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a b s t r a c t

We propose a robust Poisson geometric process model with heavy-tailed distributions to
cope with the problem of outliers as it may lead to an overestimation of mean and variance
resulting in inaccurate interpretations of the situations. Two heavy-tailed distributions
namely Student’s t and exponential power distributions with different tailednesses and
kurtoses are used and they are represented in scale mixture of normal and scale mixture
of uniform respectively. The proposed model is capable of describing the trend and
meanwhile the mixing parameters in the scale mixture representations can detect the
outlying observations. Simulations and real data analysis are performed to investigate the
properties of the models.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Most time series measured over continuous range assume a normal error distribution. These traditional time series
models are however vulnerable to outliers. Outlier in time series has been realized as an influential factor in model fitting
and forecasting. Failure to downweigh the outlying effects may lead to a poor model fit, an overestimation of variance, an
inappropriate interpretation and an inaccurate prediction. This issue has received a great deal of attention, therefore several
approaches have been developed to reduce the influence of outliers and the distributional deviation in the data analysis.
Over the past decades, twomain approaches are considered to cope with the overdispersion caused by the outliers. The first
approach simply incorporates mixture effects to account for the heterogeneity in the distribution of the data. This can be
viewed as a missing data problem assuming that the membership of the data from one of the distributions is unknown and
has to be estimated. Themixturemodel is usually implemented using expectation–maximization (EM) algorithm orMarkov
chain Monte Carlo (MCMC) sampling algorithm.
The second approach is to adopt a heavy-tailed distribution instead of the commonly used Gaussian distribution as the

error distribution of the data. Some popular choices of heavy-tailed distributions include the Student’s t-distribution and a
more general class of distributions is the Pearson Type IV distribution (Johnson et al., 1995). Alternatively, the exponential
power (EP) distribution which can describe a leptokurtic (positive excess kurtosis) or platykurtic (negative excess kurtosis)
shape is another good choice. However, the implementation of these distributions is difficult because the derivation of the
marginal posterior distributions of the parameters is intractable using conventional numerical and analytic approximations
(Choy and Smith, 1997). To overcome this problem, Box and Tiao (1973) proposed a new exponential power family of normal
scale mixtures (SMN) and later Qin et al. (1998) pioneered the scale mixtures of uniform (SMU) which replaced the normal

∗ Corresponding author. Tel.: +61 2 92319131.
E-mail addresses:wwan3887@uni.sydney.edu.au (W.-Y. Wan), jennifer.chan@sydney.edu.au (J.S.-K. Chan).

0167-9473/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2010.06.011

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:wwan3887@uni.sydney.edu.au
mailto:jennifer.chan@sydney.edu.au
http://dx.doi.org/10.1016/j.csda.2010.06.011


688 W.-Y. Wan, J.S.-K. Chan / Computational Statistics and Data Analysis 55 (2011) 687–702

distribution in the SMN form by uniform distribution. Theoretically, any distribution that can be expressed by SMN form,
also has a SMU representation.
The hierarchical structure of the SMN or SMU representation possesses two prominent advantages: (1) the resulting

density contains a mixing parameter which can accommodate the extra-Poisson variation and help to identify the extreme
values in outlier diagnosis and (2) the parameter estimation can be simplified by sampling from normal or uniform
distribution using Markov Chain Monte Carlo (MCMC) algorithms such as Gibbs sampling. The recent emergence of
the software WinBUGS which performs the Bayesian statistical inferences using MCMC algorithms also facilitates the
implementation of these representations, thus enhancing their popularity in the context of Bayesian modelling. This
hierarchical structure is very practical in insurance applications because it is well known that the normal error distribution
falls short of allowing for irregular and extreme claims and hence contaminates the estimation procedure and leads to poor
estimation. For instances, Choy and Chan (2003) applied the Student’s t- and EP distributions in SM representations to
predict the insurance premiums to be charged on the policyholders in credibility analysis and Chan et al. (2008) predicted
and projected the loss reserves data with various heavy-tailed distributions under the generalized-t distribution family
expressed in SMU representation.
So far, the techniques of using scale mixture representation apply solely to continuous time series. Yet, discrete count

time series is observed inmany occasions especially in amedical context. In clinical trials, patients usually have longitudinal
measurements and sometimes the appearance of outlying observations in the data set may inflate the mean and variance of
the data distribution and have an adverse effect on both the parameter estimation and prediction. Despite overdispersion,
trend is often observed in time series and examining the trend patterns provides useful information on the movement of
outcomes over time.
To cope with this problem, Thall and Vail (1990) proposed adding cluster-specific and time-specific random effects into

the mean link function to give extra-Poisson variation to the data. Thereon, Jowaheer and Sutradhar (2002) incorporated
the gamma random effects in the Poisson mixed model and later, Jowaheer et al. (2009) adopted a Poisson mixed model
with two independent sources of normal random effects to deal with the problem. Nevertheless, themixed effects approach
which assumes the mean of the Poisson distribution follows gamma or log-normal distribution maybe inadequate to cast
light on the outlying effect caused by the extreme observations. To tackle this pitfall, plenty of researches tried various
mixing distributions. Some useful ones include generalized inverse Gaussian, generalized gamma, generalized exponential,
inverse gamma, etc. Refer to (Gupta and Ong, 2005) for more details. In this paper, we seek a new direction to model
overdispersed longitudinally time series of counts due to the presence of outliers. Our proposedmodel is an extension of the
generalizedmixture Poisson geometric process (GMPGP)model proposed byWan and Chan (2009)which is developed from
the geometric process (GP)model originated by Lam (1988a,b). TheGMPGPmodel is a two-componentmixturemodelwith a
mean function to analyze the covariate effect and a ratio function to describe the time effect. Meanwhile, themixture effects
in both mean and ratio functions can capture the population heterogeneity and overdispersion in the data. See Wan (2006)
andWan and Chan (2009) for more details. In this paper, we introduce a robust mixture Poisson geometric process (RMPGP)
model using some heavy-tailed distributions in scale mixture representation. We assume that the outcome variable has a
Poisson distribution with a stochastic mean which forms a latent GP, and the mean of the GP after geometrically discounted
by the ratio follows a heavy-tailed distribution such as log-t distribution or log–exponential power (log–EP) distribution
represented in SMN and SMU forms respectively. Under the scale mixture representation, the model parameters can be
simulatedusing theMCMCalgorithms and themixingparameters help to identify the extremevalues in the outlier diagnosis.
To our knowledge, this is a pioneering work in adopting Student’s t- or EP distributions for Poisson time series. Besides, our
proposed GP models have a trend component (ratio function) which enables the study of trends of the outcomes over time
and can accommodate the clustering effect using a mixture of homogeneous distributions. These make our model more
advantageous than many existing Poisson time series models.
To demonstrate the characteristics and application of our models, the paper is presented as follows. First, the develop-

ment of the robust mixture Poisson geometric process (RMPGP) model using Student’s t- and EP distributions from the GP
model is described in Section 2. Next, Section 3 introduces the scalemixture representation of the two heavy-tailed distribu-
tions and their implementation in the RMPGPmodel. Besides, the hierarchical structure andMCMC algorithms of themodels
are given followed by the introduction of the model assessment criterion. Furthermore, Section 4 consists of a simulation
study of the robust Poisson geometric process (RPGP) models and Section 5 demonstrates an application of the proposed
models using the epilepsy data studied by Leppik et al. (1985) with discussion. Lastly, a brief summary is given in Section 6.

2. Robust mixture Poisson geometric process model

2.1. Geometric process model

Lam (1988a,b) first proposed to model positive continuous data with monotone trend, such as inter-arrival times, by a
monotone process called the geometric process (GP) defined as:

Definition. Let X1, X2, . . . be a sequence of non-negative random variables. If there exists a positive real number a such that
{Yt = at−1Xt , t = 1, 2, . . .} forms a renewal process (RP), then the stochastic process {Xt , t = 1, 2, . . .} is called a geometric
process (GP) and the real number a is called the ratio of the GP.
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The GP model asserts that if the ratio a discounts the tth outcome Xt geometrically by t − 1 times, the resulting process
{Yt} becomes stationary and forms a RP, which may follow some parametric distributions f (yt) with E(Yt) = µ and
Var (Yt) = σ 2. Hence, the mean and variance of the GP model are:

E(Xt) =
µ

at−1
and Var (Xt) =

σ 2

a2(t−1)

respectively. With the ratio parameter, the GP model allows the mean and variance to change over time. In fact, a GP is a
monotonic increasing sequence of non-negative random variables if a < 1, andmonotone decreasing if a > 1. When a = 1,
it becomes a stationary renewal process (RP) which is independently and identically distributed with the same distribution
f (yt).
Over the past decade, GP models have been applied to various fields of research (Chan et al., 2006; Lam and Chan, 1998;

Lam and Zhang, 2003; Lam et al., 2004) and have been extended to fit different types of data. For example, Chan et al. (2006)
introduced the threshold GPmodel to study the trends of the daily number of infected cases for the severe acute respiratory
syndrome (SARS) epidemic outbreak in 2003. Chan and Leung (2010) initiated the binary GP model to study the trends of
methadone treatment outcomes. And,Wan and Chan (2009) introduced the generalizedmixture PoissonGP (GMPGP)model
to analyze the new tumour counts of the bladder cancer patients which is extended from the PGP model initiated by Wan
(2006).

2.2. Robust PGP model

LetWit denote the count for subject i at time t, i = 1, . . . ,m, t = 1, . . . , ni and n =
∑m
i=1 ni. Following the framework of

GPmodel,Wit is assumed to follow a Poisson distribution fP(wit |xit)withmean Xit which forms a latent GP. Then, we further
assume the stochastic process {Yit = at−1it Xit} follows some lifetime distributions f (yit), such as exponential distribution in
Wan (2006) and gammadistribution inWan and Chan (2009), withmeanµit , the resultantmodel is called Poisson geometric
process (PGP) model.
Without loss of generality, we assume that the logarithm of Yit , i.e. Y ∗it = ln Yit follows a heavy-tailed distribution f (y

∗

it)
with a mean E(Y ∗it ) = µ

∗

it . Then, the marginal pmf forWit is

f (wit) =
∫
∞

0
fP

(
wit

∣∣∣∣∣ ey
∗
it

at−1it

)
f (y∗it) dy

∗

it

=

∫
∞

0

exp
(
−
ey
∗
it

at−1it

)(
ey
∗
it

at−1it

)wit
wit !

f (y∗it) dy
∗

it . (1)

The resultant model is named as robust Poisson GP (RPGP) model. It is essentially a state space model with state variables
Xit and has time-evolving mean and ratio functions to accommodate the exogenous effects and non-monotone trends. The
mean µ∗it and ratio ait are identity-linked and log-linked respectively to linear functions of covariates defined respectively
below:

µ∗it = βµ0 + βµ1zµ1it + · · · + βµqµzµqµit (2)

ln ait = βa0 + βa1za1it + · · · + βaqazaqa it (3)

where zjkit , k = 1, . . . , qj are some time-evolving covariates. Hence, {Yit} is no longer a RP but becomes a stochastic process.
Similarly, the non-constant ratio function ait allows a non-monotone trend and different values for βak, k = 0, . . . , qa can
describe a variety of trend patterns. Refer to Wan (2006) for more details.
Apparently, bymixing the Poisson distributionwith someheavy-tailed distributions, extra variabilitywill be added to the

Poisson distributionwhich enables themodel to accommodate the enlarged variance caused by some extreme observations.
In this paper, we consider the Student’s t- and EP distributions because they have different shapes including heavier-than-
normal to normal tails in the former as well as the platykurtic shape and leptokurtic shape with a kink in the latter. The
various shapes allow the model to be more flexible to capture different kurtoses in the data.

2.2.1. RPGP model with Student’s t-distribution
If Y ∗it has a Student’s t-distribution with mean µ

∗

it and variance
ν
ν−2σ

2, the probability density function of Student’s t-
distribution fT (y∗it) is given by

fT (y∗it) =
Γ
(
ν+1
2

)
√
νπσΓ

(
ν
2

) {1+ (y∗it − µ∗it)2
νσ 2

}− (ν+1)2
(4)

where µ∗it is given by (2), ν > 2 and is the degrees of freedom which controls the tails. A small ν gives a heavier tail and
Student’s t-distribution converges to normal distribution when ν →∞. The kurtosis is 6

ν−4 + 3 for ν > 4 which is greater
than 3, the kurtosis of the normal distribution.
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Table 1
Different moments of marginal pmfs for RPGP-t model under a set of floating parameters with fixed values of ν = 10, σ = 0.5, βa0 = 0.5, βa1 =
−0.1, βµ0 = 3, βµ1 = −0.2.

Floating parameter Mean Variance Kurtosis Floating parameter Mean Variance Kurtosis

ν = 1 15.082 152.634 1.0017 σ = 0.1 12.279 14.110 0.1209
ν = 2 14.381 110.855 1.0036 σ = 0.5 14.041 81.182 0.5579
ν = 5 14.616 103.899 0.6568 σ = 1.0 16.143 230.454 0.9817
ν = 50 13.985 69.826 0.3827 σ = 2.0 15.511 349.030 0.9832

βµ0 = 1.0 1.057 1.643 0.0411 βa0 = −0.5 34.452 262.605 0.9605
βµ0 = 2.0 2.891 6.827 0.2277 βa0 = −0.01 23.015 175.040 0.8652
βµ0 = 3.0 7.832 32.123 0.7399 βa0 = 0.5 14.460 95.392 0.7662
βµ0 = 4.0 20.814 153.217 1.1929 βa0 = 1.5 5.344 16.972 0.2819

To study the pmfs of the proposed RPGP-t model, we assume qµ = qa = 1, zµ1 = b = 0, 1 as the covariate effect
and za1t = t as the time-evolving effect in (2) and (3). Hence the mean function µt = exp(βµ0 + βµ1b) and ratio function
at = exp(βa0 + βa1t). Fixing b = 1 and t = 2, we change the values of one of the scale, shape or location parameters
each time while keeping the other parameters constant and approximate the pmf in (1) using Monte Carlo integration as
described below. Conditional on covariate b and time t , the marginal pmf estimator f̂bt(w), in general, can be obtained by:

f̂bt(w) =
M∑
j=1

fP

(
w

∣∣∣∣∣eŷ
∗(j)
bt

at−1t

)
=

M∑
j=1

exp
(
−
eŷ
∗(j)
bt

at−1t

)(
eŷ
∗(j)
bt

at−1t

)w
w!

, w = 0, 1, . . . ,∞; and

ŷ∗(j)bt ∼ fT (y
∗(j)
bt |µ

∗

t , σ , ν), j = 1, . . . ,M (5)

where M = 10 000, the latent ŷ∗(j)bt are simulated from the Student’s t-distribution in (4) given the parameters µ
∗

it , σ and
ν. Besides the mean and variance, we also study the kurtosis of the pmfs using the method in Gupta and Ong (2005) for a
discrete distribution. The relative long-tailedness of the distribution is defined as limw→∞ f̂bt(w+1)/f̂bt(w)where the limit
is zero for Poisson distribution. The marginal pmfs are displayed in Fig. 1(a)–(d) with their means, variances and kurtoses
summarized in Table 1 below. Note that since different pmfs are drawn on the same graph for comparison, we use curves
instead of bars to represent marginal pmfs for better visualization.
Results reveal that in general the location, variability and the tailedness of the marginal pmf depend on parameters

βjk, j = µ, a; k = 0, 1, in which a larger βµ0 and a smaller βa0 lead to a larger mean, variance and kurtosis. Whereas, ν
and σ control the spread and the tail behaviour of the distribution without altering its mean. A smaller ν and a larger σ
contribute to a larger variability and a heavier tail and thus the model can accommodate the outlying effect due to extreme
values while keeping the mean unchanged. Since the variance of each distribution in Table 1 is substantially larger than the
mean, the RPGP-t model is capable of fitting data with overdispersion due to outliers as well as data with equidispersion
when σ is small.

2.2.2. RPGP model with EP distribution
If Y ∗it has an exponential power (EP) distribution, also known as generalized error distribution,withmeanµ

∗

it and variance
σ 2, it has a probability density function

fEP(y∗it) =
c1
σ
exp

−
∣∣∣∣∣ c1/20 (y∗it − µ

∗

it)

σ

∣∣∣∣∣
2/ν
 (6)

where c0 = Γ (3ν/2)/Γ (ν/2), c1 = c
1/2
0 /(νΓ (ν/2)) and ν ∈ (0, 2] is a shape parameter which controls the kurtosis. This

family subsumes a range of symmetric distributions such as uniform (ν → 0) with kurtosis equal to 1.8, normal (ν = 1)
with kurtosis equal to 3 and double exponential (ν = 2) with a kurtosis of 6. Its tails can be more platykurtic when ν < 1
or more leptokurtic when ν > 1 compared with the normal tail (ν = 1).
By fixing the parameters at βa0 = 0.5, βa1 = −0.1, βµ0 = 3.0, βµ1 = −0.2, ν = 1, σ = 0.5 but leaving one floating,

the marginal pmfs are again approximated using Monte Carlo integration specified in (5) but replacing fT (y
∗(j)
bt |µ

∗
t , σ , ν)

with fEP(y
∗(j)
bt |µ

∗
t , σ , ν). The effects of different parameters on the resulting pmfs are illustrated in Table 2 and Fig. 2(a)–(d).

Clearly, the tail of the distribution depends on all the parameters and the behaviours of the parameters σ , βµ0 and βa0 on
the resultant pmf are quite close to those of RPGP-t model. However, comparing Fig. 2(a) with Fig. 1(a), the shape parameter
ν in the RPGP–EP model allows a wider range of shapes than those of the RPGP-t model as the EP distribution includes
both leptokurtic and platykurtic shapes. Hence the RPGP–EPmodel can accommodate different degrees of tailedness due to
moderate to adverse outlying effects.
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a b

c d

Fig. 1. RPGP-t model with varying ν, σ , βµ0 and βa0 .

Table 2
Different moments of marginal pmfs for RPGP–EP model under a set of floating parameters with fixed values of ν = 1, σ = 0.5, βa0 = 0.5, βa1 =
−0.1, βµ0 = 3, βµ1 = −0.5.

Floating parameter Mean Variance Kurtosis Floating parameter Mean Variance Kurtosis

ν = 0.1 9.379 16.987 0.0925 σ = 0.1 9.048 9.871 0.0782
ν = 0.5 9.629 20.468 0.1312 σ = 0.5 10.331 42.865 0.2938
ν = 1.0 10.174 39.574 0.3281 σ = 1.0 13.891 197.640 0.9747
ν = 2.0 12.592 192.360 0.9835 σ = 2.0 14.627 327.645 0.9840

βµ0 = 1.0 1.382 1.956 0.0388 βa0 = −0.5 26.592 198.533 0.9605
βµ0 = 2.0 3.771 7.695 0.0982 βa0 = −0.01 16.845 104.392 0.8652
βµ0 = 3.0 10.386 46.856 0.3061 βa0 = 0.5 10.216 46.338 0.7662
βµ0 = 4.0 27.046 199.776 0.7261 βa0 = 1.5 3.788 10.512 0.2819

2.2.3. Robust mixture PGP model
Overdispersion may arise due to clustering effects, hence an alternative way to tackle overdispersion is to add mixture

effects into the mean and ratio functions. Suppose that there are G groups of subjects who have different trend patterns and
each subject has the probability πl of coming from group l, l = 1, . . . ,G. Conditional on group l, the marginal pmf forWit is
given by:

fl(wit) =
∫
∞

0

exp
(
−
ey
∗
itl

at−1itl

)(
ey
∗
itl

at−1itl

)wit
wit !

f (y∗itl) dy
∗

itl (7)

and the group-specific mean µitl and ratio aitl functions become

µ∗itl = βµ0l + βµ1lzµ1it + · · · + βµqµ lzµqµit , and (8)

ln aitl = βa0l + βa1lza1it + · · · + βaqa lzaqa it (9)
respectively. The resulting model is named as robust mixture PGP (RMPGP) model in which f (y∗itl) is given by (4) or (6) for
the RMPGP-t or RMPGP–EPmodel. To illustrate the distribution of a 2-group RMPGP–EPmodel, its pmf (π1f1(wit)+(1−π1)
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a b

c d

Fig. 2. RPGP–EP model with varying ν, σ , βµ0 and βa0 .

Fig. 3. pmf of 2-group RMPGP–EP model at t = 1.

f2(wit)) where fl(wit), l = 1, 2 is given by (7) is plotted in Fig. 3 by assuming G = 2, qµ = qa = 1, t = 1, zµ1i = 1 and
za1it = t . For l = 1, we set π1 = 0.8, βa01 = −0.1, βa11 = 0.05, βµ01 = 3, βµ11 = −0.2, ν1 = 0.2 and σ1 = 0.2 while
for l = 2, we use βa02 = 0.1, βa12 = −0.01, βµ02 = 5, βµ12 = −0.4, ν2 = 1.9 and σ2 = 0.01. Fig. 3 clearly displays the
two distinct modes in the distribution with a larger mode (l = 1) at smaller values ofW and a smaller one (l = 2) at larger
values ofW representing the outliers. This explains how the incorporation of mixture effects in the RMPGP–EP model can
accommodate overdispersion due to clustering effects.

3. Bayesian inference

Performing statistical inference using classical methods like maximum likelihood approach is cumbersome when the
data distribution has no closed formbecause the likelihood function involving high-dimensional integration is intractable. To
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avoid such numerical difficulties, we use a Bayesian approach viaMCMC algorithms to convert the optimization problem to a
sampling problem. Since the non-conjugate structure in the posterior distribution for both RMPGPmodels and the absolute
term in the density function of the EP distribution complicate the sampling algorithms, representing the heavy-tailed
distributions in a scale mixture form produces a simpler set of full conditional posterior distributions for the parameters
and alleviates the computational burden of the Gibbs sampler in the MCMC algorithms.

3.1. Scale mixture representation of heavy-tailed distributions

Choy and Smith (1997) has shown that Student’s t- and EP distributions can be expressed in scalemixture representation
to facilitate the simulation in the MCMC algorithms via a Bayesian hierarchical structure. However, the ways they handle
outliers are different. Choy andWalker (2003) revealed that the former downweighs the extreme values, whereas the latter
merely downweighs or bounds the influence of the outliers. Thus, it will be interesting to study their performances in outlier
diagnosis. In the following, the Student’s t-distribution expressed in SMN form and the EP distribution represented in SMU
form will be discussed in details.

3.1.1. Student’s t-distribution in SMN representation
Assume that a continuous random variable Y has a Student’s t-distribution fT (y) with location µ, scale σ 2 and degrees

of freedom ν. The probability density function of Y is said to have a SMN representation if it can be expressed as

fT (y|µ, σ , ν) =
∫
∞

0
fN

(
y
∣∣∣∣µ, σ 2λ

)
fG
(
λ

∣∣∣ν
2
,
ν

2

)
dλ (10)

where fN(.| c, d) represents a normal distribution withmean c and variance d, fG(.| c, d) refers to a gamma distribution with
mean c/d and variance c/d2, ν is a shape parameter and λ is a mixing parameter which can be used to identify outlier.
An outlier is indicated if λ is substantially small as small value implies that the normal distribution in (10) has an inflated
variance and hence helps to downweigh its influence on the variance σ 2.
Applying the SMN form (10) for (4) in the RMPGP-t model, the marginal pmf forWit in (7) becomes:

∫
∞

0

exp
(
−
ey
∗
itl

at−1itl

)(
ey
∗
itl

at−1itl

)wit
wit !

∫
∞

0
fN

(
y∗itl

∣∣∣∣µ∗itl, σ 2lλitl
)
fG
(
λitl

∣∣∣νl
2
,
νl

2

)
dλitl dy∗itl.

3.1.2. Exponential power distribution in SMU representation
Theoretically, any distribution that can be expressed in SMN form, also has a SMU representation (Qin et al., 1998). To

simplify the implementation of the MCMC sampling algorithm,Walker and Gutiérrez-Peña (1999) first proposed to express
the EP distribution in SMU representation. In a slightly different form, Chan et al. (2008) write the EP distribution in SMU
form as follow:

fEP(y|µ, σ) =
∫
∞

0
fU
(
y|µ− σλν/2, µ+ σλν/2

)
fG

(
λ

∣∣∣∣1+ ν2 , 12
)
dλ (11)

where fU(.|c, d) is a uniformdistribution on the interval (c, d) and againλ is amixing parameter. Different from the Student’s
t-distribution, the larger the λ, the wider is the range of the uniform distribution to accommodate a possible outlier.
In the RMPGP–EP model, if we replace (6) with (11), the marginal pmf forWit in (7) becomes:

∫
∞

0

exp
(
−
ey
∗
itl

at−1itl

)(
ey
∗
itl

at−1itl

)wit
wit !

∫
∞

0
fU
(
µ∗itl − σlλ

νl/2
itl , µ

∗

itl + σlλ
νl/2
itl

)
fG

(
λitl

∣∣∣∣1+ νl2 , 12
)
dλitl dy∗itl.

3.2. MCMC algorithms

To implement the MCMC algorithms, WinBUGS, an interactive Windows version of the BUGS program for Bayesian
analysis of complex statistical models using MCMC techniques is used. For the RMPGP-t and RMPGP–EP models, the
hierarchical structure under the Bayesian framework is outlined in the following:

wit ∼ Ii1fP

(
ey
∗
it1

at−1it1

)
+ · · · + IiGfP

(
ey
∗
itG

at−1itG
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σ 2l

λitl

)
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(νl
2
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2

)
for RMPGP-t model;
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(
µ∗itl − σlλ

νl/2
itl , µ

∗

itl + σlλ
νl/2
itl

)
and λitl ∼ fG

(
1+

νl

2
,
1
2

)
for RMPGP–EP model.
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where µ∗itl and aitl are given by (8) and (9) and Iil is the group membership indicator for subject i such that Iil = 1 if he/she
comes from group l and zero otherwise. In order to construct the posterior density, some prior distributions are assigned to
the model parameters as follows:

βjkl ∼ fN(0, τ 2jkl), j = µ, a; k = 0, 1, . . . , qj; l = 1, . . . ,G (12)

σ 2l ∼ fIG(cl, dl) (13)

νl ∼

{
fU(0.01, hl) for RMPGP-t model;
fU(0, 2) for RMPGP–EP model (14)

(Ii1, . . . , IiG)T ∼ multinomial (1, π1, . . . , πG) (15)

(π1, . . . , πG)
T
∼ fDir(α1, . . . , αG) (16)

where cl, dl, hl are some positive constants, fIG(c, d) denotes the inverse gamma density given by

fIG(x) =
dc

Γ (c)
x−(c+1)e−d/x

and fDir(α) represents a Dirichlet distribution, a conjugate to multinomial distribution, with parameters α = (α1, . . . , αG).
In case of a 2-group (G = 2) mixture model, (15) can be simplified to Ii1 ∼ Bernoulli(π1), Ii2 = 1 − Ii1 and (16) becomes a
uniform prior fU(0, 1) for π1 with π2 = 1− π1. With the posterior means Îil of the group membership indicators Iil, patient
i is classified to group l′ if Îil′ = maxl Îil.
According to Bayes’ theorem, the posterior density is proportional to the joint densities of complete data likelihood and

prior probability distributions. For the RMPGP-t and RMPGP–EP models, the complete data likelihood functions LT (θ) and
LEP(θ) for the observed datawit and missing data {y∗itl, λitl, Iil} are:

LT (θ) =
m∏
i=1

G∏
l=1

{
πl

ni∏
t=1

fP(wit |βal, y
∗

itl)fN(y
∗

itl|βµl, σl, λitl)fG(λitl|νl)

}Iil
and

LEP(θ) =
m∏
i=1

G∏
l=1

{
πl

ni∏
t=1

fP(wit |βal, y
∗

itl)fU(y
∗

itl|βµl, σl, νl, λitl)fG(λitl|νl)

}Iil
. (17)

The vector of model parameters is θ = (θT1, . . . , θ
T
G, π1, . . . , πG−1)

T where θl = (βµl,βal, σl, νl)
T
; i = 1, . . . ,m, t =

1, . . . , ni, l = 1, . . . ,G,βµl = (βµ0 l, . . . , βµqµ l) and βal = (βa0l, . . . , βaqa l).
Treating {y∗itl, λitl, Iil} asmissing observations, the joint posterior density of the RMPGP–EPmodel is illustrated as follows:

f (w, I, y∗,λ|β, σ, ν,π) ∝ LEP(θ)

(∏
j=µ,a

qj∏
k=0

G∏
l=1

fN(βjkl|0, τ 2jkl)

)(
G∏
l=1

fIG(σ 2l |al, bl)

)(
G∏
l=1

fU(νl|0, 2)

)
fDir(π|α)

where w = (w11, w12, . . . , wmnm)T , I = (I11, I12, . . . , ImG)T , y∗ = (y
∗

111, y
∗

121, . . . , y
∗

mnmG)
T ,λ = (λ111, λ121, . . . , λmnmG)

T ,

β = (βa01, . . . , βaqaG, βµ01, . . . , βµqµG)
T , σ = (σ1, . . . , σG)

T , ν = (ν1, . . . , νG)
T and π = (π1, . . . , πG)

T . The complete
data likelihood LEP(θ) of the RMPGP–EP model is given by (17) and the priors are given by (12)–(16). In Gibbs sampling,
the unknown parameters are simulated iteratively from their univariate conditional posterior distributions which are
proportional to the joint posterior density of complete data likelihood and prior densities.
The univariate full conditional posterior densities for each of the unknownmodel parameters θ = (β, σ, ν,π,λ) and the

latent group indicator Iil are given by:
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if zµkit 6= 0
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f (σ 2l |w, I, y
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′
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where β−, y∗−,λ−, σ−, ν−,π− and I− and are vectors of β, y∗,λ, σ, ν,π and I excluding βjkl, y∗itl, λitl, σl, νl, πl and Ii
respectively. The MCMC algorithms are implemented using WinBUGSwhere 55000 iterations are executed for each model
and the first 5000 iterations are discarded as the burn-in period. Thereafter parameters are sub-sampled from every 50th
iteration to reduce the auto-correlation in the sample. This results in M = 1000 simulated posterior samples of every
parameter and parameter estimates are given by their samplemeans ormedians. History plots and auto-correlation function
(ACF) plots of each parameter are examined to ensure convergence and independence amongst the parameters.

3.3. Model selection criterion

In our analysis, we adopt the deviance information criterion (DIC), originated by Spiegelhalter et al. (2002), as the model
selection criterion. Deviance information criterion (DIC) is the sum of posterior mean deviance D(θ)measuring the model
fit and an effective dimension pD which accounts for the model complexity. For the RMPGP model, the DIC is defined as

DIC = D(θ)+ pD

= −
4
M

M∑
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G∑
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}]

+ 2
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}]

(18)

where D = T or EP, fD(.) are densities given by (4) and (6) respectively, and θ (j) and θ̄ represent the jth posterior sample
and posterior mean of parameter θ ,

I
′(j)
il =

π
(j)
l

ni∏
t=1

{
fP(wit |y

∗(j)
itl ,β

(j)
al )fD(y

∗(j)
itl |β

(j)
µl , σ

(j)
l , ν

(j)
l )
}

G∑
l′=1

π
(j)
l′

ni∏
t=1

{
fP(wit |y

∗(j)
itl′ ,β

(j)
al′)fD(y

∗(j)
itl′ |β

(j)
µl′ , σ

(j)
l′ , ν
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} ,

and Ī ′il is defined in a similar way by replacing y
∗(j)
itl and θ(j) with ȳ∗itl and θ̄. The rule of thumb is that the smaller the DIC , the

better is the model.

4. Simulation

To investigate the properties of the RPGP-t and RPGP–EP models, we conduct a simulation study in which r = 100 data
sets are simulated from each of the RPGP models based on a set of true parameters. We set qµ = qa = 1 and each data set
contains m = 80 time series of length ni = 8 from m0 = 40 subjects in the control group (b = 0) and another m1 = 40
subjects in the treatment group (b = 1) with zµ1it = b in the mean function (2). The degrees of freedom ν is set to include
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a b

Fig. 4. Dotplots of seizure counts at different two-week intervals.

heavy (ν = 2.5) and light (ν = 50) tails for Student’s t-distribution and platykurtic (ν = 0.1) and leptokurtic (ν = 1.8)
shapes for EP distribution. The parameters βak in the ratio function (3) with za1it = t are also set to include different trend
patterns by varying the sign and magnitude of the true values.
Afterwards both models are fit to each data set using the Bayesian approach implemented by WinBUGS and R2WinBUGS

and the parameter estimate θ̂ is given by the average of the M = 1000 posterior medians θ̂j. To examine the bias and
precision of the MCMC sampling algorithms, the standard deviation (SD) of θ̂j over r = 100 simulated data sets for each
parameter θ is reported. To assess the accuracy of parameter estimates when the data set is simulated and fitted to the
same model, we calculate the mean squared error (MSE) for each parameter θ which is given by:

MSE =
1
r

r∑
j=1

(θ̂j − θ)
2.

For model selection, the average DIC and average squared error (ASE) proposed by Wegman (1972) is used to assess the
quality of the density estimator on the true pmf. Denote the true pmf of the RMPGPmodel by fbt(w) at time t with covariate
b, the ASE is used to compare the performance of the two models on the same simulated data set and is defined as

ASE =
∑
b=0,1

ψb

ni∑
t=1

r∑
j=1

∞∑
w=0

{
f̂jbt(w)− fbt(w)

}2
where f̂jbt(w) is the pmf estimator of (1) usingMonte Carlo integration described in (5) for countsw in the jth simulated set at
time t with treatment effect b andψb = mb/m is the weight associated with the control (b = 0) or treatment group (b = 1).
Clearly, the smaller the ASE, the closer is the estimated pmf to the true one and thus the better is the model performance.
Table 3 summarizes the results of the four set of simulation experiments with the first two data sets simulated from the

RPGP-t model and the next two simulated from the RPGP–EP model. In general, the MCMC algorithms give unbiased and
precise results as both MSE and SD of most parameters are reasonably small. Moreover, the values of the shape parameter
ν of the two models match with each other in terms of the tailedness. For example, the small ν̂ = 5.286 of the Student’s
t-distribution agrees with ν̂ = 1.8234 which is close to 2 in the EP distribution. However, it is noticed that ν of the RPGP-t
model has relatively lower precision and higher bias reflecting the higher level of difficulty in estimating the tailedness of
the heavy-tailed Student’s t-distribution.
In model comparison, although the RPGP-t model has a slightly smaller ASE (0.04504 versus 0.04817 averaged over

the four simulated sets), the RPGP–EP model outperforms the RPGP-t model in DIC (1968.4 versus 1979.48). All in all,
the simulation experiment shows that the performance of the MCMC algorithms for the two models is satisfactory and
the estimated pmfs f̂jbt(w) approximate the true pmfs fbt(w) reasonably well. While EP distribution can be platykurtic or
leptokurtic with a kink and Student’s t-distribution can give a very heavy tail when the outlying effect is tremendous, the
two RPGP models are suitable under different circumstances.

5. Real data analysis

We illustrate the usefulness of our proposed models through the epilepsy data which can be found in Thall and Vail
(1990). The datawere collected from a clinical trial of 59 epileptics by Leppik et al. (1985). In the randomized controlled trial,
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Table 3
Parameter estimates, SD,MSE,DIC and ASE under 4 simulated data sets based on 4 sets of true parameters from different models.

Data Model Parameter True Estimate SD MSE DIC ASE

1 RPGP-t βa0 −2.0 −1.9320 0.0379 0.0060 2315.55 0.0371
βa1 0.2 0.1960 0.0056 0.0000
βµ0 −1.5 −1.6016 0.0307 0.0113
βµ1 −0.5 −0.3232 0.0381 0.0327
ν 2.5 5.2860 1.3266 9.5040
σ 0.1 0.4244 0.0377 0.1066

RPGP–EP βa0 −1.8844 0.0382 2357.72 0.0592
βa1 0.1892 0.0052
βµ0 −1.5034 0.0254
βµ1 −0.3433 0.0416
ν 1.8234 0.1532
σ 0.1052 0.0132

2 RPGP-t βa0 −1.0 −0.8651 0.0546 0.0211 1834.54 0.0367
βa1 0.2 0.1820 0.0110 0.0004
βµ0 1.0 0.9794 0.0236 0.0010
βµ1 −0.5 −0.4528 0.0329 0.0033
ν 50.0 50.9375 10.6352 112.86
σ 0.02 0.0203 0.0004 0.0000

RPGP–EP βa0 −0.8523 0.0540 1816.94 0.0377
βa1 0.1803 0.0108
βµ0 0.9907 0.0178
βµ1 −0.4541 0.0389
ν 1.0469 0.2979
σ 0.1014 0.0128

3 RPGP-t βa0 −0.4852 0.0795 1883.96 0.0543
βa1 0.0987 0.0110
βµ0 0.7384 0.0920
βµ1 −0.2350 0.0454
ν 73.6282 18.1843
σ 0.3152 0.0654

RPGP–EP βa0 −0.5 −0.4289 0.0729 0.0103 1860.39 0.0550
βa1 0.1 0.0926 0.0105 0.0002
βµ0 1.0 0.8287 0.0769 0.0352
βµ1 −0.5 −0.2812 0.0656 0.0521
ν 0.1 0.2005 0.1178 0.0238
σ 0.5 0.6272 0.0701 0.0210

4 RPGP-t βa0 0.9938 0.0694 1883.86 0.0521
βa1 −0.0996 0.0088
βµ0 1.7407 0.0784
βµ1 −0.2256 0.0549
ν 2.2267 1.1224
σ 0.1682 0.0028

RPGP–EP βa0 1.0 1.1048 0.0663 0.0153 1838.56 0.0407
βa1 −0.1 −0.1110 0.0087 0.0002
βµ0 2.0 1.9388 0.0502 0.0062
βµ1 −0.5 −0.3768 0.0743 0.0207
ν 1.8 1.8430 0.1174 0.0155
σ 0.2 0.1945 0.0225 0.0005

m = 59 patients suffering from simple or complex partial seizures were assigned to either an antiepileptic drug progabide
(zµi1 = 1) or a placebo (zµi1 = 0) with no intrinsic therapeutic value. The seizure counts were recorded at a two-week
interval for an eight-week period (ni = 4) with no dropout or missing cases. As shown in Table 4, the seizure counts exhibit
a prominent extra-Poisson variation with large variance to mean ratios at all time t due to some outlying observations as
displayed in Fig. 4(a) and (b). To assess the overdispersion in the data, we fit a simple Poisson regressionmodel using amean
link function ηit = exp(β0 + β1zµi1 + β2t) and a PGP model using a mean function µit = exp(βµ0 + βµ1zµi1) and a ratio
function ait = exp(βa0+βa1t). Themean and variance under bothmodels (indicated by ‘∗’ in Table 4) are equivalent and are
given by ηit and

µit
at−1it
respectively. Obviously, neither of the two simplemodels, as restricted by their equidispersed property,

can capture the overdispersion. Besides, the highermean seizure counts of the placebo group indicate that ‘treatment group’
is a feasible covariate. Moreover, the gradually decreasing seizure counts over time for both placebo and progabide groups
suggests that time t maybe a possible time-evolving effect. In addition, population heterogeneity in terms of trend pattern
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Table 4
Mean and variance for the observed epilepsy data and under two simple fitted and the best models.

Model Time Overall
t = 1 t = 2 t = 3 t = 4

Placebo mean Observed 9.3571 8.2857 8.7857 8.0000 8.6071
Poisson reg.∗ 9.3658 8.8385 8.3410 7.8714 8.6020
PGP∗ 9.2073 8.9707 8.4645 7.7348
RMPGP–EP 10.0465 10.4001 9.9565 8.7905

Variance Observed 102.757 66.6561 215.286 57.9259 107.934
RMPGP–EP 187.187 214.021 198.254 141.916

Progabide mean Observed 8.5806 8.4194 8.1290 6.7419 7.9677
Poisson reg.∗ 8.6700 8.1819 7.7214 7.2867 7.9557
PGP∗ 8.5212 8.3023 7.8337 7.1584
RMPGP–EP 6.8235 7.2885 6.9278 5.9980

Variance Observed 332.718 140.652 193.049 126.6645 193.966
RMPGP–EP 92.114 124.374 107.435 77.371

Overall mean Observed 8.9492 8.3559 8.4407 7.3390 8.2712
Poisson reg.∗ 8.9940 8.4920 8.0179 7.5704 8.2648
PGP∗ 8.8729 8.6469 8.1573 7.4495
RMPGP–EP 8.3531 8.7652 8.3652 7.3233

Variance Observed 220.084 103.785 200.182 92.8831 152.607
RMPGP–EP 137.234 166.918 150.536 108.003

and count level are also detected intuitively. In consideration of these and the clinical interest of examining trend patterns,
we adopt the RMPGP models to analyze the epilepsy data.
Referring to the MCMC algorithms detailed in Section 3.2, our prior specifications are mostly non-informative except for

νl in the RMPGP-t model. In both RMPGPmodels, we assign τ 2jkl = 1000 in (12), cl = dl = 0.001 in (13) and αl = 1/G in (16)
for a G-group (G ≥ 2) model. For νl in the RMPGP-t model, we take hl = 20 since there is a high degree of overdispersion
in the seizure counts. After implementing the MCMC algorithms in WinBUGS, the posterior sample means are adopted as
parameter estimates since the posterior densities of most model parameters are highly symmetric and the posterior sample
mean are close to the posterior sample median. Table 5 summarizes the parameter estimates, standard errors (SE), 95%
credibility interval (CI) and model selection criterion of the fitted models.
We first fitted a simple RPGP model with treatment group (zµ1it = 0, 1) as the covariate in the mean function µitl in

(8) and two-week interval (za1it = t = 1, 2, 3, 4) as the time-evolving effect in the ratio function aitl in (9). The negative
βµ1 in both RPGP models indicate the treatment effect that patients receiving progabide are associated with lower seizure
counts. However, within the treatment group, it is explicit that some of these patients have abnormally high seizure counts.
Simply fitting a simple RPGP model may fail to allow for the clustering effect among patients receiving the same treatment.
We therefore fitted a 2-group RMPGP model and also attempted to fit a 3-group RMPGP model using both Student’s t- and
EP distributions but the results indicated that one of the groups in the 3-group RMPGP model degenerated and hence the
models were discarded.
Not surprisingly, both RMPGP models give parallel results as they share some common model properties except the

shape of the distribution of y∗itl. In the RMPGP-t model, two distinct groups of patients were identified with the first group
of patients having generally higher seizure counts and is named as the high-level group (l = 1). Within this group, 54% of
the patients are receiving progabide and they have lower seizure counts in general (βµ11 < 0) than those receiving placebo.
Whereas in the low-level (l = 2) group, 49% of the patients belong to the progabide group and again they generally have less
epileptic seizures during the studying period (βµ12 < 0). Besides, the ratio function ait1 in (9) reveals that there is a slightly
decreasing trend in the seizure counts in the high-level group while ait2 indicates that no obvious trend is detected in the
low-level group. In addition, comparing with the low-level group, the relatively smaller ν1 shows that the high-level group
has a higher degree of overdispersion in the seizure counts due to the existence of some abnormally large observations as
revealed in Fig. 4(a) and (b).
As expected, the RMPGP–EPmodel gives consistent results in terms of trend pattern and treatment effect. Moreover, the

group membership of the patients has a close affinity with that of RMPGP-t model and two diverse groups, high-level and
low-level groups, are recognized as well. But for the high-level group, despite the comparable mean level, the ratio function
shows that the seizure count increases in the second 2-week interval before it drops in the next two 2-week intervals.
Coherently, the estimate of ν1 = 1.49 agreeswith the small ν1 = 7.21 in the RMPGP-tmodel indicating that the distribution
of the seizure counts in the high-level group has a heavier tail to account for the higher degree of overdispersion. On the
other hand, the smaller ν2 = 0.24 indicates the data distribution is more uniform in the low-level group.
For model selection, the smaller DIC given by (18) as shown in Table 5 for the RMPGP–EP model manifests its better

model fit on the epileptic seizure counts after accounting for the model complexity. A plausible explanation is that the
EP distribution has a more flexible tail behaviour and thus provides a better fit to the data. To further investigate this, their
observed and fitted pmfs for the low-level group are illustrated in Fig. 5(a)–(d) at different time points, inwhich the observed
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Table 5
Parameter estimates with SE and DIC for the epilepsy data.

Parameter RMPGP-t model RMPGP–EP model
Estimate SE 95% CI Estimate SE 95% CI

G = 1 βa0 −0.6435 0.1464 (−0.9193,−0.3188) 0.0073 0.2780 (−0.5049, 0.5725)
βa1 0.1218 0.0456 (0.0281, 0.2094) 0.0089 0.0675 (−0.1284, 0.1359)
βµ0 1.2970 0.1132 (1.0730,1.4930) 1.7460 0.1582 (1.4750, 2.0890)
βµ1 −0.2177 0.1393 (−0.4838, 0.0574) −0.2637 0.1699 (−0.5564, 0.1181)
ν 73.210 41.920 (9.1650, 145.00) 1.1920 0.1883 (0.8772, 1.5170)
σ 0.9826 0.0669 (0.8607, 1.1290) 0.9036 0.1616 (0.6618, 1.2000)

DIC 1923.08 1945.40

G = 2 βa01 −0.0241 0.4366 (−0.8885, 0.8952) −0.2410 0.3122 (−0.7459, 0.5274)
βa11 0.0192 0.1062 (−0.1984, 0.2282) 0.0739 0.0738 (−0.1149, 0.1963)

High-level βµ01 2.7070 0.1993 (2.2910, 3.0860) 2.6700 0.1569 (2.4100, 2.9850)
(l = 1) βµ11 −0.3544 0.1922 (−0.7197,0.0426) −0.3727 0.1342 (−0.5992,−0.0921)

ν1 7.2110 4.7430 (1.9570, 18.630) 1.4860 0.2559 (0.9858, 1.9210)
σ1 0.5965 0.1029 (0.3955, 0.7890) 0.4841 0.1304 (0.2969, 0.7882)
π1 0.4055 0.0738 (0.2603, 0.5523) 0.4069 0.0688 (0.2730, 0.5421)

βa02 0.2058 0.2378 (−0.1916, 0.6775) 0.2169 0.2271 (−0.2113, 0.6907)
βa12 −0.0464 0.0589 (−0.1611, 0.0579) −0.0474 0.0581 (−0.1634, 0.0613)

Low-level βµ02 1.2750 0.1252 (1.0220, 1.5230) 1.2750 0.0982 (1.0880, 1.4600)
(l = 2) βµ12 −0.3587 0.1656 (−0.6734,−0.0460) −0.4193 0.1477 (−0.7189,−0.1340)

ν2 10.930 5.2690 (1.6580, 19.560) 0.2424 0.1813 (0.0118, 0.6970)
σ2 0.3286 0.1148 (0.1028, 0.5491) 0.7327 0.1058 (0.5191, 0.9433)

DIC 1700.90 1660.66

pmf ftl(w) for group l at time t is generally given by

ftl(w) =
∑
b=0,1

ψb


m∑
i=1
ĪilI(Wit = w)I(zµ1i = b)

∞∑
w′=0

m∑
i=1
ĪilI(Wit = w′)I(zµ1i = b)

 , w = 0, 1, 2, . . . (19)

where I(Wit = w) is an indicator which returns 1whenWit = w for patient i at time t in group l and 0 otherwise, I(zµ1i = b)
indicates the treatment group b of patient i, Îil is the posterior mean of the groupmembership indicator andψb is the weight
associated with the placebo (b = 0) or progabide group (b = 1). On the other hand, the fitted pmf f̂tl(w) is simply obtained
by the numerical approximation described in (5) based on the parameter estimates θl and is weighted by ψb. Based on
Fig. 5(a)–(d), both models imitate the observed pmfs pretty well. However the estimated trend in the ratio function cannot
accommodate the upsurge in observation w = 4 at t = 2 resulting in a discrepancy between the observed and fitted pmfs
in Fig. 5(b). It is not surprised to find that the two RMPGP models give similar pmfs as both have the capability of modelling
highly overdispersed data. Nevertheless, despite of the affinity, the slightly heavier tail in the distribution of the RMPGP–EP
model possibly gives rise to the better DIC .
In the best model, the RMPGP–EP model, since extra variation is added to the mean of the Poisson distribution, the

variances of the estimated pmf f̂tl(w) of each treatment group and the overall variances which comprises the variance of
expectation and the expectation of variance conditional on the mixture group being known, show a dramatic improvement
and are reported in Table 4.
Advantageously, implementing the model using Bayesian approach enables us to study the latent stochastic process y∗itl

and the mixing parameters λitl which can be output in the coda in WinBUGS. Under the RMPGP–EP model, to examine the
density of the unobserved y∗itl which are simulated from an EP distribution with location parameter µ

∗

itl, scale parameter σ
2
l

and shape parameter νl, we compare the densities of the posterior samples of y∗itl with the normal distribution which has
mean and standard deviation of the posterior samples and the EP distribution with same mean and standard deviation and
a shape parameter ν̂l. Four selected yitl from each cluster group l and treatment group zµ1i are illustrated in the following
Fig. 6. Obviously, yit1’s have a leptokurtic shapewhereas yit2’s appear to bemore uniform than the normal distribution. These
agree with the results in Table 5 that the shape parameter of the high-level group is larger than that of the low-level group
(ν1 > ν2) and explain how the EP distribution can downweigh the outlying effect.
Last but not least, the outlier diagnosis is performed using the mixing parameters in the better model, the RMPGP–EP

model. For each cluster group l, the mixing parameters λ̂itl are plotted with the standardized observations w′itl of patients
who are classified to group l in Fig. 7. For fair comparison, the seizure count is standardized asw′itl = |wit − ŵitl|/σ̂witl where
ŵitl and σ̂witl are respectively the mean and standard deviation of the estimated pmf ftl(w) in (19) at time t under group
l of the RMPGP–EP model. An unusually large λitl indicates that the wit is possibly an outlier under group l. Both mixing
parameters λitl and standardized seizure countsw′itl are sorted by groups (l = 1, 2) for better visualization and are graphed
in Fig. 7.
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a b

c d

Fig. 5. Distributions of low-level group at t = 1, 2, 3 and 4.

Fig. 6. Comparison of densities of yitl ’s with normal and EP distributions.

Clearly, all the top 10 (5%) outlying counts with the first 10 largest λitl locate in the high-level group (l = 1) due to
the presence of some extreme observations. They are highlighted in Fig. 7 with the corresponding rank and observation in
parentheses. Not surprisingly, the correlation between λit1 andw′it1 is high (r = 0.9731)which signifies the appropriateness



W.-Y. Wan, J.S.-K. Chan / Computational Statistics and Data Analysis 55 (2011) 687–702 701

Fig. 7. Outlier diagnosis using λitl in the RMPGP–EP model.

of using themixing parameters in outlier diagnosis.While the outlying effect is not substantial in the low-level group (l = 2),
λit2 appears to be relatively smaller.
The top 4 outlying values come from the same patient with ID 49who has abnormally high seizure counts at each 2-week

interval. Besides, 2 large observations are identified from patients with ID 8, and 25. In spite of large observation, four small
seizure counts are also classified as outlier from patients with ID 10, 24, 39 and 56. Knowing which patients are associated
with abnormal seizure counts, specialists can pay more attention to their abnormalities and alternative treatments maybe
considered. At the same time, the RMPGP–EPmodel has downweighed the outlying effect and thus the general trend pattern
is not distorted by the extreme observations.

6. Conclusion

In this paper, we propose using a Poisson geometric process (PGP) model to analyze repeated measurements of counts
over time. The model is essentially a state space model with a ratio function which describes the direction and strength
of the trend and a mean function which reveals the initial level and studies the covariate effect. However, the PGP model
fails to allow for extra-Poisson variation when extreme observations appear in the data. Ignoring the outlying effects may
also lead to overestimated mean and variance resulting in invalid interpretation and prediction. As remedies, two methods
are suggested to account for overdispersion which include adopting a heavy-tailed distribution and incorporating mixture
effect. The latter can handle clustering effect in the data and overdispersion arisen from that may also be captured.
As a new direction to account for population heterogeneity, we apply the heavy-tailed distributions in the modelling of

time series of counts and pioneer the robust Poisson geometric process (RPGP)model. This model allows themean Xitl of the
Poisson distribution to follow a GP and the logarithm of the underlying stochastic process {Yit = at−1it Xit} follows a heavy-
tailed distribution. The resultant model is called the RPGPmodel. By varying a set of model parameters, the properties of the
RPGP models are reported in Tables 1 and 2 and their pmfs are revealed in Figs. 1 and 2. Although the marginal pmfs do not
have a closed-form, Monte Carlo integration in (5) can be used to approximate the pmf, and hence the mean as well as the
variance. Tables 1 and 2 show that the model can accommodate both equidispersed and overdispersed data with varying
degrees of kurtosis.
The RPGP models and its extension, the RMPGP models to allow clustering effects are implemented using a Bayesian

approach. Expressing the heavy-tailed distributions in a scale mixture form facilitates the model implementation using
MCMCalgorithms and themixing parameters enables us to performoutlier diagnosis as shown in the real data analysis. Here,
the Student’s t-distribution in scale mixture of normal (SMN) and exponential power (EP) distribution in scale mixture of
uniform (SMU) are adopted. The resultant models can be efficiently implemented via the user-friendly software, WinBUGS.
Moreover, the posterior densities for the MCMC algorithm are derived for the RMPGP–EP model.
The simulation study shows that the performances of the two RMPGPmodels are comparable and satisfactory. In case of

data with very long tail, the RMPGP-t model seems to fit better since Student’s t-distribution allows a much heavier than
normal distribution. On the other hand, the RMPGP–EP model gives a better fit in the analysis of epilepsy data with diverse
degree of overdispersion across mixture groups as EP distribution has a more flexible tail which can be either leptokurtic or
platykurtic.
One pitfall of our proposed model is that taking log-transformation of the latent Yitl inevitably causes those data

associated with close-to-zero means being identified as outliers. Hence when zero is dominant in the data, the proposed
RMPGP models can be extended to include a zero-altered component (Wan and Chan, 2009).

Appendix

See Tables 1–5 and Figs. 1–7.
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