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Abstract: Depressive disorders are highly heterogeneous in nature. Previous studies have not been
useful for the clinical diagnosis and prediction of outcomes of major depressive disorder (MDD) at
the individual level, although they provide many meaningful insights. To make inferences beyond
group-level analyses, machine learning (ML) techniques can be used for the diagnosis of subtypes of
MDD and the prediction of treatment responses. We searched PubMed for relevant studies published
until December 2021 that included depressive disorders and applied ML algorithms in neuroimaging
fields for depressive disorders. We divided these studies into two sections, namely diagnosis and
treatment outcomes, for the application of prediction using ML. Structural and functional magnetic
resonance imaging studies using ML algorithms were included. Thirty studies were summarized for
the prediction of an MDD diagnosis. In addition, 19 studies on the prediction of treatment outcomes
for MDD were reviewed. We summarized and discussed the results of previous studies. For future
research results to be useful in clinical practice, ML enabling individual inferences is important. At
the same time, there are important challenges to be addressed in the future.

Keywords: major depressive disorder; resting-state functional connectivity; machine learning;
classification; neuroimaging; diagnosis; prediction

1. Introduction

Psychiatric disorders such as depressive disorders are highly heterogeneous. De-
pressed mood and markedly diminished interest in previously enjoyed activities are key
characteristics of major depressive disorder (MDD), but symptoms show numerous hetero-
geneous constellations. This indicates that the characteristics of MDD are not confined to
certain single parameters but may associate with multiple bio–psycho–social dimensions.
Thus, there is a need to integrate various data forms for better knowledge on the disease.
Many past studies have identified a range of possible biomarkers for depressive disorders.
However, these results have not yet been successfully integrated into clinical practice for
diagnosis and treatment. In addition, there is heterogeneity in the clinical presentation
of MDD and its responses to treatment. Accordingly, identifying applicable biomarkers
that can predict diagnosis and treatment outcomes would be useful in clinical practice.
Currently, depressive disorders are diagnosed by trained professionals using their clinical
judgement. However, this process is time-consuming and depends on the subjective judge-
ment of the clinician. In clinical practice, it is common not to receive additional help from
brain imaging, although brain imaging provides a noninvasive evaluation of brain structure
and function and provides a deeper understanding of the neuropathophysiology of MDD.
Brain imaging studies should be introduced in the clinical management of depression. In
this process, both objective biomarkers and subjective impressions of clinicians are required
for accurate classification and treatment decisions. There is a need for objective biomarkers
for more effective diagnosis and treatment of depression. From this perspective, we would
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like to review the status of brain imaging studies by dividing them into two large groups:
diagnostic biomarkers and prediction of treatment outcomes. For a more specific search,
we focused on MDD, the most representative disease in depression.

Currently, there are many neuroimaging methodologies available. For example, mag-
netic resonance imaging (MRI) comprises many methods, including structural MRI (sMRI)
and functional MRI (fMRI). sMRI has been conventionally used in patients with clinical
depression, whereas the fMRI technique can provide other kinds of useful information,
including brain functional connectivity, which provides useful insights into the patho-
physiology of depression in relation to functional connectivity in the prefrontal–limbic
and prefrontal–striatum systems in patients with MDD. However, such studies are not
useful for the clinical diagnosis and prediction of MDD outcomes at an individual level [1].
There are also many clinical studies using neuroimaging in MDD, and most of them re-
ported differences between patient and control populations, but clinicians need to make
inferences at an individual level in most clinical settings [2]. The use of machine learning
(ML) techniques is a possible way to make inferences beyond population-level analyses,
both for the diagnosis of more specific subtypes of MDD and the prediction of treatment
responses [3]. ML algorithms are powerful analytical tools that enable us to integrate
neuroimaging and non-imaging data, helping to make decisions on the diagnosis and
treatment outcomes of individual patients. ML can generalize patterns from the input data
to generate a classification based on new data. Recently, deep learning, a particular branch
of ML, has been increasingly used as it can even more effectively integrate neuroimaging
data and non-imaging multimodal data [4].

In this paper, we summarize the regular and distinct findings of ML in neuroimaging
studies of MDD (mainly focused on MRI) among mood disorders. We comprehensively
reviewed the application of ML algorithms for neuroimaging in depressive disorders. A
bibliographic search of PubMed and Google Scholar was conducted in December 2021. We
searched PubMed through December 2021 for relevant studies that included depressive
disorders and applied an ML algorithm in neuroimaging fields for depressive disorders.
We divided these into diagnosis and treatment outcomes for the purpose of prediction
using ML. In addition, we attempted to classify the studies according to the characteristics
of the methods used, namely structural and functional studies. By doing this, we were able
to follow the existing research results based on ML algorithms more intuitively.

2. Considerations for ML in Neuroimaging in Depressive Disorders: Diagnosis
(Table 1)
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Table 1. Selection of studies investigating machine learning methods for the prediction of diagnosis in depression.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Foland-Ross et al., 2015
[5]

Baseline 33 adolescents
(follow-up: 18 MDD and 15

HC)

Cortical thickness SVM stratified 10-fold cross
validation

Average accuracy, 69.7% Girls with an onset of MDD show
baseline thinner right medial

orbitofrontal cortex and thicker left
insula

Kim et al., 2019 [6] 27 HC (15.96 ± 1.02) and 27
MDD (15.48 ± 1.72)

Cortical thickness SVM Double LOOCV 94.4% (sensitivity, 92.6%
and specificity, 96.3%)

TreeBagging, RF, MLP, AdaBoost, and
GBM were used, but they showed

lower accuracies than SVM

Qiu et al., 2014 [7] 32 HC (35.0 ± 11.2) and 32
MDD (34.9 ± 11.1)

High-resolution
T1-weighted imaging

(morphometric parameters)

multivariate SVM LOOCV cortical thickness of right
hemisphere, 78% (p ≤ 0.001)

First-episode, medication-naïve MDD
without any psychiatric comorbidities

Qin et al., 2014 [8] 30 HC (35.57 ± 11.73) and
29 MDD (38.97 ± 9.95)

DTI data SVM with RBF kernel LOOCV 83.05% Hubs including the bilateral
dorsolateral part of the superior

frontal gyrus, the left middle frontal
gyrus, the bilateral middle temporal

gyrus, and the bilateral inferior
temporal gyrus played an important

role in diagnosing MDD

Patel et al., 2015 [9] 35 HC and 33 MDD DTI data, structural
imaging, functional imaging

Decision tree LOOCV 87.3% The optimal ADTree model selected
MMSE score, age, whole brain atrophy,

and fluid-attenuated inversion
recovery

Global WM hyperintensity count for
predicting depression diagnosis

Wise et al., 2018 [10] 39 MDD (30.67 ± 8.71) and
8 BPD (29.50 ± 6.21)

High-resolution
T1-weighted structural

imaging

SVM LOOCV Greater gray volume predicted higher
MADRS scores

Fung et al., 2015 [11] 19 MDD (30.0 ± 8.9), 16
BPD (26.3 ± 7.9) and HC

(27.1 ± 8.4)

T1-weighted structural
imaging (Cortical thickness,

subcortical volume)

SVM 10-fold cross validation 74.3% (sensitivity, 62.5%
and specificity, 84.2%)

Limitation: Effects of medication and
chronicity of conditions in BPD and

MDD on brain morphological
alterations were not estimated

Deng et al., 2018 [12] 36 MDD (29.5 ± 8.6) and 31
BPD (26.3 ± 8.2)

DTI data (FA) SVM LOOCV Left ATR, 68.33% (p = 0.018)
Right SLF, 66.67%

(p = 0.029)

RD profile (accuracy)
Left CC, 65.57% (p = 0.043),

Right SLF, 68.25% (p = 0.024)
Right AF, 72.34% (p = 0.008)
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Table 1. Cont.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Fu et al., 2008 [13] 19 MDD (43.2 ± 8.8) and 19
HC (42.8 ± 6.7)

fMRI data SVM LOOCV 86% (sensitivity 84% and
specificity 89%)

Lateral temporal cortex, amygdala,
and visual processing networks

contributed most

Cao et al., 2014 [14] 39 MDD (27.99 ± 7.49) and
37 HC (28.22 ± 6.47)

fMRI data SVM LOOCV 84% Inferior orbitofrontal, supramarginal
gyrus, inferior parietal

lobule-posterior cingulated gyrus, and
middle temporal gyrus-inferior

temporal gyrus contributed most

Mourao-Miranda et al.,
2011 [15]

19 MDD (43.2 ± 8.8) and 19
HC (42.8 ± 6.7)

fMRI data SVM Nested LOOCV 52% Patients were identified as outliers
during facial recognition, with 30% of
outliers responding to antidepressants,

whereas 89% of non-outliers
responded

Zeng et al., 2012 [16] 24 MDD (31.83 ± 10.99) and
29 HC (33.62 ± 10.29)

fMRI data SVM LOOCV 94.3% 550 discriminating functional
connections; 100% accuracy for

patients, 89.7% for controls

Guo et al., 2018 [17] 59 MDD and 31 HC, 29
MDD and 24 HC

fMRI data SVM LOOCV 92.22% and 90.57% Voxel-mirrored homotopic
connectivity (VMHC) alterations

examined for two separate samples

Wei et al., 2013 [18] 20 MDD (34.3 ± 8.2 and 20
HC (30.8 ± 8.7)

fMRI data SVM LOOCV 90% (sensitivity 95% and
specificity 85%)

Right fronto-parietal and default
mode networks showed deficits, while
the left fronto-parietal, ventromedial

prefrontal, and salience network were
excess networks

He et al., 2021 [19] 40 MDD (40.05 ± 12.32) and
34 HC (34.44 ± 11.76)

fMRI data, peripheral blood SVM LOOCV 85.1% MicroRNA-9, thought to be a neural
substrate of childhood maltreatment,

integrated into analysis

Ramasubbu et al., 2016
[20]

45 MDD (37 ± 11) and 19
HC (33 ± 10)

fMRI data SVM 5-fold cross validation 66% Patients grouped by severity. Mild to
moderate (58%) and severe (52%)
groups showed lower accuracies

Ramasubbu et al., 2019
[21]

22 MDD (27.36 ± 7.5) and
22 HC (28.09 ± 2.71)

fMRI data SVM Nested LOOCV 77.3% (sensitivity 75% and
specificity 80%)

Arterial spin labeling MRI was used to
measure cerebral blood flow (CBF).

Regional CBF of cortical, limbic, and
paralimbic regions contributed to

classification.
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Table 1. Cont.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Yamasita et al., 2020
[22]

149 MDD and 564 HC from
four sites, 185 MDD and 264

HC from five sites

fMRI data LASSO Nested cross validation 70% Functional connectivity differences
were identified in multisite data,

which were applied for classification
on another multisite dataset for

validation.

Nouretdinov et al., 2011
[23]

19 MDD and 19 HC fMRI data TCP Conformal prediction 89.5% and 92.1% at 90%
confidence

Two sad-face recognition tasks used to
classify patients using the TCP

method; prediction accuracy at least
90% at 90% confidence level

Hahn et al., 2011 [24] 30 patients (MDD, BPD)
and 30 HC

fMRI data GP classification LOOCV 60% Sad face, happy face, anxious face,
neutral face, anticipation of no reward,

anticipation of large reward,
anticipation of no loss, and avoiding
small loss were significant classifiers

Rosa et al., 2015 [25] 30 patients (MDD, BPD)
and 30 HC

fMRI data by Hahn et al.
(2011)

Linear L1-norm
regularized SVM

Nested cross validation 85% A novel sparse network based
discriminative modeling framework
was applied on existing data. Higher

accuracies were reached

Shi et al., 2021 [26] 92 MDD, 460 MDD, and 470
HC

fMRI data Relevance vector
regression, eXtreme
Gradient Boosting

classification

LOOCV, 10-fold cross
validation

86.3% Gray matter density and fractional
amplitude of low-frequency
fluctuation predicted sleep

disturbance in patients. The model
was applied to a multicenter dataset

for validation.

Guo et al., 2017 [27] 38 MDD (28.4 ± 9.68) and
28 HC (26.6 ± 9.4)

fMRI data Multikernel SVM 97.54% A method generating a high order
minimum spanning tree functional
connectivity network was used to

reduce computing consumption and
produce a scale conducive to
subsequent network analysis

Sato et al., 2015 [28] 25 MDD and 21 HC fMRI data Maximum entropy
linear discriminant

analysis

LOOCV 78.3% (sensitivity 72.0%,
specificity 85.7%)

Guilt selective connections used for
classification

Han et al., 2019 [29] 25 MDD and 21
schizophrenia

fMRI data Nonnegative matrix
factorization

LOOCV 82.6% “Triple network” (default mode,
salience, central executive) used to

distinguish MDD patients from
schizophrenia patients
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Table 1. Cont.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Yu et al., 2013 [30] 19 MDD (26.65 ± 7.62), 32
schizophrenia (24 ± 5.66),
and 38 HC (24.44 ± 4.45)

fMRI data SVM LOOCV 80.9% (84.2% for MDD,
81.3% for schizophrenia,

78.9% for HC)

Altered connections in medial
prefrontal, anterior cingulate,
thalamus, hippocampus, and

cerebellum for both patient groups;
differences in prefrontal, amygdala,

and temporal poles

Grotegerd et al., 2013
[31]

10 MDD (36.8 ± 10.1) and
100 BPD (36.8 ± 8.5)

fMRI data SVM LOOCV 90% Medial prefrontal, orbitofrontal
regions contributed to classifying
unipolar and bipolar depression

He et al., 2020 [32] 63 MDD (35.35 ± 11.02) and
63 HC (31.78 ± 10.56)

fMRI data SVR LOOCV Left and right
amygdala/hippocampus predicted

trait sadness; medical
prefrontal/anterior cingulate and

amygdala/parahippocampal gyrus
predicted state anhedonia scores

Maglanoc et al., 2020
[33]

170 MDD (38.7 ± 13.3) and
71 HC (41.8 ± 13.1)

fMRI data Shrinkage
discriminant analysis

10-fold cross validation Low model performance for
classification of depression or anxiety

symptoms

Sundermann et al., 2017
[34]

Two subsets of 180 MDD
and 180 HC

fMRI data SVM LOOCV 56.1% The subgroup with a higher symptom
severity showed a higher classification

accuracy (61.7%).

TreeBagging, tree-based bagging; RF, random forest; MLP, multilayer perception; AdaBoost, adaptive boosting; GBM, gradient boosting machine; SVM, support vector machine; SVR,
support vector regression; RBF, Gaussian radial basis; ADTree, alternating decision tree; LASSO, least absolute shrinkage and selection operator; TCP, transductive conformal predictor;
GP, Gaussian process; LOOCV, leave-one-out cross-validation; FA, fractional anisotropy; RD, radial diffusivity; GM. gray matter; WM. white matter; ATR, anterior thalamic radiation;
SLF, superior longitudinal fasciculus; AF, arcuate fasciculus; CC, cingulum cingulate; MADRS, Montgomery–Asberg Depression Rating Scale; HDRS, Hamilton Depression Rating Scale;
MDD, major depressive disorder; BPD, bipolar disorder; HC, healthy controls; Accuracy *, highest accuracies presented.
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2.1. Structural Characteristics for the Assessment of Depression
2.1.1. Structural Neuroimaging Studies for Diagnosis

Several MRI scan sequences have been used in this study, among which high-resolution
T1-weighted imaging confirms gray matter thickness in volume and changes in brain mor-
phology. Previous sMRI studies have suggested variable results of structural changes in a
depressed patient group compared with a normal healthy group [35–45]. Thus, sMRI may
be the most feasible method for clinical practice. Conventional structural neuroimaging
studies have mainly focused on regional volume alterations in gray matter. However, this
is insufficient, as morphometric alterations also include changes in shapes and geometric
features. Differences in cortical thickness, gray matter volume, and white matter integrity
were investigated. Alterations in the cortical thickness have been suggested in several brain
regions. Some studies have reported that in patients with MDD, cortical thickness increases in
the orbitofrontal cortex [37,38], superior frontal gyrus [36], cingulate cortex [37,39,40], and oc-
cipital cortex [40]. Other studies have reported decreased cortical thickness in the orbitofrontal
cortex [41,42], insular cortex [43,44], bilateral fusiform gyrus [39], and left occipital area [45].
In a recent meta-analysis of medication-free patients with MDD, Li et al. showed a com-
plex pattern of increased cortical thickness in the posterior cingulate cortex, ventromedial
prefrontal cortex, and anterior cingulate cortex and decreased cortical thickness in the gyrus
rectus, orbital segment of the superior frontal gyrus, and middle temporal gyrus [46].

Diffusion tensor imaging (DTI) has been used to investigate white matter connectivity
and abnormalities in the brain [47]. Using eigenvalues and eigenvectors of water molecules
in the brain white matter obtained by MRI, fractional anisotropy (FA), mean diffusivity, ax-
ial diffusivity, and radial diffusivity were calculated, and alterations in white matter were
confirmed through changes in these values [48]. Previous DTI studies showed relatively
consistent results, in that the MDD group had lower FA values than the healthy group in
brain regions, including the uncinated fasciculus (UF) [49,50], superior longitudinal fasci-
culus [51,52], anterior limb of the internal capsule [53,54], corpus callosum (CC) [55–57], and
inferior fronto-occipital fasciculus [50,56]. In a recent meta-analysis, adolescents and young
adults with MDD showed lower FA values in the CC and frontal-subcortical circuits, which
may contribute to the pathogenesis of MDD [58]. Decreased FA values in patients with MDD
were associated with the severity of depressive symptoms and duration of illness [53,54,59].
Zhu et al. reported that FA values in the left anterior limb of the internal capsule were neg-
atively correlated with the severity of depressive symptoms [53]. Longer illness duration,
the number of previous depressive episodes, and treatment response were related to lower
FA values [54,59,60]. The reduction of FA values in treatment-resistant/chronic MMD was
significant when compared to that in first-episode MDD and healthy controls [59]. Zheng
et al. reported that reduced FA values of the UF in MDD patients returned to normal FA
values in healthy controls after 8-week antidepressant treatment [60]. Similarly, reduced white
matter connectivity in the anterior cingulum and CC may represent a biomarker of risk for
developing MDD [61], and an alteration in white matter microarchitecture has been suggested
as a predictor of the treatment outcome in MDD [62,63].

Existing neuroimaging studies have confirmed brain changes in patients with MDD;
however, these results have not been applied in current clinical practice. Most of the studies
were comparative studies of MDD and healthy control groups, and there was a limitation
in investigation of individual-level comparisons. ML has been presented as a method to
compensate for these limitations.

2.1.2. ML in Structural Studies for Diagnosing MDD

In this section, we introduce the performance, including accuracy, sensitivity (true
positive rate), and specificity (true negative rate), of ML models used in previous sMRI studies
for diagnosing MDD. ML studies for diagnosing and predicting the onset of MDD have been
steadily increasing, and among them, studies comparing MDD and healthy control groups
have been most actively conducted [3]. Foland-Ross et al. reported that baseline cortical
thickness predicted the first-onset of MDD with an overall accuracy of 70% in a five-year
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follow-up study on adolescent girls aged 10–15 years [5]. Lower baseline thickness of the
right medial orbitofrontal cortex and thicker left insula were associated with a higher risk of
developing MDD. In a ML diagnostic study, medication-naïve adolescents with first-onset
MDD showed increased thickness of the superior segment of the circular sulcus of the insula
compared to the healthy control group [6]. In this study, the support vector machine (SVM)
method yielded the highest performance with an accuracy of 94.4% (sensitivity, 92.6% and
specificity, 96.3%). ML studies using sMRI to diagnose MDD in adults with MDD have also
been reported. Qiu et al. found that alteration of the cortical thickness in the right hemisphere
could differentiate first-onset MDD patients from healthy controls, providing an accuracy of
78% [7]. They suggested that morphological alterations in the right hemisphere were more
evident than those in the left hemisphere in diagnosing MDD. An ML study for diagnosing
MDD using DTI data from 29 MDD patients and 30 healthy controls showed an accuracy
of 83.05% [8]. In this study, Qin et al. showed that frontoparietal network dysfunction was
associated with adult MDD and suggested alterations in this area as a diagnostic measure
for MDD. A previous ML study comparing MDD patients and control groups reported that
combinations of multimodal imaging and non-imaging measures may help predict late-life
depression diagnoses [9]. A learning method called “alternating decision tree” showed the
highest accuracy (87.27%) in predicting the diagnosis of late-life depression; poor cognitive
ability and whole brain atrophy were found to be associated with late-life depression.

Depression severity was predicted by gray matter volume in patients with bipolar and
unipolar depression. Depressive severity was predicted based on the gray matter volume of
the bilateral insula, but hypomanic symptom severity was not able to distinguish between
unipolar and bipolar depression [10]. In contrast to the previous result that insula volume
was smaller in patients with MDD than in healthy controls [43], increased volume was
associated with higher symptom severity in mood disorders. These results are likely due
to the influence of the bipolar disorder group among participants. In a study comparing
bipolar disorder, MDD, and healthy controls, larger volumes of subcortical regions were
found in the bipolar disorder group, suggesting potentially varying neuropathological
processes in these two conditions [11]. In ML using DTI data, the diagnoses of bipolar
disorder and MDD were predicted at the individual level [12]. The FA tract profile of the
left anterior thalamic radiation was used to discriminate between bipolar disorder and
MDD with an accuracy of 68.33%. These results suggest that the effects of MDD and bipolar
disorder on brain structural abnormalities are different, and the accuracy of diagnostic
prediction can be improved through a better understanding of the neuropathophysiology.

ML studies for the diagnosis of depression are rapidly increasing, but most studies
have a limitation of a small sample size [5–7,64]. In a comparative study of bipolar disorder
and MDD, it was difficult to identify the characteristics of bipolar I and II because the bipolar
disorder subtypes were not classified in the bipolar disorder patient group. Since this was a
cross-sectional study, there is a limit to predicting future changes in bipolar disorder or the
onset of comorbid psychiatric disorders in the MDD patient group. Therefore, follow-up
studies are required, and when comparing the unipolar depression group with the group
that changed from depression to bipolar disorder, a better understanding of the brain
structural alterations of the two disorders may be possible.

2.2. Functional Characteristics for the Assessment of Depression

Functional neuroimaging refers to the use of neuroimaging technologies to measure
brain function. It is different from structural imaging techniques as it uses various ways
to examine the activation and interaction of and between brain regions. Commonly used
methods include positron emission tomography, single-photon emission computed to-
mography, and functional ultrasound imaging; however, the most widely used method is
fMRI. Therefore, we mainly focused on recent fMRI studies on depressive disorders that
incorporated ML for enhanced results. The use of ML in fMRI studies dates to the late
2000s. Fu et al. applied the SVM method to fMRI data of depressed patients and healthy
controls during facial recognition tasks [13]. The authors hypothesized that there would
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be stronger contributions from regions that process facial expressions, such as the lateral
temporal cortex, amygdala, and visual-processing networks. The ML process resulted in
74% of the patient group and 63% of the control group being correctly classified, yielding
an accuracy of 68%. Post-treatment analysis resulted in 75% of partial responders and 62%
of full responders being classified correctly. Cao et al. investigated resting-state functional
connectivity (rsFC) in 39 MDD patients and 37 matched healthy controls [14]. The altered
functional connections were identified and applied to the SVM classification, resulting in an
accuracy of 84%. The modules with the highest contribution were the inferior orbitofrontal
gyrus, supramarginal gyrus, inferior parietal lobule-posterior cingulated gyrus, and middle
temporal gyrus-inferior temporal gyrus.

A study by Mourao-Miranda et al. also investigated the response to sad faces in
depressed patients using an SVM [15]. The brain patterns of healthy controls while re-
sponding to the stimulus were analyzed, and the patterns of patients with depression were
hypothesized to be outliers when compared to controls. Of the patients, 52% were cor-
rectly identified as outliers, and 79% of controls were detected as non-outliers. Additional
analyses revealed that only 30% of outlier patients responded to antidepressant treatment,
whereas 89% of non-outlier patients showed a response.

Zeng et al. analyzed resting-state functional connectivity in MDD patients [16]. Con-
sensus functional connections from previous literature were identified, and many were
diminished in the patients. Discriminative power was calculated using the SVM method,
and the results showed that the amygdala exhibited the highest discriminative power,
showing altered connectivity between the prefrontal lobe, visual cortex, cerebellum, and
other limbic areas.

Many non-ML studies have shown that functional connectivity changes are inconsistent
in patients with MDD. Guo et al. examined voxel-mirrored homotopic connectivity (VMHC)
alterations to obtain more consistent results [17]. Two individual samples of 59 MDD patients
and 31 controls and 29 MDD patients and 24 controls were included in the fMRI data acqui-
sition. VMHC was computed using REST software. The overlap of brain clusters showing
significant differences between patients and controls was generated using a mask. LIBSVM (A
Library for Support Vector Machines) software (http://www.csie.ntu.edu.tw/~cjlin/libsvm/),
an integrated software for support vector classification, regression, and distribution estimation,
was then used to identify the prediction model. The results showed that the VMHC values in
the posterior cingulate cortex and cuneus were able to differentiate MDD patients with an
accuracy of 92.22% and 90.57% in each sample, respectively.

Wei et al. concentrated on the “long-term memory” of the temporal dynamics of brain
activity [18]. The Hurst exponent has been reported to describe brain activity well in terms of
scale-free dynamics. SVM studies involving the Hurst exponent of brain networks of 20 MDD
patients and 20 healthy controls revealed a successful discrimination with an accuracy of 90%.
The results showed that the right frontoparietal and default mode networks had deficits (lower
memory), whereas the left frontoparietal, ventromedial prefrontal, and salience networks
were excess networks (longer memory) in patients with MDD.

He et al. examined the role of microRNA-9 in the link between childhood maltreatment
and MDD [19]. MicroRNA-9 is thought to be a neural substrate for childhood maltreatment.
Forty patients with MDD and 34 healthy controls completed laboratory tests and underwent
fMRI, resulting in higher microRNA-9 levels in patients with MDD. SVM models integrating
microRNA-9 levels, childhood maltreatment severity, and intrinsic amygdala functional
connectivity showed an accuracy of 85.1% in differentiating MDD patients.

Ramasubbu et al. investigated the possible effect of severity on the accuracy of machine-
learned classifications [20]. Patients with MDD were divided into groups based on their
Hamilton Depression Rating Scale (HRDS) scores, which were classified as mild to moderate,
severe, and very severe. fMRI data from 45 patients and 19 controls were collected during the
resting state and during an emotional-face matching task. Linear SVM classifiers were used to
distinguish patients from controls. The very severe depression group showed an accuracy of
66%, the mild to moderate group showed an accuracy of 58%, and the severe group showed

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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an accuracy of only 52%. The authors suggested that machine-learned patient classification
using fMRI data might be limited to less severe depression.

Ramasubbu also examined patients with MDD using arterial spin labeling (ASL)
MRI [21]. Of the 22 MDD patients and 22 healthy controls who underwent pseudo-
continuous 3D-ASL imaging to determine regional cerebral blood flow, which was then
used in combination with sex and age as SVM classifiers for detecting patients, the resulting
classification had an accuracy of 77.3%, with the highest contributing features being sex
and the cerebral blood flow in cortical, limbic, and paralimbic regions.

Yamasita et al. acknowledged the difficulty of neuroimaging studies owing to the
differences between various study sites and their fMRI products [22]. They used a har-
monization method to remove such differences in a dataset of 713 participants from four
imaging sites (564 healthy controls and 149 MDD patients). The dataset was then analyzed
using an ML algorithm called the least absolute shrinkage and selection operator. It was
shown that the functional “under” connectivity (more negative) between the right and left
insula was the largest difference between MDD patients and healthy controls. A total of
25 functional connectivities were identified for classifying MDD, of which 19 were more
negative and six were more positive than healthy controls. These classifiers were used on
another dataset with 521 participants from five imaging sites (264 healthy controls and 185
MDD patients) for validation, resulting in a diagnostic accuracy of 70%.

Nouretdinov et al. applied the transductive conformal predictor (TCP) method to MRI,
which generated confidence measures for imaging-based predictions [23]. In fact, this study
validated the accuracy of the TCP method compared to more conventional methods such
as the SVM. Using sad face recognition as a predictor, the authors found diagnostic and
prognostic accuracies comparable to those of the conventional methods. Patients reacted
more sensitively to sad faces, and such sensitive individuals tended to respond worse to
treatment, in line with the findings of previous studies.

Hahn et al. conducted a study analyzing probable diagnostic biomarkers using
Gaussian process classifiers (GPC) [24]. Of the 15 conditions used as classifiers, eight
were revealed to be significantly accurate in correctly identifying patients with a median
accuracy of 60%: sad face, happy face, anxious face, neutral face, anticipation of no reward,
anticipation of large reward, anticipation of no loss, and avoiding small loss. GPC showed
a higher accuracy than the conventional SVM method in most cases. The authors also
stated that a decision tree algorithm led to an accuracy of 83%, which is an improvement of
11% compared with the best GPC (anticipation of no loss).

Rosa et al. used the same dataset as Fu et al. and Hahn et al. to expand on the
research [13,24,25]. The authors used a connectivity-based framework to classify the
existing data. These analyses resulted in higher accuracies than the original studies (77% vs.
79% for Fu et al., and 70% vs. 85% for Hahn et al.). It should be noted that the sensitivity
and specificity were lower than those in the original reports, thus emphasizing that the
new framework might not necessarily be superior.

A multicenter analysis by Shi et al. used a multivariable regression algorithm named
relevance vector regression to identify sleep-related MRI indicators in patients with MDD [26].
The analysis of 92 patients with MDD identified 50 MRI features distributed through
the subcortical system and frontoparietal and visual networks that showed abnormal
metabolism. These findings were validated using a multicenter dataset of 460 patients
and 470 controls, indicating that sleep disturbance-related MRI features may be possible
biomarkers of MDD.

Guo et al. suggested that traditional methods for processing functional connectivity
data are highly limited in interpretation and thus proposed a novel high-order minimum
spanning tree network for better analysis [27]. The results showed a classification accuracy
of up to 97.54% when comparing MDD patients with healthy controls.

Sato et al. used an ML algorithm to assess not the depression itself but vulnerability
to it [28]. Subjects were selected from past depression patients who had remitted at least
1 year previously. Functional connectivity was assessed while the subjects and controls
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looked at statements about social and moral values. They were later asked to describe
their feelings as guilt, disgust, shame, or anger toward themselves or others. A specific ML
algorithm, the Maximum Entropy Linear Discriminant analysis, showed that guilt-related
functional connectivity changes in the anterior temporal lobe area discriminated previous
depression patients from healthy controls with an accuracy of 78.26%, suggesting it as a
possible biomarker of patients’ vulnerability to depression.

Han et al. examined the so-called triple network of the brain, consisting of the default
mode, salience, and central executive network, to distinguish schizophrenia patients from
MDD patients [29]. Twenty-one schizophrenia patients and 25 MDD patients were assessed
using sMRI and fMRI, and the data were processed using supervised convex nonnegative
matrix factorization. This approach was proposed to extract low-rank network patterns
in latent space. The middle cingulate cortex, inferior parietal lobule, and cingulate cortex
were the most discriminative between the two disorders in terms of functional connectivity,
with an accuracy of 82.6%.

Yu et al. also investigated differences in functional connectivity between MDD and
schizophrenia [30]. Thirty-two patients with schizophrenia, 19 patients with MDD, and
38 controls underwent fMRI scans, with the results analyzed using an SVM with intrinsic
discriminant analysis. Both groups showed altered connections in the medial prefrontal
cortex, anterior cingulate cortex, thalamus, hippocampus, and cerebellum. However,
the groups also showed differences in the prefrontal cortex, amygdala, and temporal
poles. Patient discrimination achieved an accuracy of 80.9% (84.2% for MDD, 81.3% for
schizophrenia, and 78.9% for controls). The connections with the highest discriminative
powers were found within the default mode network and cerebellum.

Grotegerd et al. attempted to discriminate between unipolar and bipolar depression
using an fMRI pattern classification [31]. Twenty participants (10 bipolar and 10 unipolar)
were asked to look at happy, negative, and neutral emotional faces during fMRI scans. The
contrasts between negative and happy versus neutral faces were used as classifiers. Both
the SVM and GPC algorithms were used for classification. SVM classification showed that
the happy versus neutral contrast reached an accuracy of 90%, and the negative versus
neutral contrast reached an accuracy of 75% for discriminating unipolar from bipolar
depression. GPC classification on the other hand showed both happy versus neutral and
negative versus neutral as achieving an accuracy of 70%.

He et al. examined the possibility of predicting the specific characteristics of patients
with MDD using fMRI [32]. Sixty-three MDD patients and 63 matched controls underwent
rsFC imaging. Their trait characteristics were measured using the Affective Neuroscience
Personality Scale (ANPS), and state anhedonia was measured using the Snaith–Hamilton
Pleasure Scale. SVM regression was used to predict trait and state characteristics based on
changes in rsFC. Abnormal connectivity between the left amygdala/hippocampus and right
amygdala/hippocampus predicted sadness scores of the ANPS, while connectivity between
the medial prefrontal cortex/anterior cingulate gyrus and amygdala/parahippocampal
gyrus predicted a state of anhedonia.

Not all ML approaches yield valuable positive outcomes. Maglanoc et al. implemented
a ML approach to assess the relationships between clinical variables and structural and
functional brain components [33]. Overall, the models showed low predictive values for
depression and anxiety symptoms.

Sundermann et al. suggested that most ML approaches using fMRI results as classifiers
were successful only for small samples [34]. The authors selected two subsets of 180 patients
with MDD and 180 healthy controls from the BiDirect study. The first subset was analyzed
using SVM to identify classifiers for the diagnosis of MDD, and the second subset was used to
validate the resulting model. Accuracies ranged from 45.0% to 56.1% for the whole group and
from 60.8% to 61.7% for the subgroup with higher depression severity. This resulted in the
conclusion that classification models did not translate well in a large realistic population.

3. Considerations for ML in Neuroimaging in Depressive Disorders—Treatment
Outcomes (Table 2)
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Table 2. Selection of studies investigating machine learning methods for the prediction of treatment outcomes in depression.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Patel et al., 2015 [9] 11 MDD responders and 13
MDD non-responders

DTI data, structural
imaging, functional imaging

Decision tree LOOCV 89.5% The optimal ADTree model selected
MMSE score, age, whole brain atrophy,

and fluid-attenuated inversion
recovery. Global WM hyperintensity

count for predicting depression
diagnosis

Gong et al., 2011 [65] 22 non-refractory MDD
(39.17 ± 12.88) and 23

refractory MDD (40.43 ±
12.58)

GM and WM SVM LOOCV 69.6% (GM) and 65.22%
(WM)

Participants were treated with one of
three classes of antidepressants:

tricyclic, serotonin–norepinephrine
reuptake inhibitor, and selective

serotonin reuptake inhibitor

Korgaonkar et al., 2015
[66]

54 remitted MDD and 103
non-remitted MDD

GM volume and DTI data
(FA)

Decision tree Hold-out 85.0% (GM volume) and
84.0% (FA)

Participants were randomized to
receive flexibly-dosed escitalopram,
sertraline, or venlafaxine-ER for 8

weeks

Johnston et al., 2015 [67] 20 treatment-refractory
MDD (51.80 ± 11.23) and 21

HC (46.14 ± 13.97)

T1-weighted brain imaging
(GM)

SVM LOOCV 85% (sensitivity, 85% and
specificity, 86%)

MDD participants had experienced
lifetime and/or current chronic

episodes of depression, not necessarily
meeting criteria for MDD at time of

scanning

Bartlett et al., 2018 [68] 63 remitters (34.59 ± 12.23)
and 121 non-remitters (38.40

± 13.69)

T1-weighted brain imaging
(cortical thickness)

RF, PLR 10
repetitions of 5-fold

cross-validation

63.9% (sensitivity, 22.6%
and specificity, 85.8%)

Patients with early onset MDD (before
age 30) and chronic (episode duration

>2 years) or recurrent MDD (≥2
recurrences) were enrolled. Remission
status was predicted more accurately

with RF than PLR

Redlich et al., 2016 [69] 23 ECT-treated MDD (45.7
± 9.8), with 13 responders

and 10 non-responders

High-resolution
T1-weighted structural
imaging (GM volume)

SVM, SVR LOOCV 78.3% (sensitivity, 100% and
specificity, 50%)

Brief-pulse ECT was conducted three
times a week with antidepressants

(mean number of sessions, 14)

Cao et al., 2018 [70] 24 severe MDD (31.3 ±
10.8), with 12 remitters and

12 non-remitters

T1-weighted structural
imaging (GM volume)

SVR LOOCV Overall, 83.3% (sensitivity,
91.7% and specificity, 75%)

All the patients were under severe
unipolar depression and received

eight sessions of modified ECT
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Table 2. Cont.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Gaertner et al., 2021 [71] 39 responders (50.23 ±
17.53) and 32

non-responders (51.31 ±
18.09)

Structural MRI SVM with a linear
kernel

LOOCV 69% (sensitivity, 67% and
specificity, 72%)

Schizoaffective disorder (4%) and BD
(13%) were included. Twelve sessions

of ECT were administered, and
patients with partial response had

extra ECT-sessions (mean no. sessions:
13.61 ± 4.34)

Takamiya et al., 2020
[72]

20 remitters and seven
non-remitters

High-resolution
T1-weighted structural

imaging (GM volume) and
clinical variables

SVM, SVR LOOCV 90% (sensitivity, 100% and
specificity, 71%)

Clinical variables included age, sex,
diagnosis, psychotic features, family
history of mood disorder, duration of

episode, illness duration, previous
ECT, and the score of each item of

HDRS-17

Tymofiyeva et al., 2019
[73]

30 MDD (16.0 ± 1.3) DTI data Decision tree (J48) 10-fold cross validation 83% (sensitivity, 82% and
specificity, 84%)

All patients underwent CBT, and six
patients received antidepressants with

CBT; 19 improvers and 11
non-improvers were included

Marquand et al., 2008
[74]

20 MDD (43.7 ± 8.6) and 20
HC (43.7 ± 8.3)

fMRI data SVM LOOCV Statistical significance for response
prediction not achieved

Frassle et al., 2020 [75] 85 MDD fMRI data SVM LOOCV 79% (chronic vs. fast
remission), 61% (gradual

improvement vs. fast
remission)

Data from the Netherlands Study of
Depression and Anxiety were used to

classify chronic patients, gradual
improvement, and fast remission

Tian et al., 2020 [76] 106 MDD and 109 HC fMRI data SVM LOOCV 79.4% Multicenter data analyzed while
assuming an HDRS score reduction of

at least 50% as response after
escitalopram monotherapy

Liu et al., 2020 [77] 57 MDD (31 amisulpride, 26
placebo) and 28 HC

fMRI data Elastic net
regularization

Nested cross validation 77% (MDD vs. HC), 59%
(amisulpride vs. placebo)

Striatal network functional
connectivity changes were most

predictive for classification, suggesting
a dopaminergic role in treatment

outcome

Osuch et al., 2018 [78] 34 MDD (19.7 ± 2.6), 32
BPD (21.3 ± 2.9), and 33 HC

(20.2 ± 2.0)

fMRI data SVM Nested cross validation 92.4% (MDD vs. BPD), 92%
(medication class response

prediction)

Diagnostic classification also
succeeded in predicting the optimal
medication class of response, where

BPD patients responded to mood
stabilizers, and MDD patients

responded better to antidepressants.
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Table 2. Cont.

References (Year) Subjects (Mean Age) Features Machine Learning
Method

Cross-Validation Accuracy * Comments

Hopman et al., 2021 [79] 70 MDD (41.93 ± 11.67) fMRI data SVM 5-fold cross validation 95.35% Medication resistant patients were
treated with rTMS and analyzed to
predict short term and long-term

treatment response. Sustained
response was associated with stronger

anterior cingulate/occipital cortex
connectivity

Cash et al., 2019 [80] 47 MDD (43 ± 12) and 29
HC (39 ± 15)

fMRI data SVM LOOCV 85~95% Reduced connectivity in default mode
and affective network was associated

with better rTMS response

Wang et al., 2018 [81] 23 MDD (38.74 ± 11.02) and
25 HC (39.52 ± 8.07)

fMRI data SVM LOOCV 72.92% Local functional connectivity density
of left pre/postcentral gyri, both

superior temporal gyri were
predictive of ECT treatment response

Pei et al., 2020 [82] 98 MDD fMRI data, venous blood SVM LOOCV 86% fMRI data were combined with genetic
data on selected single nucleotide

polymorphisms for classification of
responders and non-responders to

medication, resulting in higher
accuracy than fMRI data alone (61%)

RF, random forest; SVM, support vector machine; SVR, support vector regression; PLR, penalized logistic regression; ADTree, alternating decision tree; LOOCV, leave-one-out
cross-validation; FA, fractional anisotropy; GM. gray matter; WM. white matter; MADRS, Montgomery–Asberg Depression Rating Scale; ECT, electroconvulsive therapy; HDRS,
Hamilton Depression Rating Scale; rTMS, repeated transcranial magnetic stimulation; MDD, major depressive disorder; BPD, bipolar disorder; HC, healthy controls. Accuracy *, highest
accuracies presented.
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3.1. Structural Characteristics Related with Depression Treatment Outcomes

The treatment for MDD is determined according to clinical symptoms, and treat-
ments include pharmacotherapy, psychotherapy, and electroconvulsive therapy (ECT).
Antidepressants are used as the first-line treatment for depression, and fewer than 50% of
patients do not achieve remission [83]. Approximately two-thirds of all patients respond
to pharmacotherapy and/or psychotherapy [84], but the remaining one-third are resistant
to treatment. The prolonged duration of unremitted MDD increases an individual’s func-
tional loss and overall mental healthcare burden. Therefore, it is very important to predict
a patient’s response to particular treatments and to design treatment strategies early at
the onset of MDD. Studies have been conducted to identify biomarkers that can predict
treatment response, and ML studies are also increasing [9,65–72,85,86].

Gong et al. distinguished between patients with refractory depression and those with
non-refractory depression through ML using sMRI data [65]. In this study, the refractory
group was defined as MDD patients with a poor response whose Hamilton Depression
Rating Scale (HDRS) score did not decrease by more than 50% even after 6 weeks of
treatment with two different classes of antidepressants. SVM was applied, and gray
matter distinguished between the refractory and non-refractory groups with an accuracy
of 69.57%, and white matter distinguished between them with an accuracy of 65.22%.
Compared to pre-treatment white matter images, gray matter images showed higher
accuracy in predicting the response to antidepressants in patients with MDD. Korgaonkar
et al. explored both gray matter volume and FA in 157 patients with MDD, including
103 non-remitters and 54 remitters [66]. Patients received treatment with antidepressants,
including escitalopram, sertraline, and venlafaxine, for 8 weeks, and approximately 35% of
all participants achieved remission. Using an ML method (decision tree), this study revealed
that gray matter volume (smaller left middle frontal gyrus and greater right angular
gyrus) and structural connectivity (lower FA values of the left cingulum bundle, right
superior fronto-occipital fasciculus, and right superior longitudinal fasciculus) predicted
nonremission. It suggested that pre-treatment MRI measures could predict MDD patients
who did not respond to antidepressant treatment. Similarly, high accuracy has been
reported in ML for predicting treatment response in late-life depression. Patel reported that
the optical ADTree model, including measures of structural and functional connectivity,
showed an accuracy of 89.47% in a study of 24 patients with depressive disorders (11
responders and 13 non-responders) [9]. A study comparing patients with treatment-
refractory depression and healthy controls reported that the patient group and the healthy
control group could be discriminated using sMRI, even if MDD patients did not meet
the criteria for depressive episodes at the time of MRI scanning [67]. Johnston et al.
reported that gray matter reductions in the caudate, insula, and periventricular gray
matter supported individual prediction with an accuracy of 85%. Similar to the results of
previous sMRI studies [85,86], they suggested an association between reduced volume of
the insula and slower recovery/poor prognosis of MDD in ML using sMRI. The result that
early treatment cortical thickness (one week into treatment) was more associated with the
selective serotonin reuptake inhibitor (SSRI) treatment response than pre-treatment cortical
thickness was presented in the Clinical Trial Establishing Moderators and Biosignatures
of Antidepressant Response in Clinical Care [68,87]. Bartlett et al. used two methods of
random forest (RF) and penalized logistic regression for predicting SSRI treatment response,
and psychometric data, demographic data, pre-treatment cortical thickness/volume, and
one-week treatment change in cortical thickness/volume were included [68]. RF predicted
the remission status more accurately with an accuracy of 63.9%, and they found that frontal
lobe structural alterations in the first week of treatment may be associated with long-term
treatment efficacy.

Several ML studies have been reported to predict the response to ECT in MDD [69–71].
In a study conducted by Redlich et al., 23 MDD patients received ECT, and they comprised
13 responders and 10 non-responders based on the reduction in their HDRS score (50%) [69].
Structural images obtained before treatment predicted the treatment response with an ac-
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curacy of 78.3% (100% sensitivity, 13 of 13 responders). The results of support vector
regression (SVR) showed a positive association between predicted and true individual
percentages of change in the HDRS score. This study suggests that a higher pre-treatment
subgenual cingulate gyrus gray matter volume is associated with a better clinical response.
A previous Chinese study using linear kernel SVR also reported that pre-treatment hip-
pocampal subfield volumes predicted whether a patient could achieve remission after
ECT and the degree of alleviation of depressive symptoms through the use of ECT [70].
They found that MDD patients with baseline smaller hippocampal subfields had better
outcomes, and baseline hippocampal subfield volumes were used to predict the change
in depressive symptoms with an overall accuracy of 83.3%. A study was conducted to
predict ECT treatment response in a group of patients with depressive disorders and other
psychiatric disorders [71,72]. Gärtner et al. predicted the treatment response (percentage
of depressive symptom reduction) after ECT in a retrospective study including patients
with depressive disorder, bipolar disorder, and schizoaffective disorder [71]. The results
showed that the ML method discriminated between responders and non-responders with
an accuracy of 69%; gray matter volume in the right parahippocampal gyrus provided
the most informative contribution. In a Japanese study, 25 variables along with sMRI
data were used as candidate features to predict remission and reduction of depressive
symptoms [72]. Compared to the model using only clinical variables, the model including
sMRI data showed higher predictability accuracy (70.4% and 92.6%, respectively), and
the volumes of the regions including the gyrus rectus, right anterior lateral temporal lobe,
cuneus, and third ventricle predicted ECT treatment response. The model including both
clinical variables and sMRI data showed the same predictive value as the model using only
sMRI data. Previous studies have suggested that pre-treatment sMRI is predictive of ECT
treatment, although there are limitations in these studies in that they have a relatively small
sample size and include a heterogenous patient group [71,72].

A study to predict the improvement of depressive symptoms in adolescents receiving
non-pharmacological treatment was also conducted in the United States. Tymofiyeva
et al. predicted the treatment response of three months of cognitive behavioral therapy
(CBT) using MRI-based structural connectome data [73]. They predicted improvement of
depressive symptoms with an accuracy of 83% using J48 classification and right thalamus,
left middle frontal gyrus, and baseline depression severity, which were associated with the
prediction. Although this study had limitations in that the sample size was small and CBT
treatment protocols were heterogeneous, it suggests the possibility of predicting the effect
of CBT through brain imaging findings.

Studies on the search for objective indicators to predict pharmacological and non-
pharmacological treatments of depression are increasing, and several ML methods are
being used. Current ML studies have suggested the possibility of predicting treatment
response through pre-treatment sMRI, but there are some limitations. Most previous
studies included relatively small sample sizes and heterogeneous patient groups [71,72].
In addition, classes and dosages of antidepressants have not been strictly determined.
Since the pharmacological profile and medication dosage of antidepressants affect brain
structure, the effects of these variables cannot be excluded [88]. Furthermore, there is a
difference in the prediction accuracy (63–93%) according to the design of the study, and
the characteristics of participants and variables associated with predicting the treatment
response are inconsistent. The symptoms of depressive disorders are heterogeneous,
and the causes of onset are diverse. Multiple types of data, rather than a single type of
data, may be helpful in increasing prediction accuracy [89]. To reduce the duration of
the untreated period of MDD, high prediction accuracy of the response to each treatment
method is essential to plan the treatment strategy. For example, ECT is an effective and well-
established treatment for refractory depression and is not generally considered as a first-line
treatment in clinical practice for various reasons, such as the potential adverse effect, stigma
associated with the treatment, and uncertainty of the treatment mechanism [90]. A more
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accurate prediction of treatment response may help psychiatrists in clinical decision-making
regarding first-line treatment for the management of MDD.

3.2. Functional Characteristics Related with Depression Treatment Outcomes

Functional imaging is usually used to identify possible diagnostic markers and refine
diagnostic accuracy in patients with depressive disorder, but this is not the only application
for this technological advancement. The change in functional connectivity can serve as an
indicator for evaluating treatment outcomes and perhaps even the fit between a patient
and a certain treatment regimen.

Marquand et al. analyzed task-related fMRI data using the SVM method to examine
verbal working memory as a possible biomarker for patients with depression [74]. The
brain activity of correlated areas was closer to statistical significance as task difficulty
increased, but actual significance was not achieved. Analysis of the treatment response
revealed that the most difficult tasks were significantly accurate in predicting the response
to 8 weeks of fluoxetine treatment.

A European research team used an ML strategy called generative embedding, which
combines models with classifiers, to predict treatment outcomes in patients with MDD
at the single-patient level [75]. Neuroimaging data acquired from the Netherlands Study
of Depression and Anxiety were used for supervised learning [91]. The team predicted a
given patient’s recovery to be fast or chronic with an accuracy of 79% and fast or gradual
with an accuracy of 61%.

Tian et al. compared the rsFC of 106 patients with MDD and 109 controls to predict
treatment outcomes of the antidepressant escitalopram [76]. A linear soft-threshold SVM
model discriminated responders from non-responders using a reduction of at least 50%
in the HDRS as reference. The anterior cingulate cortex seemed to be the hub for connec-
tions for the various interconnections that discriminated responders from non-responders,
predicting treatment response with an accuracy of 79.41%.

Liu et al. used an ML technique for model selection in a whole-brain analysis to differ-
entiate MDD patients from healthy controls and further distinguish MDD patients taking
amisulpride from those taking placebo to assess the therapeutic effect of dopaminergic
enhancement in MDD [77]. The results indicated that the activation and connectivity of
reward-related striatal networks were the most predictive, suggesting a possible route by
which dopaminergic agents affect treatment outcomes in patients with MDD.

Osuch et al. conducted practical research on the prediction of a medication-class
response in patients with mood disorders [78]. A total of 99 subjects (32 with bipolar I
disorder, 34 with MDD, and 33 healthy controls) underwent resting-state fMRI, which was
used to train a predictive algorithm and construct SVM classifiers. The bipolar disorder
group was hypothesized to respond better to mood stabilizers, whereas the MDD group
was thought to respond better to antidepressants. This classification resulted in an accuracy
of 92.4% in the known-diagnosis group. This method was applied to 12 patients and all
had complicated diagnoses. The suggested optimal medication class led to recovery in 11
of 12 cases (approximately 92%).

Hopman et al. predicted the functional connectivity between the left dorsolateral
prefrontal cortex (DLPFC) and subgenual cingulate cortex (sgACC) to serve as a biomarker
for a repetitive transcranial magnetic stimulation treatment response [79]. Supervised
ML analyses of fMRI data from 70 patients with MDD revealed that this was not true.
Instead, non-responders showed poor connections between the sgACC and other locations
(frontal pole, superior parietal lobule, and occipital cortex) and between the DLPFC and
central opercular cortex. These new observations predicted rTMS treatment results with an
accuracy of 95.35%.

Cash et al. also investigated possible neuroimaging biomarkers for rTMS treatment
outcomes [80]. Data of 47 patients and 29 controls were analyzed using fMRI, resulting in
lower activation in the caudate, prefrontal cortex, and thalamic areas in the patient group.
Reduced functional connectivity in the default mode and affective networks in patients
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was also associated with a better treatment response. These features were used to train
SVMs, resulting in an rTMS treatment outcome prediction with 85–95% accuracy.

Wang et al. sought to identify biomarkers for the treatment response to ECT, another
non-pharmacological treatment option for MDD [81]. They focused on the functional
connectivity density (FCD) and rsFC in 23 patients before and after ECT. Neuroimaging
data analyses showed that local FCD but not long-range FCD of the left pre-and postcentral
gyri and both superior temporal gyri were predictive of changes in HDRS scores after
treatment. The SVM-based classification resulted in a prediction accuracy of 72.92%.

Pei et al. combined neuroimaging data with genetic data for more precise modeling of
predicting outcomes [82]. The participants were divided into treatment responders and
non-responders based on the HDRS score changes after 2 weeks of treatment. Functional
connectivity between 14 selected regions of interest and genomic data on selected single
nucleotide polymorphisms were acquired. Using SVM with a combination of both datasets
resulted in a higher prediction accuracy than when using only one dataset (61% to 86%).

Patel et al. researched patients with late-life depression to find an alternative learning
method to the traditional SVM for predicting the diagnosis of and treatment response to
depression [9]. They combined various clinical variables with structural and functional
neuroimaging data using alternating decision trees. The model showed a diagnostic
accuracy of 87.27% using age, mini-mental state examination scores, and structural imaging
data as variables, and it showed a treatment response accuracy of 89.47% using structural
and functional connectivity data as variables. The best functional connectivity predictors
were lower resting-state connections within the dorsal default mode network.

There are many studies trying to find biomarkers for treatment response in MDD
patients. In the field of neuroimaging, functional connectivity is a possible candidate since
it has resulted in prediction rates with accuracies over 90%, depending on the treatment
regimen and the included clinical variables. As an MRI apparatus is for diagnostic purposes,
its high costs and low accessibility remain a challenge for its everyday use as a biomarker,
but these insights will aid future methods that are more affordable and available.

4. Further Considerations in ML for Depressive Disorder

These models may seem close to being clinically applicable. However, it is unknown
whether the models can maintain these accuracies when applied to brain images acquired
using different scanners and in different populations. In addition, we summarize the issues
in the future application of ML to depressive disorders as follows.

4.1. Sample Sizes

When training our model, it was impossible to use information about the entire
population. Instead, we could use only a small finite sample. Larger sample sizes are
required to use these algorithms. It is quite difficult to acquire sufficient sample data
from neuroimaging studies. Small sample sizes and the complexity of the model result in
overfitting. In addition, simply increasing the amount of data can worsen overfitting if
the number of dimensions also increases. These problems limit the generalizability of the
model to clinical settings. Both dimensionality reduction and an increased sample size are
required.

4.2. Type of Data including Imaging Modality and Selection of Features from Those Data

No single feature consistently predicted the diagnosis or treatment response across
different studies. This reflects the heterogeneity of depression. In addition, neuroimaging
data by themselves have limitations in the information they contain. Many features have
been hypothesized to be useful for predicting results regarding the diagnosis and treatment
outcome. These include sociodemographic, clinical, psychological, neuroimaging, genetic,
immune, and endocrine data. It is necessary to include other depression-related clinical
variables, such as the clinical characteristics of depression, sex, number of episodes, and
multimodal data, as variables for prediction. This further increases the prediction accuracy.
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As the predictive power of these variables is quite different across different clinical popula-
tions, this could limit the generalizability of the study results. In addition, as mentioned for
sample sizes, simply increasing the number of features leads to an increase in dimensional-
ity. This also leads to overfitting with respect to the sample size. Researchers must decide
how to combine prediction models from different dimensions to achieve accuracy [92].

4.3. Training Algorithms and Types of Validation

Many different algorithms have been used, although the most commonly used algo-
rithms are SVM algorithms. Most studies have used supervised prediction and classification
algorithms capable of modeling linear and nonlinear relationships to construct predictive
models. As there is no one way to reliably integrate all the variables with different modali-
ties into one model, and certain algorithms are more suitable for different combinations of
features [93], the proper choice of algorithms and further improvement of algorithms are
needed.

4.4. Clinical Applicability from Results

The heterogeneity of the samples in studies using ML in relation to clinical characteris-
tics and medication status may limit the generalizability of the results [94]. For example,
it is common to use medication-naïve samples in MDD neuroimaging studies. As the
effects of medication on neuroimaging findings need to be controlled, many researchers
have attempted to compare medication-naïve patients and control groups [7]. MDD is a
chronic disease in clinical practice, and many patients suffer from chronic impairments
caused by MDD itself. They are also influenced by the medications used to treat MDD. The
study results from artificially selected medication-naïve patient groups for comparability
issues with healthy controls might be limited in their generalizability and clinical use in
real practice, involving a high proportion of chronically depressed patients. The high cost
and low availability of neuroimaging facilities in the general population is also another
limitation for this field.

Although there are many challenges, it is thought that these ML techniques will
eventually integrate the various data to enable individual-level clinical inferences that are
applicable to actual clinical practice. This is also expected to be related to personalized
precision medicine in the future.
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