid (MCPBA) affords porpholactone 5 in
55% yield (Scheme 2). The same porpholactone can be obtained in similar yield by oxidation
of the imino-oxochlorin 6 (obtained by photo-oxidation of 2-aminoporphyrin 4). In their initial
communication, these authors also reported the synthesis of a ring-expanded morpholinoporphyrin
derivative and a ring-contracted azeteoporphyrin (see Scheme 15).
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Scheme 2. Routes to meso-tetraphenylporpholactone reported by Crossley and King [37].

The method reported by Crossley and King (involving β-nitration of meso-tetraarylporphyrins,
followed by reduction and oxidation of the resulting β-aminoporphyrins with MCPBA) was used by
other groups to prepare porpholactones and the corresponding iron complexes [39].

2.3. From 2,3-Dihydroxychlorins

In 1993, Bonnett and co-workers [40,41] reported that the oxidative cleavage of the nickel(II)
dihydroxychlorin Ni7 with lead tetraacetate, at room temperature, affords the secochlorin diketone Ni8
in 76% yield (Scheme 3) [42]. Treatment of Ni8 with potassium tert-butoxide in tert-butyl alcohol at 40 ˝C
leads to the formation of the pyridone-modified porphyrin Ni9 in 64% yield (via an intramolecular
aldol condensation). Pb(OAc)4 cannot be used in the oxidation of the free-base 7 since it does not allow
the isolation of any product in reasonable yield.

Aiming to synthesize free-base pyriporphyrins, Brückner and co-workers used a slurry of silica
gel–NaIO4 in CHCl3 in the presence of 5–10 vol % DBU to convert the free-base dihydroxychlorin 7 to
pyriporphyrin 9 (Scheme 4) [43]. This product could be isolated in 55% yield (after chromatographic
separation and crystallization) as a purple microcrystalline solid. This method was also applied to
the conversion of the tetrahydroxybacteriochlorin 10 into the isomeric bis(pyri)porphyrins 11 and 11’,
which were isolated in a combined yield of 50%.
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oxidative diol cleavage, Brückner and co-workers were able to generate the 2,3-diacetylsecochlorin Ni13 
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Scheme 5. Routes to pyridone- and thiomorpholine-modified porphyrins [44].  

Brückner and co-workers [45,46] also used a 2,3-dihydroxychlorin as an intermediate in the 
synthesis of porphyrinoids in which one pyrrolic unit is formally replaced by a morpholine ring 
(Scheme 6). The 2,3-dihydroxy-meso-tetraphenylchlorin Ni16, obtained by osmium tetroxide-mediated 
dihydroxylation [47,48] of meso-tetraphenylporphyrin (TPP) and complexation with nickel acetate, 

Scheme 4. Route to the pyridone-modified porphyrins reported by Brückner and co-workers [43].

Starting from the trans-2,3-dimethyl-2,3-dihydroxychlorin Ni12, and using lead tetraacetate for the
oxidative diol cleavage, Brückner and co-workers were able to generate the 2,3-diacetylsecochlorin Ni13
(Scheme 5) [44]. Under Brønsted-basic conditions, this diketone cyclizes via an intramolecular aldol
condensation to provide the pyriporphyrin derivative Ni14. Reaction of the 2,3-diacetylsecochlorin
Ni13 with Lawesson’s reagent induces the formation of the thiomorpholinochlorin Ni15 substituted
with two methylene groups.

Brückner and co-workers [45,46] also used a 2,3-dihydroxychlorin as an intermediate in the
synthesis of porphyrinoids in which one pyrrolic unit is formally replaced by a morpholine ring
(Scheme 6). The 2,3-dihydroxy-meso-tetraphenylchlorin Ni16, obtained by osmium tetroxide-mediated
dihydroxylation [47,48] of meso-tetraphenylporphyrin (TPP) and complexation with nickel acetate,
was transformed into the secochlorin-2,3-dicarbaldehyde Ni17 by oxidation with lead tetraacetate.
The dicarbaldehyde Ni17 undergoes intramolecular acetal formation when treated with alcohols in
the presence of acid to produce a mixture of morpholinochlorins Ni18 and Ni19 (see also Scheme 11).
Acid treatment of hydroxymorpholinochlorins Ni18 leads to the establishment of an intramolecular
β-to-o-phenyl linkage resulting in the formation of the polycyclic-fused porphyrin system Ni20 [49,50].
Complexes of types Ni18, Ni19 and Ni20 (and most of their free-bases) exhibit a ruffled macrocycle
with an inherent helical chirality. The resolution of the racemic mixtures can be achieved, both by
classical methods via diastereomers or by HPLC on a chiral phase [49,50].

A electrochemical study of Ni(II) porphyrinoids showed that, upon electrochemical reduction,
morpholinochlorins form ligand-based reduction products while the conformationally flexible chlorin
and secochlorin complexes form Ni(I) complexes [51].
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presence of the corresponding alcohol. Treatment of methoxy derivative 19a with excess EtOH or  
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The group of Brückner also reported a variation of the previous method that allowed the
synthesis of free-base morpholinochlorins and porpholactones (Scheme 7) [52]. Using the free-base
dihydroxychlorin 16 and NaIO4 (heterogenized on silica gel) as the oxidant, this group was able to
produce, isolate and characterize the unstable secochlorin-2,3-dicarbaldehyde 17. Reaction of 17 with
MeOH, EtOH or i-PrOH under acid catalysis provided the stable morpholinochlorins 19a–c. The same
compounds can be obtained directly from the reaction of 16 with NaIO4/silica under N2 in the presence
of the corresponding alcohol. Treatment of methoxy derivative 19a with excess EtOH or i-PrOH
under acid catalysis at 65 ˝C leads to alkoxy exchange and formation of 19b or 19c, respectively [52].
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MnO4-induced cleavage of diol 16 under phase transfer catalysis (or using cetyltrimethylammonium
permanganate, CTAP) affords porpholactone 5 in overall excellent yield (up to 80%). The
formation of 5 probably involves the oxidation of the dicarbaldehyde 17 to the corresponding
secochlorin-2,3-dicarboxylate followed by decarboxylation and lactonization [52]. This methodology
has been used for the synthesis of a range of porpholactones [53,54]. A similar approach has been
used for the conversion of meso-tetraphenylporphyrin N-oxide into pyrrole-modified porphyrin
N-oxides [55].Molecules 2016, 21, 320 6 of 29 
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porphyrins [56].
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Molecules 2016, 21, 320 6 of 29 

 
Scheme 7. Route to free-base morpholinochlorins and porpholactones [52]. 

The methods described above were also successfully applied to the conversion of  
dihydroxy-21,23-dithiachlorins 21a,b into the dithiamorpholinochlorin 22 and dithiaporpholactones 
23a,b (Scheme 8) [57,58]. 

 
Scheme 8. Routes to morpholinodithiachlorins and dithiaporpholactones [58]. 

Oxidative cleavage of the purple dihydroxychlorin 16 with NaIO4 heterogenized onto silica  
gel, in THF containing 1–2 vol % Et3N, converts it in essentially quantitative yields into the unstable 
free-base secochlorin-2,3-dicarbaldehyde 17 (a brown nonpolar compound) (Scheme 9) [59]. This 
dialdehyde can be purified by column chromatography (silica gel, CH2Cl2–0.1% Et3N) but in solution, 
particularly in acidic and/or wet solvents or on silica gel, it tends to decompose within several hours. 
However, evaporated to dryness and kept in a freezer at −18 °C, it is stable over several months [59]. 
When a solution of 17 in THF is treated with a large excess of a 30% aqueous solution of Et4NOH, 
three purple products are formed in varying yields (Scheme 9). The most polar compound (Rf = 0.41, 
silica–CH2Cl2) is the porpholactol 24, the one with intermediate polarity (Rf = 0.78, silica–CH2Cl2) is the 
porpholactone 5 and the least polar one (Rf = 0.90, silica–CH2Cl2) is the porpholactol dimer 25 (isolated 
in yields up to 11%). The authors proposed a mechanism to rationalize the formation of these products 
which involves an intramolecular Cannizzaro reaction in the dialdehyde 17 [59]. 

Scheme 8. Routes to morpholinodithiachlorins and dithiaporpholactones [58].



Molecules 2016, 21, 320 7 of 30

Oxidative cleavage of the purple dihydroxychlorin 16 with NaIO4 heterogenized onto silica
gel, in THF containing 1–2 vol % Et3N, converts it in essentially quantitative yields into the
unstable free-base secochlorin-2,3-dicarbaldehyde 17 (a brown nonpolar compound) (Scheme 9) [59].
This dialdehyde can be purified by column chromatography (silica gel, CH2Cl2–0.1% Et3N) but in
solution, particularly in acidic and/or wet solvents or on silica gel, it tends to decompose within
several hours. However, evaporated to dryness and kept in a freezer at ´18 ˝C, it is stable over
several months [59]. When a solution of 17 in THF is treated with a large excess of a 30% aqueous
solution of Et4NOH, three purple products are formed in varying yields (Scheme 9). The most
polar compound (Rf = 0.41, silica–CH2Cl2) is the porpholactol 24, the one with intermediate polarity
(Rf = 0.78, silica–CH2Cl2) is the porpholactone 5 and the least polar one (Rf = 0.90, silica–CH2Cl2)
is the porpholactol dimer 25 (isolated in yields up to 11%). The authors proposed a mechanism to
rationalize the formation of these products which involves an intramolecular Cannizzaro reaction in
the dialdehyde 17 [59].Molecules 2016, 21, 320 7 of 29 
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The method described above was also applied to the synthesis of pyrrole-modified
bacteriochlorins [60]. Starting from the free-bases 2,3-dihydroxy-12,13-dimethoxychlorin 26b or the
2,3,12,13-tetrahydroxychlorin 26a [61], and using mild oxidation conditions (NaIO4 heterogenized on
silica gel, CHCl3, alcohol, room temperature), Brückner and co-workers were able to synthesize the
morpholinobacteriochlorin 27 and the bis(morpholino)bacteriochlorin 29, in one pot, in reasonable
yields (Scheme 10). Acid treatment of these morpholinochlorins leads to the formation of the
polycyclic-fused porphyrin systems 28 and 30.

As shown in Scheme 6, the oxidative cleavage of 2,3-dihydroxy-meso-tetraphenylchlorin Ni16 with
lead tetraacetate leads to the formation of morpholinochlorins (via the secochlorin-2,3-dicarbaldehyde
Ni17). However, depending on the reaction conditions during the ring cleavage reaction, the formyl
groups may react with the adjacent o-phenyl positions to establish direct o-phenyl-to-β-linkages [62,63].
The initially formed carbinols oxidize spontaneously to ketones, resulting in the formation of
indaphyrin Ni31 in high yield (Scheme 11).

Free-base dihydroxychlorins can also be used to synthesize indaphyrin-type compounds. In that
case, the oxidant should be NaIO4 heterogenized on silica gel. As an example, the oxidative cleavage
of 2,3-dihydroxy-5,10,15,20-tetrakis(5-methylthien-2-yl)chlorin (32) results in the formation of the
monothiaindanone monoaldehyde 33 (presumably via a dicarbaldehyde intermediate) (Scheme 12) [64].
Stirring a solution of monoaldehyde 33 in 2% TFA/CH2Cl2, at room temperature, leads to the formation
of thiaindaphyrin 34 in 33% yield. The corresponding platinum(II) complex, Pt34, was obtained in 61%
yield from the reaction of 34 with [Pt(acac)2] (3 equiv.) in PhCN for 5 h at reflux temperature [64].
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Indaphyrins can be further functionalized to indachlorins, as indicated in Scheme 13 [65]. Using
typical porphyrin dihydroxylation conditions, indaphyrin 31 can be converted into the dihydroxylated
indachlorin 35. Oxidation of 35 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) leads to
the indachlorin dione 36 while oxidation with CTAP affords the corresponding lactone 37. The
dihydroxylated indachlorin 35 can also be converted into dialkoxy-substituted morpholines 38 using
standard reaction conditions already described. These compounds display panchromatic absorption
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spectra between 300 and 900 nm and possess strongly ruffled conformations, incorporating a helimeric
twist [65,66]. Resolution of the racemic mixtures of the helimers was achieved by HPLC on a chiral
phase and their absolute stereostructures were assigned [66].

The Brückner group reported a new approach to pyrrole ring-contracted azeteoporphyrins
(Scheme 14) [67]. It involves the oxidative cleavage of the dihydroxychlorin Ni16 to the
secochlorin-2,3-dicarbaldehyde Ni17 (see Scheme 6) followed by a decarbonylation reaction with
an excess of (Ph3P)3RhCl to afford a mixture of the chlorophins Ni39 (12% yield) and Ni40
(60% yield) [46,67]. The monoaldehyde Ni39 reacts with an excess of methylmagnesium bromide
leading to the formation of the secondary alcohol Ni41. This alcohol reacts with an excess of TMSOTf
to afford the azeteoporphyrin Ni42 in 60%–75% yield after purification by preparative TLC and
crystallization. The role of TMSOTf in this cyclization reaction is to induce the removal of the
hydroxyl group and generation of the corresponding carbocation. The azete ring is then formed
by an intramolecular Friedel-Crafts reaction.Molecules 2016, 21, 320 9 of 29 
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It is interesting to note that, under adequate experimental conditions, alcohol Ni41 is obtained
in ca. 7% yield in the decarbonylation reaction of the dicarbaldehyde Ni17 [67]. The existence of
alcohol Ni43 had been previously proposed as a side product in the Vilsmeier–Haack formylation of
the chlorophin Ni40 [68].

2.4. From 2,3-Dioxochlorins

In 1984, Crossley and King reported that treatment of a CH2Cl2 solution of dione 44 (obtained
in quantitative yield by acidic hydrolysis of imino-oxochlorin 6) with an excess of NaH and exposed
to air, followed by treatment with 3 M aqueous HCl, affords the morpholinoporphyrin 45 in 80%
yield (Scheme 15). The ring-contracted azeteoporphyrin 46 is also formed in this reaction as a
minor product [37]. Anhydride 45 can also be obtained in 64% yield by treatment of dione 44 with
MCPBA [37].Molecules 2016, 21, 320 10 of 29 
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Ni44 6 equiv 9 h 19% 35% 20% 

1 Data from ref. [69]. 

The methyltrioxorhenium (MTO)-catalyzed H2O2 oxidation of the 2,3-dioxochlorin 44, in the 
presence of pyrazole, leads to the formation of four pyrrole-modified porphyrin derivatives (Scheme 17) 
[55,70]. During the reaction course it is observed the initial formation of compounds 45 and 5 while 
the corresponding N-oxides 47 and 48 are formed later in the reaction, and on the expense of the 
products formed initially [55]. The yield of each product depends on the reaction conditions, namely 
catalyst loading and reaction time. 

Pandey and co-workers reported a versatile approach to mono- and di(2-oxopyri)porphyrins 
(Schemes 18 and 19) [71]. The new compounds are obtained from the reaction of dioxo- and  
tetraoxo-TPP derivatives with a large excess of diazomethane. The reaction of dioxochlorin 44 with 
diazomethane affords three products that can be separated by chromatography on silica gel: the  
2-oxo-3-epoxymethylenechlorin 49 (7% yield), 3-methoxy-2-oxopyriporphyrin 50 (12% yield) and  
4-methoxy-2-oxopyriporphyrin 51 (78% yield). The tetraoxobacteriochlorin 52 reacts immediately 

Scheme 15. Route to 4- and 6-membered porphyrinoids [37].

Zaleski and co-workers [69] reported that the Cu(II) and Ni(II) complexes of 2,3-dioxochlorins
react with benzeneselenic anhydride (BSA) leading to the formation of ring-contracted azetine
derivatives M46 that further react with BSA to afford porpholactones M5 (Scheme 16). The yields of
compounds M46 and M5 are highly dependent on the 2,3-dioxochlorin/BSA ratio and reaction time.
When the reaction is carried out in a 1:2 ratio of M44 to BSA, the reaction proceeds very slowly and
after 22 h both the ring-contracted azetine and the porpholactone are obtained in low yields while 59%
of the unreacted dioxochlorin is recovered (Table 1). However, if a large excess of BSA is used (8-fold)
all starting material is consumed within 5 h. The experimental results show that the isolated yield of
the ring-contracted product is consistently low, suggesting that this species is an intermediate to the
porpholactone M5. In fact, addition of 4 equivalents of BSA to a refluxing chlorobenzene solution of
Cu46 generates Cu5 within 30 min; the reaction is complete after 16 h, resulting in 59% yield of Cu5.
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The methyltrioxorhenium (MTO)-catalyzed H2O2 oxidation of the 2,3-dioxochlorin 44, in the
presence of pyrazole, leads to the formation of four pyrrole-modified porphyrin derivatives
(Scheme 17) [55,70]. During the reaction course it is observed the initial formation of compounds 45
and 5 while the corresponding N-oxides 47 and 48 are formed later in the reaction, and on the expense
of the products formed initially [55]. The yield of each product depends on the reaction conditions,
namely catalyst loading and reaction time.
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Table 1. Yields of the oxidation of 2,3-dioxochlorins M44 under different conditions 1.

M44 BSA Reaction Time M46 M5 M44 Recovered

Cu44 2 equiv 22 h 8% 27% 59%
Cu44 4 equiv 8 h 7% 70% 11%
Cu44 4 equiv 18 h traces 75% —
Cu44 8 equiv 5 h 6% 82% traces
Ni44 4 equiv 14 h 18% 14% 65%
Ni44 6 equiv 9 h 19% 35% 20%

1 Data from ref. [69].

Molecules 2016, 21, 320 11 of 29 
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The reaction of 2,3-dioxoporphyrin metal complexes M44 (obtained by metallation of 44)  
with hydroxylamine hydrochloride affords the corresponding monooximes M55 in good yields 
(Scheme 20) [72]. When treated with p-toluenesulfonic acid (p-TSA) under forcing conditions, oximes  
M55 undergo a Beckmann rearrangement to produce the corresponding pyrazinoporphyrin imides 
M56 in moderate to good yields. Demetallation of pyrazinoporphyrin Ni56 affords the free-base 
pyrazinoporphyrin imide 56. The reaction of 56 with benzyl bromide in the presence of sodium 
hydride under nitrogen, at ambient conditions, leads to a mixture of the N-benzyl (22%) and O-benzyl 
(66%) derivatives 57 and 58, respectively. 

Scheme 17. Synthesis of porphyrinoids and the corresponding N-oxides [55].

Pandey and co-workers reported a versatile approach to mono- and di(2-oxopyri)porphyrins
(Schemes 18 and 19) [71]. The new compounds are obtained from the reaction of dioxo- and
tetraoxo-TPP derivatives with a large excess of diazomethane. The reaction of dioxochlorin 44 with
diazomethane affords three products that can be separated by chromatography on silica gel: the
2-oxo-3-epoxymethylenechlorin 49 (7% yield), 3-methoxy-2-oxopyriporphyrin 50 (12% yield) and
4-methoxy-2-oxopyriporphyrin 51 (78% yield). The tetraoxobacteriochlorin 52 reacts immediately with
diazomethane to give a mixture of three orange-brown bands that were identified as a mixture of two
isomeric di(oxopyri)porphyrins: 53a/54a (18% yield), 53b/54b (31% yield), and 53c/54c (47% yield)
(Scheme 19).
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The reaction of 2,3-dioxoporphyrin metal complexes M44 (obtained by metallation of 44)
with hydroxylamine hydrochloride affords the corresponding monooximes M55 in good yields
(Scheme 20) [72]. When treated with p-toluenesulfonic acid (p-TSA) under forcing conditions, oximes
M55 undergo a Beckmann rearrangement to produce the corresponding pyrazinoporphyrin imides
M56 in moderate to good yields. Demetallation of pyrazinoporphyrin Ni56 affords the free-base
pyrazinoporphyrin imide 56. The reaction of 56 with benzyl bromide in the presence of sodium
hydride under nitrogen, at ambient conditions, leads to a mixture of the N-benzyl (22%) and O-benzyl
(66%) derivatives 57 and 58, respectively.
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2.5. From 2-Diazo-3-Oxochlorins

2-Diazo-3-oxochlorins (that can be prepared in good yields from 2-aminoporphyrins [75] or
2,3-dioxochlorins [76]) undergo photodecomposition, with extrusion of N2, to yield a mixture of
porphyrin derivatives. The product distribution strongly depends upon the central metal ion and the
presence or absence of nucleophilic substrates [77–80].

The photolysis of metallated 2-diazo-3-oxochlorins M59 in the absence of nucleophiles affords
a mixture of 2-hydroxyporphyrins (M62) and exocyclic ring-containing hydroxyporphyrins (M63)
(Scheme 21). In the presence of nucleophiles, the ring-contracted azeteoporphyrins M64 are
also obtained. For instance, photolysis of Ni59 in the presence of butan-1-ol, tosylhydrazide,
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or tetrahydrofurfuryl alcohol yields the Wolff rearranged azeteoporphyrins Ni64a–c (11%–28%),
the 2-hydroxyporphyrins Ni62a–c (6%–35%), and the intramolecular exocyclic ring-containing
hydroxyporphyrinoids Ni63a–c (12%–76%) [79]. The photolysis of the free-base 2-diazo-3-oxochlorin
59 in the presence of BuOH affords azeteoporphyrin 64a (34%) and a dimeric porphyrin derivative
(10%). The formation of ring-contracted azeteoporphyrins M64 involves the Wolff rearrangement of
ketocarbene M60 to the ketene M61 that is subsequently trapped with the nucleophiles [81].
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2.6. From Octaethyl-2-oxochlorins

The synthesis of the first 1,3-oxazinochlorin (a pyrrole-modified porphyrin with an 1,3-oxazine
ring) was reported recently [82]. The synthetic route involved the conversion of the oxo-chlorin 65,
available from octaethylporphyrin, into the corresponding oxime 66 followed by treatment with PCl5
and BF3¨Et2O and dropwise addition of H2O under controlled temperature (<25 ˝C) (Scheme 22).
The resulting 1,3-oxazinochlorin 67 was obtained in 20% yield together with some ketone 65 (~20%).
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2.7. From 2,3,12,13-Tetrabromoporphyrins

Nickel(II) 2,3,12,13-tetrabromo-5,10,15,20-tetraarylporphyrins Ni68a–d react with the anion of
E-benzaldoxime, in the presence of CuBr, to provide the corresponding chlorophins Ni69–Ni71 and
bacteriophins Ni72, resulting from the degradation of one or two pyrrolic units, respectively, and mono-
or didebromination (Scheme 23) [42,83]. The yield of each product is highly dependent on the time
and temperature of the reaction: the best yield of Ni72a (26%) is achieved after 2 h at a temperature
fluctuating regularly between 80 ˝C and 160 ˝C. These chlorophins and bacteriophins display UV-vis
spectra similar to those of metallated chlorin and bacteriochlorin systems but with more intense and
bathochromically shifted Q-bands.
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2.8. From β-Unsubstituted Porphyrins

Octaethylporphyrin (73) reacts with ozone at room temperature to afford the oxazolochlorin 74
(Scheme 24) [84]. This is probably the first reported example of a direct conversion of a porphyrin into
a pyrrole-modified porphyrin.
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Gouterman and co-workers discovered, by serendipity, the direct conversion of free-base
meso-tetraarylporphyrins into porpholactones using mild reagents [85]. While attempting to synthesize
the silver complex of meso-tetrakis(pentafluorophenyl)porphyrin (AgF20TPP) by treatment of the
corresponding free-base H2F20TPP 75 with AgNO3 in glacial acetic acid at reflux, they obtained (in
low yield) the corresponding porpholactone 76 (Scheme 25). These authors found that addition of
oxalic acid to the reaction mixture allows the synthesis of porpholactone 76 in reproducible yields
(ca. 15%) [85]. Later, the yield of this reaction was improved to 73% [86]. Porpholactone 79 can be
converted into the corresponding Ni, Zn, Pd and Pt complexes by standard procedures [86].
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Zhang and co-workers [87] found that heating a solution of H2F20TPP 75 and HAuCl4 (2 equiv.)
in acetic acid at reflux affords a mixture of [Au(F20TPP)]+ (20% yield), 2-chloro-H2F20TPP (25% yield)
and the porpholactone 76 (6% yield). However, under similar conditions, TPP affords only the
corresponding gold complex [AuTPP]+ in 85% yield. Using 2-picolinic acid (Pic) as ligand, the
porpholactone 76 is obtained in 63% yield (yield calculated based on the conversion (52%) of the
starting porphyrin). A further improvement of the porpholactone yield is achieved by adding
an oxidant to the reaction mixture. The highest yield of porpholactone 76 (80%) is obtained
when two equivalents of Oxone® are used, although the conversion of H2F20TPP was low (64%)
(Scheme 26). Under these conditions, the complex [AuF20TPP]+ is formed in very low yield
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(<2%). In the absence of [Au(Pic)Cl2], the reactivity of Oxone® toward H2F20TPP is very low
(<5%), confirming the catalytic effect of Au(III). Other fluorinated meso-tetraarylporphyrins can
be converted into porpholactones by this gold-catalyzed approach. However, the electronic effect
of the substituents of the porphyrins is very pronounced since the yield of the gold porphyrin
complex increases and consequently the yield of the porpholactone reduces drastically in the
order: meso-tetrakis(tetrafluorophenyl)-, meso-tetrakis(trifluorophenyl)-, meso-tetrakis(difluorophenyl)-,
and meso-tetrakis(p-fluorophenyl)porphyrin. The electronic effect of the substituents may be minimized
if Ag+ is used as a template metal ion. Starting from AgTPP, Ag(p-ClTPP) and Ag(p-FTPP) the
corresponding free-base porpholactones are obtained in 23%, 17% and 10% isolated yields [87].
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Zhang and co-workers also investigated the efficacy of RuCl3 as catalyst in the direct conversion
of meso-tetraarylporphyrins to the corresponding porpholactones [88,89]. Using H2F20TPP as substrate,
RuCl3 as catalyst and Oxone®/NaHCO3 as oxidant, these authors obtained a mixture of porpholactone
79 (32% yield), porphodilactones 77/77’ (4% yield) and porpholactol 78 (2% yield) (Scheme 27).
This reaction system was optimized in order to improve the reactivity and chemoselectivity. The best
yield of porpholactone 76 (85%) was obtained using RuCl3 (20 mol%), bipyridine (20 mol %, as a ligand),
Oxone® (5 equiv.) and sodium hydroxide (5 equiv.) and a reaction temperature of 60 ˝C.Molecules 2016, 21, 320 15 of 29 
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this reaction is, however, 2-NO2TPP (82, 62%). 

meso-Tetraarylporpholactones 83 react with hydrazine hydrate, in THF solution, to form three 
products: the N-aminoporpholactams 84 (main products), the N-aminochlorolactams 85, and the 
chlorolactones 86 (minor products) (Scheme 30) [91,92]. The reaction requires a large excess of 
hydrazine hydrate and heating at reflux for 3–5 days. The reductive cleavage of the N-N bond in  
N-aminoporpholactams 84 or N-aminochlorolactams 85, using SmI2 in refluxing o-dichlorobenzene, 
affords the parent porpholactams 87 or 88, respectively, in good yields.  

Scheme 27. Ruthenium-catalyzed oxidation of meso-tetrakis(pentafluorophenyl)porphyrin [88,89].

This methodology can also be applied successfully to meso-tetraarylporphyrins bearing
substituents with different electronic and steric effects and biocompatible substituents, as shown
in Scheme 28. The corresponding porpholactones 80 are obtained in 40%–80% isolated yields [88].
Metalloporphyrins can also be converted into metalloporpholactones by this protocol. Using MF20TPP
(M = Ni, Cu, Zn, Pd) as substrates, the corresponding metalloporpholactones are obtained in high
yields (78%–85%). However, oxidation of PtF20TPP gives a mixture of Pt(porpholactone) (30% yield)
and the free-base porpholactone (46% yield) while no gold(III) porpholactone is detected from the
oxidation of [AuF20TPP]Cl [88].
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treatment of porpholactam 87 with phosphoryl chloride (POCl3) in refluxing toluene gives access to 
the 3-chloroimidazoloporphyrin 89 in 97% yield. Subsequent reaction of a toluene solution of 89 with 
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meso-Tetraarylporpholactones 83 react with hydrazine hydrate, in THF solution, to form three
products: the N-aminoporpholactams 84 (main products), the N-aminochlorolactams 85, and the
chlorolactones 86 (minor products) (Scheme 30) [91,92]. The reaction requires a large excess of
hydrazine hydrate and heating at reflux for 3–5 days. The reductive cleavage of the N-N bond
in N-aminoporpholactams 84 or N-aminochlorolactams 85, using SmI2 in refluxing o-dichlorobenzene,
affords the parent porpholactams 87 or 88, respectively, in good yields.

Porpholactams can be further modified to imidazoloporphyrins, as shown in Scheme 31. In fact,
treatment of porpholactam 87 with phosphoryl chloride (POCl3) in refluxing toluene gives access to
the 3-chloroimidazoloporphyrin 89 in 97% yield. Subsequent reaction of a toluene solution of 89 with
zinc dust and 2 N aq. H2SO4, at reflux for 5 h, affords a mixture of imidazoloporphyrin 81 (10% yield)
and the starting porpholactam 87 (72%) [92].
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Reduction of the porpholactone Zn5 with DIBAL-H affords the porpholactol Zn24 that, by
demetallation, provides the free-base porpholactol 24 in almost quantitative yield (Scheme 32) [54,93,94].
The acid-catalyzed (BF3¨OEt2 or Amberlyst 15) deoxygenation of the porpholactol 24 affords the
2-oxachlorin 90 in near-quantitative yield. Over time, this compound undergoes (photo)oxidation back
to porpholactol 24. Thus, it must be shielded from exposure to light or oxidizing conditions. Attempts
at one-step reductions from Zn5 to Zn90 using LiAlH4 or DIBAL-H under more forcing conditions
failed, leading to the destruction of the porphyrinic macrocycle [54].
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The porpholactol 24 (an hemiacetal) reacts with a range of O-, N-, and S- nucleophiles, under mild
acid-catalyzed conditions, providing access to a number of stable chlorin-like acetals, thioacetals, and
aminals (Scheme 33) [54].

Molecules 2016, 21, 320 17 of 29 

Reduction of the porpholactone Zn5 with DIBAL-H affords the porpholactol Zn24 that, by 
demetallation, provides the free-base porpholactol 24 in almost quantitative yield (Scheme 32) 
[54,93,94]. The acid-catalyzed (BF3·OEt2 or Amberlyst 15) deoxygenation of the porpholactol 24 affords 
the 2-oxachlorin 90 in near-quantitative yield. Over time, this compound undergoes (photo)oxidation 
back to porpholactol 24. Thus, it must be shielded from exposure to light or oxidizing conditions. 
Attempts at one-step reductions from Zn5 to Zn90 using LiAlH4 or DIBAL-H under more forcing 
conditions failed, leading to the destruction of the porphyrinic macrocycle [54]. 

 
Scheme 32. Stepwise reduction of a porpholactone to a porpholactol and a 2-oxachlorin [94]. 

The porpholactol 24 (an hemiacetal) reacts with a range of O-, N-, and S- nucleophiles, under mild 
acid-catalyzed conditions, providing access to a number of stable chlorin-like acetals, thioacetals, and 
aminals (Scheme 33) [54].  

 
Scheme 33. Derivatization of porpholactol 24 with O-, N-, and S- nucleophiles [54]. 

Acetals and aminals 95 can be prepared in a two-step, one-pot reaction directly from  
2,3-dihydroxychlorins 91 (Scheme 34) [95]. The first step corresponds to the oxidation of  
2,3-dihydroxychlorins 91 to secochlorin-2,3-dicarbaldehydes 92 (see Scheme 7) in the presence of a 
nucleophile (alcohol or secondary amine). The resulting crude mixture of morpholinochlorins 93 is 
then oxidized with CTAP. Depending on the nucleophile used in the first step, oxazolochlorin acetals 
or aminals are formed in good to acceptable isolated yields. The mechanism of the conversion of 
morpholinochlorins 93 into the oxazolochlorin derivatives 95 probably involves the formation of 
morpholinones 94 and extrusion of CO. Comparing this synthetic route to acetals and aminals with 
the previous one, the number of steps was reduced from 5 to 2 and the overall yields more than 
doubled: 73%–91% for the acetals and 33%–49% for the aminals. 

Porpholactones react with alkyl-Grignard reagents to afford 3-alkyl- or 3,3-dialkyloxazolochlorins 
[96–98]. Addition of i-PrMgCl (15 equivalents) to the zinc complex of porpholactone Zn5, followed 
by an acid workup (that also removes the Zn(II)), affords the hemiketal 96 in 82% yield (Scheme 35). 
Reaction of 96 with an excess of Et3SiH, in the presence of BF3·OEt2, leads to the formation of the  
3-isopropyloxazolochlorin 97 in 76% yield. Addition of an excess of i-PrMgCl to porpholactone Zn5 in the 
presence of BF3·OEt2 gives the diisopropyloxazolochlorin 98 in ca. 30% yield. Oxazolochlorins 96–98 can 
be further converted into bacteriochlorin-type compounds, such as 99 and 100 [96–98]. Oxazolochlorins 

Scheme 33. Derivatization of porpholactol 24 with O-, N-, and S- nucleophiles [54].

Acetals and aminals 95 can be prepared in a two-step, one-pot reaction directly from
2,3-dihydroxychlorins 91 (Scheme 34) [95]. The first step corresponds to the oxidation of
2,3-dihydroxychlorins 91 to secochlorin-2,3-dicarbaldehydes 92 (see Scheme 7) in the presence of
a nucleophile (alcohol or secondary amine). The resulting crude mixture of morpholinochlorins 93
is then oxidized with CTAP. Depending on the nucleophile used in the first step, oxazolochlorin
acetals or aminals are formed in good to acceptable isolated yields. The mechanism of the conversion
of morpholinochlorins 93 into the oxazolochlorin derivatives 95 probably involves the formation of
morpholinones 94 and extrusion of CO. Comparing this synthetic route to acetals and aminals with the
previous one, the number of steps was reduced from 5 to 2 and the overall yields more than doubled:
73%–91% for the acetals and 33%–49% for the aminals.
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Reaction of porpholactones 101a–d with an excess of Lawesson’s reagent leads to the formation 
of the corresponding porphothionolactones 102a–d in good to excellent yields (Scheme 36) [99].  
The porphothionolactone 102a can be converted to the corresponding lactone 101a rapidly and 
quantitatively by addition of aqueous NaOCl (bleach). Since porpholactones are moderately fluorescent 
and the porphothionolactones are not, any reaction that induces the thionolactone-to-lactone conversion 
is accompanied by a strong fluorescence emission intensity enhancement. This process is the basis 
for the use of thionolactone 102a as a switch-on chemodosimeter for hypochlorite (see Section 3.4. 
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Porpholactones react with alkyl-Grignard reagents to afford 3-alkyl- or
3,3-dialkyloxazolochlorins [96–98]. Addition of i-PrMgCl (15 equivalents) to the zinc complex of
porpholactone Zn5, followed by an acid workup (that also removes the Zn(II)), affords the hemiketal
96 in 82% yield (Scheme 35). Reaction of 96 with an excess of Et3SiH, in the presence of BF3¨OEt2, leads
to the formation of the 3-isopropyloxazolochlorin 97 in 76% yield. Addition of an excess of i-PrMgCl to
porpholactone Zn5 in the presence of BF3¨OEt2 gives the diisopropyloxazolochlorin 98 in ca. 30% yield.
Oxazolochlorins 96–98 can be further converted into bacteriochlorin-type compounds, such as 99 and
100 [96–98]. Oxazolochlorins 96–98 and the corresponding hydroxylated oxazolobacteriochlorins
possess typical chlorin and bacteriochlorin-like optical spectra with absorption bands between
650–750 nm.
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Scheme 35. Addition of alkyl-Grignard reagents to porpholactones and further transformation into
bisoxazolobacteriochlorins [96–98].

Reaction of porpholactones 101a–d with an excess of Lawesson’s reagent leads to the formation
of the corresponding porphothionolactones 102a–d in good to excellent yields (Scheme 36) [99].
The porphothionolactone 102a can be converted to the corresponding lactone 101a rapidly and
quantitatively by addition of aqueous NaOCl (bleach). Since porpholactones are moderately fluorescent
and the porphothionolactones are not, any reaction that induces the thionolactone-to-lactone
conversion is accompanied by a strong fluorescence emission intensity enhancement. This process
is the basis for the use of thionolactone 102a as a switch-on chemodosimeter for hypochlorite (see
Section 3.4. Optical Sensors).
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Reaction of secochlorin Ni103a with aqueous concentrated ammonia in THF, at room temperature,
for 20 minutes, generates the pyrazinoporphyrin hemiacetal Ni104a in ca. 90% yield. Treatment of
crude Ni104a with MeOH and catalytic quantities of THF generates the methoxy pyrazinoporphyrin
Ni105a (Scheme 37) [100]. The free-base pyrazinoporphyrins 105a,b can be prepared in a similar way.
Treatment of the secochlorins 103a,b under aerobic conditions with an excess of aqueous concentrated
ammonia in pyridine at 40–50 ˝C, leads to the rapid formation of the pyrazinoporphyrin hemiacetals
104a,b. While the Ni(II) complex Ni105a is stable even under acidic conditions, the free-base analogues
are very sensitive to decomposition, particularly under acidic or oxidative conditions. The extinction
coefficients of the pyrazinoporphyrins are significantly smaller than those of TPP.
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Recent studies confirm the superior properties of such compounds. 

In 2005, McCarthy and co-workers described the encapsulation of meso-tetraphenylporpholactol 
(24), a chlorin-type compound, into a poly(lactic-co-glycolic acid) (PLGA) matrix and the use of the 
resulting nanoparticles as photosensitizers in the PDT of tumors [94]. These authors found that the 
PLGA/porpholactol nanoparticles are unable to fluoresce or induce phototoxicity. However, upon 
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Recently, Zhang and co-workers [101] reported the synthesis and evaluation of the potentialities 
of six porpholactol-type compounds (oxazolochlorin acetals) as PDT photosensitizers. The new 
compounds were prepared by chemical modification of porpholactol Zn78 (Scheme 38) and bear  
β-hydrophilic substituents terminated by glucosyl (neutral, Zn107a), sulfonic (anionic, Zn107b), 
zwitterionic (Zn107c), or ammonium (cationic, Zn107d–f) groups. It was shown that the terminal ionic 
groups influence significantly the cellular uptake of these conjugates that is higher for the compounds 
with positive charge. Importantly, their photocytotoxicity against cancer cells showed IC50 values 
down to the sub-micromolar range being the cationic compounds the most active ones. As revealed 
by cell imaging experiments, these compounds exert their photodynamic activity through apoptosis. 

Scheme 37. Route to pyrazinoporphyrins [100].

3. Applications

Pyrrole-modified porphyrin derivatives have recently gained an increasing interest due to their
potential application in photodynamic therapy (PDT), NIR-absorbing dyes, multimodal imaging
contrast agents, catalysis, high pH sensors, optical sensors for cyanide, hypochlorite, and oxygen.

3.1. Photodynamic Therapy

Photodynamic therapy (PDT) is a promising strategy in cancer treatment. It uses a photosensitizer
that, upon cellular internalization and light irradiation, generates reactive oxygen species (ROS)
(mainly singlet oxygen) that kill the cancer cells leading to the eradication of the tumor. Porphyrin
derivatives, namely chlorins and bacteriochlorins, due to their photophysical properties, such as
strong absorption bands in the range of 650–800 nm, and appropriate triplet state to generate ROS, are
particularly useful as photosensitizers. Pyrrole-modified porphyrins that display absorption spectra
typical of chlorins or bacteriochlorins are also interesting compounds to be used as photosensitizers in
PDT. Recent studies confirm the superior properties of such compounds.

In 2005, McCarthy and co-workers described the encapsulation of meso-tetraphenylporpholactol
(24), a chlorin-type compound, into a poly(lactic-co-glycolic acid) (PLGA) matrix and the use of the
resulting nanoparticles as photosensitizers in the PDT of tumors [94]. These authors found that the
PLGA/porpholactol nanoparticles are unable to fluoresce or induce phototoxicity. However, upon
cell internalization, the porpholactol is released from the nanoparticle, regains its ability to fluoresce
and produce singlet oxygen, and becomes highly phototoxic. Irradiation with visible light results in
cell-specific killing of several cancer cell lines. Importantly, in vivo experiments with this activatable
PDT-nanoagent resulted in the complete eradication of cancers in mouse models.

Recently, Zhang and co-workers [101] reported the synthesis and evaluation of the potentialities
of six porpholactol-type compounds (oxazolochlorin acetals) as PDT photosensitizers. The new
compounds were prepared by chemical modification of porpholactol Zn78 (Scheme 38) and bear
β-hydrophilic substituents terminated by glucosyl (neutral, Zn107a), sulfonic (anionic, Zn107b),
zwitterionic (Zn107c), or ammonium (cationic, Zn107d–f) groups. It was shown that the terminal ionic
groups influence significantly the cellular uptake of these conjugates that is higher for the compounds
with positive charge. Importantly, their photocytotoxicity against cancer cells showed IC50 values
down to the sub-micromolar range being the cationic compounds the most active ones. As revealed by
cell imaging experiments, these compounds exert their photodynamic activity through apoptosis.

Porpholactones have also been studied as PDT photosensitizers. Zhang and co-workers
compared the photophysical and biological properties of meso-tetrakis(pentafluorophenyl)porphyrin
(75), the corresponding porpholactone 76 and their derivatives bearing thioglucosyl units [102].
This study demonstrated that the β-lactonization of the porphyrin lowers its lipophilicity and increases
its binding affinity to low density lipoproteins facilitating its cellular uptake and selective localization
within lysosomes. Lactonization also leads to enhanced singlet oxygen quantum yields, thus increasing
the intracellular ROS levels.
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The same research group also reported the photosensitizing properties of the two isomeric
cis- (77) and trans- (77’) porphodilactones (Scheme 27) and the corresponding Zn(II) complexes [89].
The electronic absorption spectra of the two isomers are similar to those of bacteriochlorins, with
strong absorption bands in NIR region (>650 nm). However, the authors found that the relative
orientation of the two β-lactone moieties has a significant influence on the electronic structures and
photophysical properties of the porphodilactones. For example, the Qy band of trans-porphodilactone
is red-shifted by 19 nm relative to that of the cis-isomer, and there is a 2-fold increase in the absorption
intensity [89]. The orientation of the two lactone moieties also affects the singlet oxygen production of
the two isomeric porphodilactones. The values obtained for the singlet oxygen quantum yields (Φ∆)
were 0.53 for the free-base trans-porphodilactone 77’, 0.66 for Zn77’, and 0.87 for Zn77. Surprisingly,
the free-base cis-porphodilactone 77 shows no singlet oxygen production at all after irradiation by a
635 nm laser beam. Both porphodilactones, encapsulated into PLGA nanoparticles, showed no dark
toxicity after incubation for 24 h in HeLa cells. However, after irradiation with a 671 nm laser for 60 s,
porphodilactones 77’ and Zn77’ exhibited good phototoxicity with a IC50 value of 51 and 44 µg¨mL´1,
respectively. The IC50 value of Zn77 was significantly larger (94 µg¨mL´1), despite having a larger Φ∆
value, while the free-base cis-porphodilactone 77 showed nearly no photocytoxicity toward HeLa cells,
which was consistent with the zero singlet oxygen production [89].

3.2. Multimodal Imaging Contrast Agents

Nowadays, there is a need to develop theranostic compounds for simultaneous cancer imaging,
diagnosis and treatment interventions. In this context, and following the procedure indicated
in Scheme 38, the group of Zhang prepared two oxazolochlorin acetals bearing gadolinium(III)
DOTA-type complexes (Zn108a,b, Figure 2) [103]. Both compounds can achieve cellular uptake,
show no dark cytotoxicity and good photocytotoxicity on HeLa cells. Fluorescence and magnetic
resonance imaging experiments showed that both compounds are suitable as bimodal imaging contrast
agents. In addition, the photocytotoxicity results indicate that these compounds can also be exploited
as photosensitizers for PDT.
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3.3. Catalysis

The first report about the use of metalloporpholactones in catalysis dates back to 2005, when
Cetin and Ziegler [104] demonstrated the catalytic activity of the manganese(III) complex of
meso-tetraphenylporpholactone, Mn(TPPL)Cl (Mn5-Cl), in olefin epoxidation reactions. Comparing
with the manganese(III) complex of meso-tetraphenylporphyrin, Mn(TPP)Cl, the Mn(TPPL)Cl is a
slightly better catalyst for most alkene substrates. However, for the electron-poor substrate hex-1-ene,
the turnover number is appreciably larger than the one observed for the manganese porphyrin.

Iron(III) and manganese(III) complexes of meso-tetraphenylporpholactone, Fe(TPPL)Cl and
Mn(TPPL)CH3CO2, are efficient catalysts for the oxidation of sulfides with hydrogen peroxide [105].
Both aliphatic and aromatic sulfides are effectively oxidized to the corresponding sulfoxides and
sulfones in yields of 80%–100%. The results show that the iron and manganese porpholactones catalyze
the oxidation of sulfides with similar efficiency and are slightly better catalysts than the TPP analogues
for most substrates.

The iron(III) complex of meso-tetrakis(pentafluorophenyl)porpholactone, Fe(F20TPPL)Cl (Fe76-Cl),
is an effective catalyst for nitrogen atom transfer reactions such as aziridination of alkenes and
amidation of alkanes using organic azides [106]. In contrast, the manganese(III) complex of the same
porpholactone shows a low catalytic activity.

The palladium(II) complex of meso-tetraphenylporpholactone (Pd5) and other Pd(II)-porphyrin
complexes were studied as catalysts for the light-induced aerobic oxidation of dibenzylamine to the
corresponding imine [107]. The results showed that while PdF20TPP could furnish 100% substrate
conversion (99% yield) within 1.5 h, the substrate conversion using Pd5 was only 75% (74% yield)
for a similar reaction time. Still, this substrate conversion was higher than the observed for PdTPP
(38%, 37% yield), indicating that the lactonization of the porphyrin macrocycle was beneficial for
the photocatalysis.

3.4. Optical Sensors

Porphyrins and related macrocycles play a preeminent role in sensing applications involving
chromophores [108]. Pyrrole-modified porphyrins are also becoming more frequent as chemo(sensors).
For instance, the Pt(II) complexes of the meso-tetrakis(pentafluorophenyl)porphyrin (Pt75) and of the
corresponding porpholactone (Pt76) have been extensively used as the O2-sensitive components of
pressure sensitive paints [109–113]. The porphothionolactone 102a (Scheme 36) is another example.
This compound is an effective fluorescent switch-on chemodosimeter for hypochlorite (OCl´) [99].
In fact, this porphothionolactone is rapidly and quantitatively converted into the corresponding
porpholactone 101a by the addition of an aqueous solution of NaOCl (bleach). Since the thionolactone
possesses only a very dim fluorescence emission but the lactone is brightly fluorescing, this reaction
switches the fluorescence on (readily observed with the naked eye) within 10 min at ambient conditions.
The conversion of the thionolactone to the lactone is highly selective for the oxidant hypochlorite
and that is the basis for the use of this thionolactone as a switch-on chemodosimeter for this anion.
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However, it must be taken into consideration that this reaction is pH-dependent and acidic to neutral
conditions (pH between 1 and 7.4) are required for the conversion of 102a by OCl´ [99].

Cyanide is one of the most toxic and harmful anions to human health and environment but it
is still widely used in mining, metallurgy, photographic processing, synthesis of nylon and other
synthetic fibers, etc. Thus, it is very important to develop simple, selective, and sensitive methods to
the detection of CN´, especially in water [114]. One interesting example of the potential applications
of the pyrrole-modified porphyrins is their use as optical cyanide chemosensors. Recently, the
group of Brückner demonstrated that the water-soluble PEGylated porpholactone 109 and its zinc(II),
platinum(II), and gallium(III) complexes (Figure 3) behave as optical cyanide chemosensors in aqueous
solutions, albeit these sensors possess only modest sensitivities [115]. It was shown that the optical
response of the Zn109 complex to cyanide is totally different from that of the free-base, platinum, and
gallium complexes. While for the Zn109 it can be attributed to axial ligation of the cyanide to the
central metal, the sensing mechanism for 109, Pt109 and Ga109 relies on a nucleophilic addition of
the cyanide to the lactone moiety. Incorporation of the gallium porpholactone complex (Ga109) in a
Nafion®membrane resulted in a material that shows a reversible response to CN´ and remains stable
and transparent even after days in aqueous solutions [115].
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A recent study demonstrated that β-lactonization of porphyrin ligands enhances the sensitization
efficiency of the NIR luminescence of the ytterbium(III) complexes (Figure 4) [116]. In addition,
it was found that the NIR emission of the water-soluble Yb(porpholactone)-glucose conjugate Yb107
is specifically switched on in the presence of glucose oxidase and is switched off by addition of
glucose. This experiment shows that ytterbium complex Yb110 may find application as a switchable
probe emitting in the NIR region in which biological tissues and fluids are relatively transparent
(900–1100 nm).

Molecules 2016, 21, 320 22 of 29 

porpholactone 101a by the addition of an aqueous solution of NaOCl (bleach). Since the thionolactone 
possesses only a very dim fluorescence emission but the lactone is brightly fluorescing, this reaction 
switches the fluorescence on (readily observed with the naked eye) within 10 min at ambient 
conditions. The conversion of the thionolactone to the lactone is highly selective for the oxidant 
hypochlorite and that is the basis for the use of this thionolactone as a switch-on chemodosimeter for 
this anion. However, it must be taken into consideration that this reaction is pH-dependent and acidic 
to neutral conditions (pH between 1 and 7.4) are required for the conversion of 102a by OClˉ [99]. 

Cyanide is one of the most toxic and harmful anions to human health and environment but it is 
still widely used in mining, metallurgy, photographic processing, synthesis of nylon and other 
synthetic fibers, etc. Thus, it is very important to develop simple, selective, and sensitive methods to 
the detection of CNˉ, especially in water [114]. One interesting example of the potential applications 
of the pyrrole-modified porphyrins is their use as optical cyanide chemosensors. Recently, the group 
of Brückner demonstrated that the water-soluble PEGylated porpholactone 109 and its zinc(II), 
platinum(II), and gallium(III) complexes (Figure 3) behave as optical cyanide chemosensors in 
aqueous solutions, albeit these sensors possess only modest sensitivities [115]. It was shown that the 
optical response of the Zn109 complex to cyanide is totally different from that of the free-base, 
platinum, and gallium complexes. While for the Zn109 it can be attributed to axial ligation of the 
cyanide to the central metal, the sensing mechanism for 109, Pt109 and Ga109 relies on a nucleophilic 
addition of the cyanide to the lactone moiety. Incorporation of the gallium porpholactone complex 
(Ga109) in a Nafion® membrane resulted in a material that shows a reversible response to CNˉ and 
remains stable and transparent even after days in aqueous solutions [115]. 

N

N

O

N

N

O F

S-PEG1000

FF

F

F

S-PEG1000

F

F

FF

PEG100-S

F F

F F

F

S-PEG1000

F

F

S-PEG1000 =
S

O
OMe
n ~ 20

M

109, M = 2H
Zn109, M = Zn
Pt109, M = Pt

Ga109, M = Ga-Cl

 
Figure 3. Water-soluble PEGylated porpholactones used as optical cyanide sensors [115]. 

A recent study demonstrated that β-lactonization of porphyrin ligands enhances the sensitization 
efficiency of the NIR luminescence of the ytterbium(III) complexes (Figure 4) [116]. In addition, it was 
found that the NIR emission of the water-soluble Yb(porpholactone)-glucose conjugate Yb107 is 
specifically switched on in the presence of glucose oxidase and is switched off by addition of glucose. This 
experiment shows that ytterbium complex Yb110 may find application as a switchable probe emitting in 
the NIR region in which biological tissues and fluids are relatively transparent (900–1100 nm). 

 
Figure 4. Water-soluble NIR luminescent Yb(porpholactone) complex [116]. 

The ability of meso-tetrakis(pentafluorophenyl)porpholactone (76) and its Pt(II) complex to 
function as optical high pH sensors was reported by the group of Brückner [53]. This group found 

Figure 4. Water-soluble NIR luminescent Yb(porpholactone) complex [116].

The ability of meso-tetrakis(pentafluorophenyl)porpholactone (76) and its Pt(II) complex to
function as optical high pH sensors was reported by the group of Brückner [53]. This group found
that these compounds behave as chemosensors for OH´ and MeO´. When submitted to strong
alkaline or high methoxide conditions their UV-vis spectra undergo dramatic and reversible red-shifts.
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The dynamic range for the Pt76 in solution is from pH 11.5 to 13.2. This complex can also be used to
coat optical fibers, allowing the construction of optical fiber-based pH sensors.

This study was extended to a range of metal complexes of other meso-tetraarylporpholactones,
allowing to investigate the influence of the metal (M = Zn(II), Ni(II), Cu(II), Pd(II), Ag(II), Pt(II)), the
aryl group (Ar = Ph, C6F5), and the presence of a β-NO2 group, on the pH sensing range [117].
The results showed that the optical response for the pentafluorophenyl-substituted derivatives
is stronger than that of the nitrated phenyl-substituted analogues. However, β-nitration and
pentafluorophenyl-substitution have additive effects. Since the metal has a minor influence on the
optical response, the cheaper and easier to prepare zinc, copper and silver complexes of porpholactones
are excellent alternatives to the platinum complexes [117].

PEGylated and fully water-soluble Pt(II)- and Ga(III)porpholactones behave as high pH sensors
in purely aqueous solutions (pH between 10 and 12.5 and 8 and 11, respectively) [118]. Incorporation
of these compounds into a Nafion® optode membrane resulted in sensors suitable for a moderately
rapid (response time in minutes) sensing of high concentrations of hydroxides (pH 11 and above).

4. Conclusions

As discussed above, the pyrrole-modified porphyrin chemistry is evolving quickly. Several
methods to access these compounds, and new reactions for their conversion into other porphyrinoids,
were already reported. Also, various (potential) applications have been suggested for these types of
compounds and, in many cases, these porphyrinoids show a better performance than their porphyrin
analogues. However, considering that these studies have been developed by a very restricted number
of research groups, for a faster development of the pyrrole-modified porphyrins field (chemistry and
applications) it is crucial that other research groups may become interested in this topic. Thus, we
expect that this review contributes to motivate other researchers to embrace this subject.
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Abbreviations

BSA benzeneselenic anhydride
CTAP cetyltrimethylammonium permanganate
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
PDT photodynamic therapy
Pic 2-picolinic acid
PLGA poly(lactic-co-glycolic acid)
ROS reactive oxygen species
TPP meso-tetraphenylporphyrin
H2F20TPP meso-tetrakis(pentafluorophenyl)porphyrin
p-TSA p-toluenesulfonic acid
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